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Abstract: Predicting alfalfa biomass and crop yield for livestock feed is important to the daily lives of 
virtually everyone, and many features of data from this domain combined with corresponding 
weather data can be used to train machine learning models for yield prediction. In this work, we used 
yield data of different alfalfa varieties from multiple years in Kentucky and Georgia, and we compared 
the impact of different feature selection methods on machine learning (ML) models trained to predict 
alfalfa yield. Linear regression, regression trees, support vector machines, neural networks, Bayesian 
regression, and nearest neighbors were all developed with cross validation. The features used in-
cluded weather data, historical yield data, and the sown date. The feature selection methods that were 
compared included a correlation-based method, the ReliefF method, and a wrapper method. We 
found that the best method was the correlation-based method, and the feature set it found consisted 
of the Julian day of the harvest, the number of days between the sown and harvest dates, cumulative 
solar radiation since the previous harvest, and cumulative rainfall since the previous harvest. Using 
these features, the k-nearest neighbor and random forest methods achieved an average R value over 
0.95, and average mean absolute error less than 200 lbs./acre. Our top R2 of 0.90 beats a previous work’s 
best R2 of 0.87. Our primary contribution is the demonstration that ML, with feature selection, shows 
promise in predicting crop yields even on simple datasets with a handful of features, and that report-
ing accuracies in R and R2 offers an intuitive way to compare results among various crops. 
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1. Introduction 
In 2015, the United Nations developed 17 goals for the world to reach by the year 

2030 [1]. These goals were meant to focus nations’ efforts on solving the world’s biggest 
problems, such as reducing worldwide poverty, improving physical health, reducing so-
cial inequalities, improving environmental conditions, and adapting to the adverse effects 
of climate change. In order to evaluate whether those 17 goals were achieved, 169 targets 
were made [1]. However, these goals were not prioritized, and 85% of the proposals for 
these goals did not consider economic costs or benefits [2]. In response to this, the Copen-
hagen Consensus Center performed cost-benefit analyses on these 169 targets and ranked 
them according to the cost benefit ratio. One of their findings was that increasing research 
and development in increasing crop yields would be one of the most cost-effective ways 
of achieving some of these goals [3]. Specifically, every $1 spent on this kind of research 
and development (R&D) would result in $34 worth of benefit [4]. 
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Improvements in agricultural planning and R&D on crop variety testing would in-
crease crop yields, so work in these areas would help achieve some of the UN’s goals. Ma-
chine learning (ML) techniques can be used for crop yield predictions, and these predictions 
can improve efforts in agricultural planning and crop variety testing. Specifically, by pre-
dicting a community’s potential crop yield given certain conditions, farmers can better plan 
what to plant. This can help humanitarian efforts as well, by showing what communities 
should be receiving crops [5]. Moreover, machine learning can help with crop variety test-
ing. This testing is done to test the short-term and long-term yield of new crop varieties. 
Having a prediction of a variety’s yield may give agricultural scientists some insight into 
what varieties may be successful, allowing them to develop high yield varieties more effi-
ciently. 

In this work, we use alfalfa data from Georgia and Kentucky to train models to pre-
dict alfalfa yields. Then, we explored the effect of different feature selection methods on 
the models’ performance. This also provided information that may lead to insight into 
what factors most impact alfalfa yield in the Southeastern United States. 

We also present a method to develop optimized machine learning models for bio-
mass and crop yield prediction. It is our hope that this will help readers, especially plant 
scientists and agricultural planners, develop their own machine learning models for crop 
yield prediction without requiring an extensive background in machine learning. The 
most similar previous work we found was [6], which also applied feature selection tech-
niques to common ML models to predict sugarcane yield, but that work focused on more 
complex, domain-specific features, and they reported results in mean absolute error 
(MAE) only. Our work extends and generalizes this approach by reporting R and R2, try-
ing some different models, and using more accessible datasets with simpler features. 
Other previous work in this area generally used more complex data collection techniques, 
such as unmanned aerial vehicles (UAVs) [7], remote sensors [8], and satellite imagery [9]. 
Our primary contributions are as follows: 
• We achieved prediction accuracies higher than the previous work, showing that 

simple, publicly available datasets with limited features, requiring no special in-
struments to collect, could be used to train models comparable to or better than 
state-of-the-art. 

