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Abstract: In the past years, several machine-learning-based techniques have arisen for providing
effective crop protection. For instance, deep neural networks have been used to identify different
types of weeds under different real-world conditions. However, these techniques usually require
extensive involvement of experts working iteratively in the development of the most suitable machine
learning system. To support this task and save resources, a new technique called Automated Machine
Learning has started being studied. In this work, a complete open-source Automated Machine
Learning system was evaluated with two different datasets, (i) The Early Crop Weeds dataset and
(ii) the Plant Seedlings dataset, covering the weeds identification problem. Different configurations,
such as the use of plant segmentation, the use of classifier ensembles instead of Softmax and training
with noisy data, have been compared. The results showed promising performances of 93.8% and
90.74% F1 score depending on the dataset used. These performances were aligned with other related
works in AutoML, but they are far from machine-learning-based systems manually fine-tuned by
human experts. From these results, it can be concluded that finding a balance between manual expert
work and Automated Machine Learning will be an interesting path to work in order to increase the
efficiency in plant protection.

Keywords: automated machine learning; AutoML; weeds identification; deep learning;
precision agriculture

1. Introduction

Nowadays, the damage caused by weeds accounts for important global yield losses
and is expected to increase in the coming years [1]. Although traditionally pesticides were
homogeneously applied to solve this problem, there is a tendency in the EU policy to
reduce the use of plant protection products since they can cause ground environmental
pollution, chemical residues on the crops, and future drug resistance [2]. More specifically,
the EU has set a target to reduce pesticide use by 50% in the next 10 years [3]. Currently,
for applying less dosage of chemical herbicides to weed targets, automatic weed control
arises as a possible solution [4–6].

Recent advances in image classification techniques provide an opportunity for the
improvement of automatic weed control. Despite the delay in the introduction of such
techniques to the agricultural domain, the pace that such technologies are being adopted
is extremely fast. The use of machine-learning-based image analysis presents a relatively
quick, non-invasive, and non-destructive way of controlling weeds spread. In agriculture,
deep learning models have been used in the detection of plant diseases and weeds iden-
tification [7–10]. Convolution Neural Networks (CNNs) are currently the most popular
technique in the agricultural domain since, theoretically, they can mitigate some challenges
such as inter-class similarities within a plant family and large intra-class variations in
background, occlusion, pose, color, and illumination. Besides their good classification
performances, some of these works presented deep neural networks whose inference times
are suitable for real-time agricultural weed control [11].
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However, there are still challenges to fully adopt the deep learning solutions due
to the highly complex agricultural environment, which requires complicated iteratively
fine-tuned machine vision algorithms [12]. Since a suitable machine-learning-based sys-
tem is the right combination of several components, such as feature extraction, feature
selection, and classification, their construction requires knowledge of mathematics, image
analysis, coding, and extensive experience in the selection of model architectures [13,14].
Therefore, finding the system with the highest performance requires a substantial amount
of trial-and-error experimentation time and a highly skilled team to manually test various
configurations and models. Additionally, a classifier must be iteratively retrained repeat-
edly because different conditions can dramatically vary among crops, pest species, areas,
and regions. Thus, the ability to automatically recreate a machine learning model specific
to each situation, even by non-experts, would be desirable.

To address this situation, Automated Machine Learning (AutoML) systems have
arisen in the past years to allow computers to automatically find the most suitable machine
learning pipeline matching a specific task and dataset. AutoML systems could provide
insights to experienced engineers resulting in better models deployed in a shorter period
of time, while allowing inexperienced users to get a glimpse of how such models work,
what type of data they require, and how they could be implemented to solve common
agricultural problems. AutoML systems are meta-level machine learning algorithms,
which use other machine learning solutions as building blocks for finding the optimal
ML pipeline structures [13,14]. These systems automatically evaluate multiple pipeline
configurations, trying to improve the performance iteratively. As a consequence, one of
the AutoML systems’ drawbacks is that they consume a lot of computing resources. For
that reason, different AutoML cloud-solutions are now offered by IT firms such as Google
Cloud AutoML Vision, Microsoft Azure Machine Learning, and Apple’s Create ML. They
offer user-friendly interfaces and require little expertise in machine learning to train models.
On the other hand, open-source technologies have also arisen to raise awareness of the
strengths and limitations of the AutoML systems; for example, AutoKeras, AutoSklearn,
Auto-WEKA, H2O AutoML, TPOT, autoxgboost, and OBOE. A summary of these systems
can be found in Table 1.

Table 1. Summary of current Automated Machine Learning (AutoML) systems and works using them for agricultural
purposes. Bold format for the technologies used in this paper.

AutoML System Type of Technology URL Related Works

Google Cloud AutoML Cloud solution https://cloud.google.com/vision/automl/docs/
(accessed on 8 February 2021) [15,16]

Microsoft Azure ML Cloud solution https://azure.microsoft.com/en-us/services/machine-
learning/automatedml/ (accessed on 31 December 2020) -

Apple Create ML Cloud solution https://developer.apple.com/documentation/createml
(accessed on 8 February 2021) -

AutoKeras Library https://autokeras.com/ (accessed on 8 February 2021) [19]

AutoSklearn Library https://automl.github.io/auto-sklearn/master/
(accessed on 8 February 2021) [17]

Auto-WEKA Library https://www.automl.org/automl/autoweka/
(accessed on 8 February 2021) -

H2O AutoML Library https://docs.h2o.ai/h2o/latest-stable/h2o-docs/
automl.html (accessed on 8 February 2021) -

TPOT Library http://epistasislab.github.io/tpot/ (accessed on
8 February 2021) [18]

Autoxgboost Library https://github.com/ja-thomas/autoxgboost (accessed
on 8 February 2021) -

OBOE Library https://github.com/udellgroup/oboe/ (accessed on
8 February 2021) -

https://cloud.google.com/vision/automl/docs/
https://azure.microsoft.com/en-us/services/machine-learning/automatedml/
https://azure.microsoft.com/en-us/services/machine-learning/automatedml/
https://developer.apple.com/documentation/createml
https://autokeras.com/
https://automl.github.io/auto-sklearn/master/
https://www.automl.org/automl/autoweka/
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
http://epistasislab.github.io/tpot/
https://github.com/ja-thomas/autoxgboost
https://github.com/udellgroup/oboe/
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In the agricultural domain, some recent research studies have made use of the AutoML
technique in the past few years, using it to process time series as well as proximal and
satellite images. In [15], the authors tested whether AutoML was a useful tool for the
identification of pest insect species by using three aphid species. They constructed models
that were trained by photographs of those species under various conditions in Google
Cloud AutoML Vision and compared their accuracies of identification. Since the rates
of correct identification were over 96% when the models were trained with 400 images
per class, they considered AutoML to be useful for pest species identification. In [16], the
author used AutoML through the same platform to classify different types of butterflies,
image fruits, and larval host plants. Their average accuracy was around 97.1%. In [17],
AutoML was implemented along with neural network algorithms to classify whether
the conditions of rice blast disease were exacerbated or relieved by using five years of
climatic data. Although the experiments showed 72% accuracy on average, the model
obtained an accuracy of 89% in the exacerbation case. Hence, the effectiveness of the
proposed classification model, which combined multiple machine learning models, was
confirmed. Finally, an AutoML approach has been applied in [18], in an attempt to map the
Parthenium weed. The authors constructed models by using AutoML technology and 16
other classifiers that were trained by satellite pictures of Sentinel-2 and Landsat 8. AutoML
model achieved a higher overall classification accuracy of 88.15% using Sentinel-2 and
74% using Landsat 8, results that confirmed the significance of the AutoML in mapping
Parthenium weed infestations using satellite imagery. In [19], authors used wheat lodging
assessment with UAV images for high-throughput plant phenotyping. They compared
AutoKeras in image classification and regression tasks to transfer learning techniques.

Although the aforementioned research studies have evaluated AutoML, there is still
the need for testing the generalization ability of these techniques with different images
taken on the field under real-world conditions. The use of open-source solutions, instead
of closed cloud-based ones, is a necessary factor for making the advances more accessible
and reproducible. In this paper, the performance of open-source AutoML systems was
examined as a tool to speed up and simplify the deployment of machine learning/vision
solutions in the agricultural domain. The specific objective of the research was to evaluate
whether the integration of AutoML techniques could match, in general, manually-designed
architectures. This paper presents three main contributions:

1. A two-stage methodology integrating AutoML for feature extraction through deep
learning and plant identification through classifier ensembles.

2. An implementation based only on open-source AutoML frameworks and two different
publicly available datasets is used for providing transparent and reproducible research.

3. An analysis of the robustness and overfitting tendency of the AutoML systems on
noisy data samples is also presented.

The rest of this paper is organized as follows: Section 2 explains the methodology
proposed and the decisions about the experimental setup. Section 3 presents the analysis
of the results, while Section 4 is dedicated to discussing the obtained results and the
suitability of the methodology. Finally, Section 5 wraps up the paper with conclusions and
future work.