• We extended previous work in ML with feature selection for crop yield prediction 
to consider alfalfa, one of the world’s most important agricultural resources. 

• We presented our results in terms of the coefficient of correlation (R) and the coeffi-
cient of determination (R2), which is more meaningful across various domains with 
disparate units than mean absolute error (MAE) used in some previous works. 
The rest of this paper is organized as follows. We begin with a brief introduction to 

the ML models we used in Section 1.1; Section 2 describes related work; Section 3 details 
our materials and methods; Section 4 reports the results of our experiments; Section 5 pre-
sents a discussion of the results. 

1.1. ML Models 
We chose a variety of some of the most commonly used ML models in the related 

work and the field of ML in general, and we picked those that typically work well with 
smaller datasets. 

1.1.1. Linear Regression 
There are several diverse machine learning methods that can be used for crop yield 

prediction. Linear regression can be considered a machine learning technique and is often 
used as a baseline whose results are compared to the results of other techniques. Concep-
tually, linear regression finds a linear function that minimizes the squared error between 
the predictions of that function and the true values [10]. This function has the following 
form: 
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𝑦 = 𝑤 + 𝑤 𝑥  (1)

where 𝑘 is the number of features, xi is the value of a data point’s ith feature, 𝑤  is a 
coefficient associated with the 𝑖th feature, 𝑤  is the intercept, and yi is the prediction of 
the linear regression. 

1.1.2. Neural Networks 
Neural Networks, like linear regression, learn a function that minimizes the error 

between the predictions of the function and the true values. However, neural networks 
are capable of learning nonlinear functions of any complexity. It does this by roughly im-
itating the structure of the human nervous system [11]. A neural network is made up of 
multiple node layers. Each node takes in inputs from a previous layer, performs a mathe-
matical operation on those inputs, and outputs the results of that mathematical operation 
to the nodes in the next layer. The last layer outputs the final prediction. Typically, each 
node outputs n: 

𝑛 = 𝐴 𝑤 𝑚  (2)

with 𝑡 being the number of inputs for that layer, 𝑚  being the value of the 𝑗th input, wj 
being the learned coefficient for the jth input, and A being a predefined nonlinear func-
tion. To train a neural network, all the coefficients (𝑤 ’s) are initialized with random val-
ues. Then the training data is fed to the network and predictions are found. An error is 
calculated by finding the difference between the prediction and the true value. By finding 
the gradient of the error, the neural network can iteratively change the coefficients of each 
node to minimize the overall error. By changing the number of layers and nodes, a neural 
network can approximate many different functions [12]. 

1.1.3. Support Vector Machines 
Another approach is done by support vector machines (SVMs). SVMs attempt to 

make a linear best fit line that keeps all the predictions within a certain error threshold 
from that best fit line. However, this technique can fit nonlinear data by projecting the 
data into a higher dimensional space. In this higher dimensional space, that data will ap-
pear more linear, so a linear best fit line can be made in this higher dimensional space. 
The best fit line is then projected back to the original space where it no longer appears 
linear [13]. This is called the ‘kernel trick’ [10]. 

1.1.4. K-Nearest Neighbors 
The k-nearest neighbor (kNN) method is another spatially-based machine learning 

method. This method remembers all the data it has been shown before, and when it re-
ceives an input X, it looks at the distance between X and all those other points. It then 
finds the k closest points to X and uses them to make a prediction. The prediction is found 
by calculating a normalized weighted sum of the values of the k closest points. The 
weights are often proportional to the distance between the saved point and X [13], but all 
the weights could be equal. If this case, kNN is finding the average value of the k closest 
points. 

1.1.5. Regression Trees 
Regression trees learn patterns by recursively breaking up the sample space into dif-

ferent regions where each region gives a certain prediction. Note that regression trees tend 
to split the space into many regions, so it can make many predictions [14]. It does all of 
this by forming a tree of nodes. Each node asks a certain question about one of the input’s 
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features. For example, a node may ask whether the input data point has a solar radiation 
value greater than 600 MJ/m2. If the answer is yes, then it goes to another node and asks 
another question. If the answer is no, it goes to a different node. This process continues 
until an answer is given. In order to learn what questions to ask, the regression tree min-
imizes some impurity measure [13]. Note that a random forest is a collection of multiple 
regression trees, and the final output of a random forest is the average result of all its 
regression trees. 