2. Material and Methods
2.1. Architecture of the Solution

In this paper, a methodology integrating two AutoML steps was evaluated. As in [20],
the assumption was that this combination with the correct configuration could obtain
similar performances when compared to more traditional approaches, such as a Softmax
classifier on the top of a neural-based feature extractor. As shown in Figure 1, the first
step in the methodology was used for finding the best performing feature extractor able to
extract the most meaningful features from the images. This process was done by a Bayesian
neural architecture search approach. The result of this first step was a deep neural network
composed of several convolutional layers automatically fine-tuned. This neural network
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was responsible for extracting the best features from the original images. Once the features
were extracted, the second step took place for finding a complete machine-learning-based
pipeline that could obtain the best final performance. Inside this pipeline, algorithms for (i)
feature selection, (ii) dimension reduction, and (iii) classification were tested. Specifically,
the following techniques have been evaluated:

• Principal Component Analysis [21]: It is used for linear dimensionality reduction using
Singular Value Decomposition (SVD) of the data to project it to a lower-dimensional
space; and thus, the chances for overfitting can be reduced. Contrary to other dimen-
sionality reduction methods, the input features are centered but not scaled before
applying the SVD.

• Truncated Value Decomposition [22]: As the previous method, it was also used for
dimensional reduction and, thus, to reduce overfitting. The main difference is that
this method does not center de data before computing the SVD.

• Kernel Principal Component Analysis [23]: Similar to the first method, but it uses a
non-linear dimensionality reduction by using kernels. Its objective is the same, remove
feature redundancy for improving the generalization ability of the classifier.

• Univariate feature Selection: Used for feature selection, this method selects the best
features based on univariate statistical tests. In this work, we have used the chi-
squared, ANOVA F-value [24] and the mutual information techniques [25].

• Decision Tree: Used as a single classifier or part of the ensemble, this method uses
a non-parametric learning method. Its advantage is that ideally it can be visualized
in order to better understand why the classifier made a specific decision. However,
if the tree is very complex, interpretation can be hard. Moreover, this method is
prone to overfitting, which can be an important disadvantage in case the extracted
features contain noise. To avoid this problem different ensembles have been tried:
AdaBoosting, Extra Trees and Random Forests.

• AdaBoosting [26]: Used as a single classifier or part of the ensemble; it uses an
ensemble-learning approach known as boosting where a decision tree is retrained
several times putting more emphasis on those samples where the prediction is
not accurate.

• Random Forests [27]: Used as a single classifier or part of the ensemble; this classifier
is made up of a collection of decision trees, which have been trained on different data
samples drawn from the input features, with a technique called bootstrap sampling.
As a result, random forests could lead to low overfitting.

• Extra Trees [28]: Used as a single classifier or part of the ensemble; this method
is very similar to the random forests, however, it does not use bootstrap sampling.
This approach could increase the overfitting because bootstrapping makes it more
diversified. Another difference is that it uses a random cut for node creation inside
the tree, which could lead to a reduction in overfitting.

The classification part will be studied in this work, evaluating whether the use of
classifier ensembles instead of a single one can improve the performance or at least reduce
the variance in the results. The ensemble method will use a majority vote approach, where
the category with a greater number of votes from the individual classifiers will be used as
the final predicted category. The selection of this pipeline was automatically performed by
using Bayesian optimization.

Since open-source solutions were used for building this methodology, the final resulting
pipeline can be exported and deployed into an autonomous weed control system with either
a standalone or a cloud-based solution, depending on latency and computational constraints.

2.2. Experimental Decisions

Although AutoML can run without any specific configuration, to extract knowledge
of this process and learn its drawbacks and strengths, some experimental constraints
have been set. This means that some AutoML pipeline configurations (i.e., the hyperpa-
rameter configuration) were set as constants during the evaluation of the methodology.
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Table 2 shows the most important ones, which were selected based on some preliminary
experiments showing suitable performances, and the availability of enough computational
resources. In order to find the best feature extractor, the Bayesian optimization algorithm
ran a maximum of 35 times. Each deep model used a maximum of 100 epochs with a
batch size of eight for model training. Regarding the classifier ensemble part, a maximum
of 2 min was set for training every model of the ensemble; and 20 min for training all of
them. The feature extractor used several data augmentation techniques before trying to
extract the features. Among them, images could be horizontally rotated, cropped, scaled,
or mirrored. Moreover, all the images were resized to 64 × 64 pixels and, therefore, the
correlation between image size and physical size of the plants was removed, improving
the generalization ability of the AutoML system.
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Table 2. Hyperparameters that are not modified during the experiments.

Hyperparameter Constants Value

Max. trials per deep model 35
Epochs 100

Use of geometrical data augmentation Yes
Image Size 64 × 64
Batch Size 8

Max. time per model fitting 2 min
Total time finding best classifier 20 min

On the other hand, other architectural configurations were empirically evaluated
to find the most suitable one. This process was used for validating the robustness of
some hyperparameters (shown in Table 3) against other modifications in the AutoML
pipeline design. The presence of the background in the image could have an important
impact when extracting features, and the use of plant segmentation (or not) has been
evaluated. The segmentation has been implemented using a thresholding method on the
Hue-Saturation-Value (HSV) color space. Since the high robustness of any automatic weeds
identifier system is critical, the use of noisy samples in the training phase for improving
the performance was also evaluated. Another important factor for training the feature
extractor was whether to use a fully-connected network between the convolutional layers
and the Softmax classifier. Both options were evaluated. Finally, once the features were
extracted, a Softmax classifier, a single classifier, or an ensemble of classifiers could be used
for classifying the input image. All these options were evaluated.
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Table 3. Hyperparameters evaluated to find the most suitable AutoML pipeline configuration.

Hyperparameter Variables Value

Plant Segmentation {Yes, No}
Noisy training {Yes, No}

Use of fully-connected network {Yes, No}
Classifier type {Softmax, Single, Ensemble}

2.3. Datasets Used

Two main datasets were used in this work: (i) The Early Crop Weeds dataset and
(ii) the Plant Seedlings dataset. The first one contained 504 RGB images of four species
at early growth stages. This dataset was collected by ourselves and presented in our
previous research [10]. The second one contained RGB images of approximately 960 unique
plants belonging to 12 species at several growth stages, with a physical resolution of
roughly 10 pixels per mm. More information about this dataset can be found in [29].
Figure 2 shows several instances of the images available in both datasets; some of them
after plant segmentation application. As it can be observed, the illumination conditions are
rather variable in the first dataset, which will show the ability of the AutoML system for
generalizing and setting the brightness of the picture as an irrelevant factor for crop/weeds
identification. Regarding the second dataset, the images were taken from plants that were
grown indoors in a greenhouse with artificial light to supplement natural light. This means
that data were recorded under laboratory conditions and some aspects and morphological
features of outdoor-grown plants are not present.
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2.4. Evaluation

The performance of the AutoML system was measured with the F1 score (Equation (1)).
This metric is widely used for evaluating classification tasks, where recall is the ratio of the
correct categories regarding the original dataset, and precision is the ratio of correct labels
in the classifier output [30]. Since we addressed a multi-class problem in both datasets, it
was necessary to compute the micro-averaged F1 score for comparison purposes. This kind
of aggregation is preferable over the macro-average when there is a class imbalance, as in
the case of both datasets used in this work. On the other hand, for statistical comparisons,
Friedman test [31] and Wilcoxon signed-rank test [32] were used. Both of them are paired
non-parametric statistical tests, making them more robust to avoid too optimistic conclu-
sions. The first one was used for testing equivalent performances among sets of two or
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more pipelines. The second one was used for testing equivalent performances among the
same pipelines on two different datasets (i.e., clean and noisy datasets)

F1score =
2 × precision × recall

precision + recall
(1)

Since AutoML could easily lead to overfitting, the difference between the F1 score on
the train and test datasets was also measured as an important metric to take into account.
This way, it was possible to also know whether the AutoML pipeline found a classifier that
was able to generalize for recognizing new weed examples or it has just fit training data,
and therefore, it could not be applied in a real-world situation. Moreover, this evaluation of
the robustness has been studied under harder situations: blurry and salt and pepper noisy
images [33]. The micro-averaged F1 score has also been measured with fully noisy datasets
as shown in Figure 3. The explanation and consequences of this robustness problem of
deep learning-based systems were widely explained in [12].
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2.5. Hardware and Software

Two main software packages were used in this work: AutoKeras 1.0.8 and Auto-
Sklearn 0.10.0. The first one optimizes both architecture and hyperparameters using
neural network morphism guided by Bayesian optimization to select the most promising
operations at each stage. It uses Tensorflow 2.3.8 and Keras 2.4.3 [34] backends. The
second one, Auto-Sklearn, is an open-source library for performing AutoML with non-deep
learning algorithms. It makes use of Scikit-Learn machine learning library (version 0.22.2)
for data transformations and machine learning. Like AutoKeras, it also uses a Bayesian
Optimization search procedure to efficiently discover a top-performing model pipeline for
a given set of features. As the image preprocessing library, OpenCV 3.4.2 was used. All the
experiments were run on Ubuntu 18.04 as the OS, and a GeForce RTX 2080Ti GPU.