1.1.6. Bayesian Ridge Regression 
Bayesian ridge regression is a probabilistic method that is similar to linear regression. 

However, instead of making a linear function, a probability distribution is made based on 
the training data. Using the Bayes rule, this method outputs the most likely value given 
the input values [15]. Since this is a ridge regression, a cost is added to the error if the 
coefficients are above a certain threshold. This encourages the model to not become too 
complicated and overfit the data. 

1.1.7. Feature Selection 
These machine learning methods use a variety of different techniques to make pre-

dictions, and the effect different feature selection methods have on their results are com-
pared. Correlation-based feature selection (Cfs) is done, and its effect on each model is be 
shown. Cfs methods look at the correlation between each feature and the target, as well 
as the correlation between the features. It then finds the set of features that maximizes the 
correlation between the feature set and the target while also minimizing the correlation 
between the chosen features [16,17]. By minimizing the intra-correlation between features, 
Cfs reduces redundancy and noise, and can show what relatively independent processes 
contribute to the target’s value. 

Another feature selection method is the ReliefF method. It develops weights for each 
of the features and adjusts those weights depending on the similarity of feature values 
among clustered data points. It does this by first initializing each weight to be zero. Then, 
it picks a random point from the dataset and finds the point in the dataset that has the 
closest target value to that random point. Then, the features between these two points are 
compared. For every feature, if the values of that feature are similar among those two 
points, the weight for that feature is increased. However, if the values are dissimilar, then 
the weight of that feature is decreased [18]. 

Cfs and ReliefF are both filter feature selection methods. This means that they look 
at characteristics of the features themselves and use that information to decide what fea-
tures should be used. Wrapper feature selection methods, on the other hand, use a ma-
chine learning algorithm to learn what sets of features lead to the best results. This paper 
used a wrapper method with a ZeroR classifier. The ZeroR classifier uses the average 
value of each feature to predict the target. The effects of Cfs, ReliefF feature selection, and 
the wrapper method on the results of machine learning models for alfalfa biomass yield 
were analyzed and compared. 

2. Related Work 
In their 2016 work with predicting sugarcane yield using ML techniques, Bocca and 

Rodrigues [6] showed that feature selection can improve the predictive accuracy of ma-
chine learning models for crop yield prediction while also simplifying the models. This is 
because decreasing the number of features used to train a machine learning model can 
reduce noise in the data. This helps the models’ performance while also helping scientists 
understand what factors most impact crop yield. Therefore, their work motivates us to 
explore the effect different feature selection methods have on the performance of our mod-
els, which also provides insight we can extend to the southeastern United States. In keep-
ing with that work, we also chose to include the mean absolute error (MAE) as a metric; 
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however, there is little intuitive connection between their MAE scores in mg per hectare 
and ours in tons per acre. Therefore, our work also reports results in coefficient of corre-
lation (R) and coefficient of determination (R2) metrics. R reflects accuracy and captures 
the direction or strength of correlations [19], and we found R2 to be a dominant accuracy 
metric in previous work. We hope both metrics help paint a more intuitive picture of ac-
curacy than MAE across various crops with disparate yield units. Moreover, our work 
starts with a simpler, less esoteric dataset and features than previous work. For example, 
they include several attributes of soil chemistry data; however, we added solar radiation, 
which has been proven to be a good predictor. 

Boote et al. introduced the CROPGRO model in 1998, which predicts crop yields for 
legumes in general using a FORTRAN software package. This helped pave the way for re-
search into ML and crop prediction [20]. In 2018, Malik et al. [21] highlighted the global 
importance of alfalfa and demonstrated that ML techniques can be useful when predicting 
yields, as they adapted the CROPGRO model to predict alfalfa yields. Jing et al. [22] contin-
ued this research with their 2020 adaptation of CROPGRO tailored to predicting alfalfa in 
Canada. While all these works incorporate ML-related concepts, they differ from the current 
work in that the models focused on physiological details of the crops, while the current work 
focused more on weather, time, and varieties, while also applying popular ML techniques. 

Other recent work that predicted crop yields with ML-based techniques involved im-
age processing and unmanned aerial vehicles (UAVs) to remotely collect data. In their 
2020 paper, Feng et al. [7] demonstrated success gathering hyperspectral data from UAVs 
to create models for estimating alfalfa yields. Like us, they measured success in terms of 
R2, but they did not provide R results. Noland et al. similarly showed that data collected 
via UAVs and other remote sensors could be used to train predictive models, and they 
also measured success in terms of R2. However, that work relied on canopy reflectance 
and light detection and ranging (LiDAR) data. Though the current work used simpler, 
more easily acquired data, our highest R2 scores of around 0.90 beat theirs of around 0.87 
for alfalfa yield prediction [8]. 

Yang et al.’s [23] 2020 work applies ML to predicting land production potential for 
six major crops, including alfalfa, across the contiguous United States (CONUS), and they 
trained their models using publicly available data harvested via remote sensors. Their da-
tasets focused on biophysical criteria such as evapotranspiration, irrigation, soil health, 
slope, land cover, and others, plus temperature and precipitation, which overlapped 
slightly with the current work. Once again, R2 was their metric of choice, and their success 
with similar models such as random forest helped motivate the current work to apply ML 
to a related problem [23]. Wang et al. [9] used ML to predict yields for winter wheat in the 
CONUS in their 2020 paper, where they combined multiple sources of data including satel-
lite imagery, climate data, and soil maps to train a support vector machine (SVM), AdaBoost 
model, deep neural network (DNN), and a random forest with positive results measured in 
R2 and mean absolute error (MAE), such as the current work, as well as root mean squared 
error (RMSE) [9]. Our work adopted a simpler approach but used fewer varieties of data, all 
of which were publicly available, whereas ours did not require processing image data. Leng 
and Hall [24] showed that ML aided in simulating yield averages for maize in their 2020 
paper, while Nikoloski et al. [25] showed promise applying ML to estimating productivity 
in dairy farm grasslands in their 2019 work which used the R2 metric among others. The 
current work is the first study we know of that shows promise for applying such popular 
ML techniques to predicting crop yields using only simple, publicly available weather and 
variety trial datasets. 

3. Materials and Methods 
The programming language used to clean the data, make visualizations, apply fea-

ture selection methods, and make the machine learning models was Python (Python Soft-
ware Foundation, Wilmington, DE, USA) within the Anaconda environment (Anaconda 
Software Distribution, Austin, TX, USA). Many packages for python were used. Pandas 
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was used to clean and organize the data [26], Matplotlib was used to make the visualiza-
tions [27], seaborn was used to make a heat map showing the correlation between features 
[28], sci-kit learn was used for all of the machine learning and the SelectKBest feature se-
lection operations [29], and, finally, Numpy was used for general mathematical operations 
[30,31]. Weka was used for the CfsSubsetEval (Cfs), ReliefFAttributeEval (ReliefF), and 
WrapperSubsetEval (Wrapper) feature selection operators [32]. A link to our code on 
Github is provided in the Supplementary Materials section. 

The features used to train our machine learning models were the Julian day of the 
harvest; the number of days between the harvest and the sown date of the crop; the num-
ber of days between the current harvest and the previous harvest; the total amount of solar 
radiation and rainfall since the last harvest; the percent cover and day length at the time 
of the harvest; the average air temperature since the previous harvest; the average mini-
mum air temperature since the last harvest and the average maximum air temperature 
since the previous harvest; and the average soil moisture since the last harvest (Table 1). 
We chose our features based on those used in previous works, i.e., [6–8,13], and those 
features included in our selected public data sources. University of Georgia’s (UGAs) va-
riety trials highlight percent cover, so we included that as well, though it was not as com-
mon in the related literature. All features presented as averages were formed by obtaining 
daily values and averaging daily value. For example, the average air temperature feature 
was found by getting the average temperature for each day between the crop’s previous 
harvest and current harvest. Then, all daily values were averaged resulting in the final 
value for the average air temperature feature. 