3. Results

In this section, the results for finding the best AutoML pipeline on every dataset are
presented. To reduce the volatility of the experiments, each pipeline configuration was
evaluated 10 times under different random seeds, and results reported the mean of the F1
score for each configuration on every dataset (clean/original and noisy ones). Regarding
data splitting, a stratified split was performed with 50% of the samples used for training,
25% for validation, and 25% for testing. Additionally, when a noisy version of a dataset
is mentioned, that means that noise was added on the 50% of the dataset samples used
for training (25% salt and pepper and 25%). Finally, it is important to remark that the
“Overfitting” column reports the difference between the performance in the training set
and the performance in the test set. The latter one is shown in the “F1 Score” column.
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3.1. Early Crop Weeds Dataset
3.1.1. Training on the Original Dataset

Table 4 presents a ranking of the 10 best AutoML pipelines in terms of F1 score regard-
ing the Early Crop Weeds dataset. After running the Friedman test with a confidence level
of 0.1, the first four pipelines could be considered equivalent. Inside this set, the use of plant
segmentation and not using a fully-connected network can lead to better performances in
comparison to other combinations. It could be discussed that by integrating the classifiers
into the analysis, the Softmax had a greater variance in the results and thus, its robustness
could be a problem. In fact, this pipeline could be considered to be out of the previous set
if we reduce the confidence level to 0.06. On the other hand, out of this set, it can be found
that the combination at the same time of plant segmentation and a fully-connected network
showed a lower performance. Observing the “Overfitting” column, it can be noticed that
some pipelines obtained performances close to 100% on the training set. For instance, if
the system appearing in the first row is selected, the performance on the training set was
99.98% on average (93.7% + 6.28%). Table 4 also shows the performance of the systems
when a noisy test dataset was used for evaluation. As it can be observed, performance
decreased in most of the cases (Wilcoxon p-value < 0.01) with both types of noises (salt and
pepper and blurring), although, according to the results, the blurry images were harder to
classify accurately. It is important to note that there were some systems that maintained
a good performance for salt and pepper noise (see rows 1, 2, 4 and 5), but in the case of
the system that did not use plant segmentation, used a fully-connected network and a
classifier ensemble on the top (row 3), the performance decreased a 34.02% for salt and
pepper noise and 46.61% for blurring, which shows a clear lack of robustness against these
types of noise.

Table 4. Top 10 best AutoML configurations in the Early Crop Weeds Dataset (mean ± standard deviation). (PS: Plant
Segmentation; FC: Fully-Connected).

PS FC Classifier F1 Score Overfitting Salt F1 Blur F1

Yes No Ensemble 93.7 ± 1.13 6.28 ± 1.06 90.93 ± 5.56 69.07 ± 11.54
Yes No Single 93.6 ± 1.6 6.4 ± 1.6 88.4 ± 6 70.8 ± 2
No Yes Ensemble 92.15 ± 2.4 7.82 ± 2.58 60.8 ± 8 49.2 ± 14.8
Yes No Softmax 91.9 ± 6.36 7.84 ± 6.67 87.2 ± 9.24 67.6 ± 9.81
Yes Yes Softmax 91.89 ± 2.24 5.93 ± 2.69 89.26 ± 4.7 63.89 ± 11.89
Yes Yes Single 91.84 ± 2.45 8.09 ± 2.48 90.24 ± 3.09 62.88 ± 10.76
Yes Yes Ensemble 91.31 ± 2.94 8.58 ± 3.01 88.8 ± 3.42 62.63 ± 10.8
No Yes Single 90.4 ± 1.6 9.42 ± 1.78 64 ± 4.8 52.4 ± 12.4
No No Ensemble 86 ± 4.4 12.93 ± 3.33 62.8 ± 5.2 49.2 ± 7.6
No Yes Softmax 85.6 ± 1.6 7.64 ± 3.03 52 ± 9.6 52 ± 20.8

3.1.2. Training on a Noisy Version of the Dataset

Table 5 shows how the AutoML pipelines improved (or not), when they were trained
using noisy samples in part of the training dataset (50% clean, 25% salt and pepper, and
25% blurring). After running the Friedman test with a confidence level of 0.1, the first four
pipelines could be considered as having equivalent performances (“F1 score” column), but
overcoming the rest of the pipelines. In this set of pipelines, it could be found that the
combination of plant segmentation and a fully-connected classifier could lead to superior
performances under noisy conditions. This contrasted with the findings remarked in
Table 4, where this combination was not among the best systems. Regarding the results
shown in the “F1 score” column, the performances were highly aligned with the ones
presented in Table 4. This means that training the AutoML systems with noisy data
could lead to pipelines with similar performances to fully-clean datasets. However, the
variance and the performance of specific pipelines could decrease. For example, there were
some top-performers systems in Table 4 that reduced their performances under the noisy
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configuration. For instance, the system presented in the first row of Table 4, decreased
its performance by 5.23% (from 93.7% to 88.8%) on the clean test set and by 2.34% (from
90.93% to 88.8%) on the salt and pepper noisy test set (see Table 5; row 8). However, its
performance improved on the blurry dataset (from 69.07% to 89.17%). This means that
using noisy samples during training could lead some systems to perform better on a clean
dataset (see Table 4; row 7 and Table 5; row 1), but also to decrease it (see Table 4; row 1
and Table 5; row 8). The most prominent differences could be found in the evaluation with
blurry datasets, where performances significantly increased (Wilcoxon p-value < 0.05) in
all cases.