Table 1. A datapoint with the same features as the data used to train our machine learning mod-
els. 

Feature Name Value Abbreviation 
Julian day of harvest  249.00 JD 
Number of days since the crop was sown 643.00 DSS 
Number of days since last harvest 30.00 DSH 
Total solar radiation since the previous harvest (MJ/m^2) 610.29 Sol 
Total rainfall since the previous harvest(mm) 98.83 Rain 
Avg air temp since the previous harvest (C) 25.33 T 
Avg max air temp since the previous harvest (C) 31.25 MaxT 
Avg min air temp since the previous harvest (C) 19.1 MinT 
Avg soil moisture since the previous harvest (%) 0.11 SM 
Interpolated percent cover for the day of the harvest (%) 78.82 PC 
Day length on the day of the harvest (hrs) 12.62 DL 

These features were constructed from various datasets. All data sources are shown 
in Data Accessibility section. Alfalfa yield and harvest data were obtained from alfalfa 
variety trials done by the University of Georgia (UGA) and University of Kentucky (UKY). 
This data contained the yield (tons/acre) of multiple varieties of alfalfa. UGA’s data was 
from Athens and Tifton, Georgia from the years 2008 to 2010 and included data points from 
April to December. UKY’s data contained yield data from Lexington, Kentucky ranging 
from 2013 to 2018 and contains data from May to September. Each data set contained the 
yield, harvest date, and sown date for multiple varieties over time. The percent cover was 
also given along with the dates it was measured, but the percent cover was measured on 
different dates than when the crop was harvested, so we interpolated these values. 

We aggregated daily weather data. Data for Tifton and Watkinsville, which is about 
13 miles from Athens, GA, USA, came from the Georgia automated environmental net-
work. Similar data was found for Versailles, which is near Lexington, KY, USA, from the 
National Oceanic and Atmospheric Administration (NOAA). These weather data sets 
contained the daily amount of solar radiation and rainfall, as well as the average air tem-
perature, minimum and maximum air temperature, and the soil moisture. The day length 
was found using the United States Naval Observatory website. 
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By using the weather data for the dates corresponding with the alfalfa harvest times, 
we calculated for each harvest the total amount of solar radiation and rainfall that location 
had received since the previous harvest, and the average temperature, minimum temper-
ature, maximum temperature, and soil moisture since the previous harvest. 

Once the data was gathered, all the data that had invalid values were disregarded. 
Moreover, all data points that had harvest dates that happened in the same year as the 
sown date were filtered out. Similarly, the first harvest of every season was filtered out. 
This is because of the amount of time since the previous harvest would be much larger for 
this harvest relative to subsequent harvests. After this cleaning process, 770 data points 
were left. Athens had 108 corresponding data points, Tifton had 70, and Lexington had 
592. 

Before training the models, we applied feature selection and standardized the data. 
For feature selection, we first used Sci-Kit Learn’s SelectKBest to show how changing the 
number of features changes the average R of each method. Feature selection with Weka’s 
CFsSubsetEval (Cfs), ReliefFAttributeEval (ReliefF), and WrapperSubsetEval (Wrapper) 
operators was then used to train machine learning models, and their results were com-
pared. Then all the features were standardized according to the formula: 𝑥 = 𝑥 − 𝑥𝑥  (3)

where 𝑥  is the value of the feature before standardization, 𝑥  is the average value 
of the features, and 𝑥  is the standard deviation of the values for that feature. 

The following was done for each method. Before training the models, the data was 
shuffled and split into 10-folds to be used for 10-fold cross validation. For each iteration 
of cross validation, one of the 10-folds was used as a testing set while the other nine-folds 
were used to train the machine learning model. Each fold was a testing set for one of the 
10 iterations and was not used as the testing set more than once. Then, for each iteration 
of the cross validation, a machine learning model was initialized. A grid search (Appen-
dix) with 5-fold cross validation was done to find the hyperparameters for the model that 
most minimized the mean absolute error. Only the training set for this iteration was used 
here. Once the hyperparameters were found, the machine learning model was trained on 
the training set and was evaluated against the testing set. The mean absolute error (MAE), 
R value, and R squared (R2) value were all found and recorded. This was done for each of 
the 10 iterations. Note that this means that 10 different models were made for each 
method. We calculated and recorded the average MAE, R, and R2 value over all 10 models. 
We reported R2 scores because we found this to be the dominant metric for reflecting ac-
curacy in similar work. On the other hand, we emphasized R scores in our results because 
R captured the direction of correlation, while R2 ignored it. Further, these two metrics 
followed the same trends and were usually not greatly different from each other [19]. We 
also reported MAE in keeping with previous work, and because MAE was not always 
consistent with R and R2, it may therefore be instructive and either support or undermine 
other metrics. 

We followed this same process to train and evaluate regression tree, random forest 
regression, k-nearest neighbor regression, support vector regression, neural networks, 
Bayesian ridge regression, and linear regression. Once all the machine learning models 
were trained and evaluated for the different sets of features found by the different feature 
selection operators, a two-tailed unpaired t test was performed between the results. This 
was used to determine if any of the feature selection operators picked feature subsets that 
led to significantly better results. 

We also constructed a decision tree to classify the data into 3 distinct bins. Decision 
trees provide a nice visualization, as they show what features are responsible for the clas-
sification. This decision tree classified the data into 3 classes (Table 2). To create the deci-
sion tree, the data was randomly split into a training set (90% of the data) and a testing set 
(10% of the data). 
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Table 2. The classification trees split the data into these classes. 

Classes Yield (t) 
1 0.01–0.74 
2 0.75–1.24 
3 1.25+ 

4. Results 
For every feature selection method, we calculated the average MAE, R, and R2 value 

for each model over the 10 iterations, as shown in this section’s tables. Note that the aver-
age yield in the dataset is 2020 lbs./acre. Using the SelectKBest feature selection method, 
we made all features available for feature selection and compared the results from K = 3 
to K = 11. Notice that as K increased, the R value increased, but the increase in R levels 
tailed off at around K = 6 (Figure 1). These 6 features were the Julian day, number of days 
since the crop was sown, total solar radiation, average soil moisture, day length, and per-
cent cover. The results of the models with no feature selection are shown in Figure 2 and 
Table 3. Here, the support vector regression model had the highest average R of 0.948. 

 
Figure 1. Performance of models with k features and all features made available for feature selec-
tion. The average R value of the models is shown. SelectKBest feature selection was used with K 
values from K = 3 to K = 11. Note that the average R value for Bayesian ridge regression and linear 
regression were much lower than any of the other models, so they were not shown here. 
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Table 3. The average scores from training the models with all possible features. 

Model Mean Absolute Error (MAE) (lbs./acre) R R2 
Support vector machine 209.888 0.948 0.895 

K-nearest neighbors 205.418 0.946 0.891 
Random forest 207.448 0.945 0.887 

Neural network 232.937 0.937 0.873 
Regression tree 236.039 0.927 0.849 

Linear regression 358.454 0.818 0.664 
Bayesian ridge regression 357.686 0.818 0.663 

 
Figure 2. The results from linear regression and Bayesian ridge regression were much lower than 
the other models, so their results are not shown here. The results are shown explicitly in Table 3. 

We used Weka’s Cfs method for feature selection. If all features were made available 
for feature selection, it found that the best features were used to both maximize the corre-
lation between the features to the target and minimize the correlation between the features 
were the Julian day, total solar radiation, total rainfall, and the percent cover. The results 
from training the models using just these features are shown in Figure 3 and Table 4. The 
random forest method had achieved the highest R with a R of 0.933. The correlations be-
tween the features and target are shown in Figure 4. 

Table 4. Results from Cfs feature selection with all features. These average scores are from using 
the features Julian day, total solar radiation, total rainfall, and percent cover. 