Table 5. Top 10 best AutoML configurations in the Plant Seedlings Dataset (mean ± standard deviation). (PS: Plant
Segmentation; FC: Fully-Connected).

PS FC Classifier F1 Score Overfitting Salt F1 Blur F1

Yes Yes Ensemble 93.8 ± 3.44 6.09 ± 3.4 93 ± 4.41 93.4 ± 4.25
Yes Yes Single 92.91 ± 4.71 6.93 ± 4.64 92.57 ± 4.87 92.11 ± 4.37
Yes Yes Softmax 92.09 ± 4.73 7.46 ± 4.86 92.27 ± 4.8 90.84 ± 4.65
No No Single 91.6 ± 4.88 8.04 ± 4.96 88 ± 4.38 90.2 ± 5.7
Yes No Softmax 91.04 ± 2.84 8.5 ± 3.13 90.72 ± 2.89 90.4 ± 2.21
No No Ensemble 90.4 ± 5.84 9.39 ± 5.83 85.28 ± 7 89.28 ± 5.53
Yes No Single 88 ± 2.36 11.82 ± 2.5 88.53 ± 3.02 89.6 ± 2.85
Yes No Ensemble 88.8 ± 1.96 11.02 ± 2.1 88.8 ± 2.85 89.17 ± 3.22
No No Softmax 87.73 ± 6.95 11.67 ± 7.21 80 ± 10.28 87.07 ± 5.72
No Yes Softmax 87.47 ± 8.17 11.76 ± 8.53 86.4 ± 7.92 86.4 ± 10.2

3.2. Plant Seedlings Dataset
3.2.1. Training on the Original Dataset

Table 6 presents a ranking of the 10 AutoML pipelines showing the highest per-
formance in terms of F1 score regarding the Plant Seedlings dataset. After running the
Friedman test with a confidence level of 0.01, the first two rows show the pipelines with the
best performances (F1 score column). These configurations had in common the use of plant
segmentation and avoiding a fully-connected network for feature extraction. Regarding the
classifier part, the replacement of Softmax by a new classifier (both ensemble and single)
reported the best performances (90.74 ± 0.8 and 90.16 ± 0.67 respectively). These results
were aligned with the findings presented in Table 4. Thus, it could be discussed that these
configurations worked well across datasets, which did not present noise and could be a
good baseline for future experiments. Among the hyper-parameters, plant segmentation
was again a good option for obtaining the best results. Removing the Softmax classifier
and training an extra classifier on the top of the feature extractor seemed to have a general
good behavior: 8 of the 10 best systems used this technique. Finally, as it happened with
the Early Crop Weeds dataset, all the systems drastically reduced their performance when
they were evaluated on noisy datasets (Wilcoxon p-value < 0.01). However, it is important
to note that these reductions were not equal. Some systems were more robust to a specific
type of noise (see Table 6; row 4), and others reduced their performance but less than the
general behavior (see Table 6; row 7). Observing the “Overfitting” column, in general,
higher values than the reported in Table 4 can be found. For instance, this could be the case
of the first two pipelines in both tables (Wilcoxon p-value < 0.01).

3.2.2. Training on a Noisy Version of the Dataset

Table 7 shows how the AutoML pipelines improved (or not) when they were trained
using noisy samples (50% clean, 25% salt and pepper, and 25% blurring). After running the
Friedman test with a confidence level of 0.05, the first four rows show the pipelines with
the best performances. The most repeated hyper-parameters in these systems were the
use of plant segmentation and not using a fully-connected network. As it was expected, a
general improvement is observed in the evaluation with noisy datasets. However, as it was
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also observed in Table 5, the “Overfitting” column reports overall worse results (Wilcoxon
p-value < 0.1). This could mean that the pipelines were not able to generalize correctly.

Table 6. Top 10 best AutoML configurations in the Plant Seedlings Dataset (Mean ± standard deviation). (PS: Plant
Segmentation; FC: Fully-Connected).

PS FC Classifier F1 Score Overfitting Salt F1 Blur F1

Yes No Ensemble 90.74 ± 0.8 8.51 ± 1.25 72.89 ± 7.52 72.06 ± 17.83
Yes No Single 90.16 ± 0.67 9.3 ± 0.83 75.43 ± 1.22 80.94 ± 3.65
Yes Yes Single 88.64 ± 0.66 11.04 ± 0.42 80.96 ± 1.56 86.62 ± 1.09
No No Ensemble 88.63 ± 1.26 8.16 ± 0.3 60.94 ± 17.33 83.57 ± 0.83
Yes Yes Ensemble 88.5 ± 1.44 11.01 ± 1.64 81.25 ± 1.89 86.11 ± 1.39
No No Single 88.23 ± 1.08 8.89 ± 0.67 58.81 ± 19.24 83.21 ± 0.61
Yes Yes Softmax 87.44 ± 1.36 5.56 ± 1.99 81.06 ± 1.43 85.78 ± 1.75
Yes No Softmax 87.17 ± 2.63 6.37 ± 1.02 67.74 ± 6.18 71.59 ± 17.24
No Yes Single 86.84 ± 0.76 12.08 ± 1.59 60.49 ± 8.7 83.21 ± 2.23
No Yes Ensemble 86.43 ± 1.14 13.08 ± 1.6 62.82 ± 7.54 82.42 ± 2.61

Table 7. Top 10 best AutoML configurations in the Plant Seedlings Dataset (Mean ± standard deviation). (PS: Plant
Segmentation; FC: Fully-Connected).

PS FC Classifier F1 Score Overfitting Salt F1 Blur F1

Yes Yes Softmax 86.98 ± 1.92 12.26 ± 2.15 84.55 ± 1.79 87.34 ± 2.11
Yes No Ensemble 85.97 ± 4.24 13.88 ± 4.07 85.01 ± 3.91 85.87 ± 4.51
Yes No Single 85.29 ± 5.29 14.4 ± 4.9 84.28 ± 4.51 84.81 ± 5.03
No No Ensemble 83.78 ± 3.9 15.49 ± 4.42 81.76 ± 3.25 83.13 ± 3.86
Yes No Softmax 83.63 ± 5.74 15.87 ± 5.84 82.31 ± 4.67 83.06 ± 5.91
No Yes Softmax 83.59 ± 4.17 13.6 ± 6.73 81.48 ± 3.78 83.19 ± 3.45
No No Single 83.37 ± 3.77 15.46 ± 4.56 81.11 ± 3.17 82.86 ± 3.21
No No Softmax 80.45 ± 4.13 17.61 ± 6.94 78.72 ± 3.22 80.09 ± 4
No Yes Ensemble 65.31 ± 30.4 12.57 ± 7.74 63.74 ± 29.54 65.52 ± 30.56
No Yes Single 65.09 ± 30.44 12.25 ± 8.08 63.03 ± 29.28 64.93 ± 30.32

3.3. Visual Analysis of Experimental Variables

From the analysis of the results presented in previous sections, it has been observed
that some hyper-parameters altered more the final performances. Figure 4a, which inte-
grates the results obtained in both datasets, confirms that the use of plant segmentation as
a pre-processing technique led to better performance. This neural network was responsible
for extracting the best features from the original images. Once the features were extracted,
the second step took place for finding a complete machine-learning-based pipeline that
could obtain the best final Figure 4b). The same happened with the type of classifier.
Figure 4c shows that the classifier with the best median was the ensemble approach, but
single and Softmax classifiers could also obtain good performances. In the case of the single
classifier, the variance was lower than the Softmax approach, pointing to it as a more robust
classifier. After running the Wilcoxon test for comparing the different distributions, only
the use of plant segmentation presented a significant difference in relation to its alternative
(p-value < 0.01).
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4. Discussion

The results have shown that AutoML can provide classifiers with performances over
90% F1 score. These results were aligned with other related works [20,35,36] but they were
lower than our previous work concerning performance [37]. However, the disadvantage of
our previous work was that obtaining better results took significantly longer for fine-tuning
precise nuances of deep neural networks by experts on deep learning, and this process
could be avoided or shortened by using AutoML. The main effort of the current work was
dedicated to creating a reliable experimental setup for evaluating AutoML performance
under different conditions, but not for finding suitable ML pipelines, which was done
automatically by the Bayesian optimization of the AutoML frameworks. Moreover, it
is important to remark that the pipelines evaluated in this work were constrained in
some resources (see Table 2); which means that with more time or trials for finding the
correct configuration, the results could improve in both F1 score and for robustness against
overfitting. Since AutoML works and speeds up many tasks, finding a good balance
between manual expert machine learning tuning, AutoML and good performances will be
a future open topic for research and discussion.

One of the research questions this work tried to answer was whether integrating
an AutoML process on top of a deep neural-based feature extractor could increase the
performance over a Softmax classifier. According to the results, it is difficult to provide
a final answer. Depending on the dataset and the existence (or not) of noise, different
patterns can be observed. According to Figure 4c, the Softmax classifier was able to
obtain the highest performances but it was more unstable; the use of a replacement with a
single classifier reported a higher median, lower variance, but it did not reach the highest
performance. The ensemble approach obtained an intermediate response having the
highest median but higher variance than the single classifier approach. As a conclusion, it
could be stated that all these possibilities should be evaluated until new research works
enlighten more specific results. Finally, from the different configurations evaluated, only
the use of plant segmentation reported repeatedly better performances.

Related to the previous research question, it could be discussed whether there was a
relevant pattern in the machine learning pipelines on the top of the neural-based feature
extraction. According to the results, the Bayesian optimization has followed different
paths leading to different combinations of feature selection, dimensional reduction and
classifier tuning. This could mean that a slight difference in the dataset could produce a
completely different pipeline, where, for instance, the classifier could be either a decision
tree or a random forest without any of them overcoming the other option. This is highly
related to the no-free-lunch theorem [38], which could be even more noticeable within
AutoML. Additionally, although tree ensembles have been used to avoid overfitting, the
results shown in the tables presented some overfitting, which will reduce the applications
where these systems could run safely. It could be concluded that AutoML adds a new
complexity layer, where a compromise between interpretability and performances should
be established according to the final application and its risks.

Another addressed question was whether the evaluation on a noisy dataset would
reduce the performance of systems working accurately on a clean dataset. As Tables 4 and 6
show, the answer has been positive. All systems have reduced their performances when
trying to classify images that contain noise. This behavior shows the inability to adapt to
possible problems that can occur in the field. On the other hand, these noisy images would
be easily classified by a human being, and therefore, it would be necessary to find a way
to overcome this limitation. The solution evaluated in this paper has been to use noisy
samples during training. However, according to Tables 5 and 7, the responses of every
pipeline were quite different. There were pipelines that improved in both clean and noisy
datasets, while there were other pipelines that reduced their performance in some cases.
It could be discussed that depending on the risks and the types of noises that the weeds
identification system could suffer, one approach or another should be implemented.
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One of the research decisions made during this work was to implement a solution
based on open-source technologies. Although the use of some closed cloud-based solutions
such as Google Vision can work as a final solution ready for being deployed in production,
having access to the whole code and workflow of the solution is desired for advancing
machine learning research in general and the AutoML techniques in specific. Due to the
novelty of this research area, understanding the factors and parameters which potentially
could lead to a better solution, is important. The results shown along with this paper
could provide insights about which hyper-parameters should be studied in the future. For
instance, batch size (8) and image size (64 × 64) were set as experimental constants, but
increasing them could lead to new relevant results in the domain of precision agriculture.
After the fine-tuning effort, once an open suitable AutoML pipeline has been found and
reported, it could make sense to share the pipeline through a cloud-based solution (not nec-
essarily closed), which could expose the functionality of predicting new samples, and which
could be accessed by automatic control weed systems. In summary, closed cloud-based
solutions would make more sense being used in the context of operational applications.

Finally, it can be concluded that AutoML could help the agrotechnology community
to easily test machine-learning-based solutions requiring fewer resources to be invested in
the implementation part of the solution and dedicating more resources to the domain part
of the problem. Moreover, due to the dynamic nature of agriculture, the AutoML pipeline
presented in this work could easily create a new model based on new samples, speeding
up the deployment of high-performing solutions.

5. Conclusions

In this work, a weeds identification system methodology was evaluated by using an
integration of two different AutoML systems. Moreover, two different datasets containing
4 and 13 classes of crops, seedlings, and weeds have been used as benchmarks. The best-
evaluated systems under the proposed methodology have shown promising performances
between 90% and 93% F1 score depending on the dataset and the existence (or not) of noisy
samples. Although results were aligned to previous AutoML works, the implementation
of more resource exhaustive practices, such as increasing the batch size while training,
will be examined in the future. Moreover, using new datasets, such as the DeepWeeds
dataset (https://github.com/AlexOlsen/DeepWeeds (accessed on 8 February 2021)), will
provide more insights about the real generalization ability of the AutoML technology.
Additionally, experiments using noisy samples for testing the robustness of the systems
will be extended. On the one hand, smearing noise will be used due to its relation with the
movement of the vehicles, which could lead to new insights into the implementation of
autonomous vehicles used in precision agriculture. On the other hand, training by using
one type of noise and evaluating on a test set with a different type of noise will be checked
in order to discern any relation among the different types of noise. Finally, since the use of
ensembles of decision trees has not avoided a certain degree of overfitting, new machine
learning pipelines will be studied. On the one hand, increasing the number of decision
trees inside the ensemble will be evaluated; on the other, a new ensemble technique will
be studied: the Super Learner [39], a model stacking method, where a classifier trains on
the top of the predictions provided by the individual trained models. For validating its
performance, a more sophisticated approach will be used. Every classifier type will be
studied separately, constraining the Bayesian search to a smaller subset, which could lead
to a better understandability of the obtained results.
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