Model Mean Absolute Error (lbs./acre) R R2 
Random forest 228.651 0.933 0.865 

Support vector machine 248.458 0.925 0.851 
K-nearest neighbors 251.494 0.914 0.831 

Regression tree 272.247 0.9 0.8 
Neural network 293.606 0.887 0.778 

Linear regression 382.928 0.792 0.627 
Random forest 228.651 0.933 0.865 

Bayesian ridge regression 383.459 0.79 0.619 
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Figure 3. Results from Cfs feature selection with all features. The results from linear regression 
and Bayesian ridge regression were much lower than the other models, so their results are not 
shown here. The results are shown explicitly in Table 4. 

 
Figure 4. Correlation heat map between features. A heat map showing the value of the correlation 
coefficient between each possible pair of features. We see higher correlations, positive and negative, 
between yield and Julian day, time since sown, radiation, rainfall, day length, and others. 

However, because it may not be easy to get an accurate value of percent cover, we 
did another experiment with Weka’s Cfs method for feature selection. In this experiment, 
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we made all the features available for feature selection except for percent cover. It found 
that the best set of features to use in this case were the Julian day, total solar radiation, 
total rainfall, and the number of days since the sown date. The results of evaluating the 
models trained on just these features are shown in Figure 5 and Table 5. The k-nearest 
neighbor and random forest methods both achieved the best average R with this set of 
features by obtaining an average R of 0.952. 

Table 5. Results from Cfs feature selection with no percent cover. The average scores from using 
the features Julian day, number of days since the sown date, total solar radiation, and total rainfall. 

Model Mean Absolute Error (lbs./acre) R R2 
K-nearest neighbors 193.938 0.952 0.904 

Random forest 196.539 0.952 0.903 
Regression tree 200.052 0.95 0.899 

Support vector machine 231.222 0.936 0.871 
Neural network 260.651 0.911 0.821 

Bayesian ridge regression 372.945 0.8 0.632 
Linear regression 372.547 0.798 0.632 

 
Figure 5. Results from Cfs feature selection with no percent cover. The results from linear regres-
sion and Bayesian ridge regression were too low to show. The results are shown explicitly in Table 5. 

To compare the results obtained from using the two sets of features found by Cfs, an 
unpaired two-tailed t test was performed between the R values of the models trained with 
the features chosen by the Cfs operator (Table 6). The random forest, k-nearest neighbor, 
and regression tree methods performed significantly better using the feature set that ex-
cluded percent cover from being available for selection. The other methods did not vary 
significantly across the two sets of results. Because excluding percent cover led to results 
that were significantly better or the same when compared to not excluding percent cover, 
only the results found by Cfs without percent cover will be considered for the rest of this 
work.  
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Table 6. p-values between the R2 values of the models trained by the two CfsSubsetEval feature 
sets. The results were found by doing unpaired two-tailed t tests. The first feature set contained 
the Julian day, total solar radiation, total rainfall, and percent cover. The second feature set con-
tained the Julian day, the number of days since the sown date, total solar radiation, and the total 
rainfall. Significant results are shown in bold. 

Model T Test Results 
Random forest 0.0046 

K-nearest neighbor 0.0007 
Regression tree 0.0103 

Support vector regression 0.2820 
Neural network 0.2070 

Linear regression 0.8940 
Bayesian ridge regression 0.7481 

The ReliefF operator found that the best features were the number of days between 
the crop’s sown date and harvest date, the cumulative amount of rainfall the crop got since 
the previous harvest, and the average minimum daily temperature since the previous har-
vest. The results from training the machine learning models with these features are shown 
in Figure 6 and Table 7. In this case, k-nearest neighbors achieved the highest average of 
R with a value of 0.953. 

Table 7. Results from ReliefF feature selection. The average scores from using the features number 
of days since the sown date, total rainfall, and the average minimum temperature since the previ-
ous harvest. 

Model Mean Absolute Error (lbs./acre) R R2 
K-nearest neighbors 195.86 0.953 0.905 

Random forest 197.026 0.95 0.9 
Regression tree 199.584 0.948 0.897 
Neural network 357.532 0.842 0.7 

Support vector machine 344.604 0.83 0.688 
Linear regression 667.121 0.262 0.05 

Bayesian ridge regression 666.844 0.258 0.049 

 
Figure 6. Results from ReliefF feature selection. The results from linear regression and Bayesian 
ridge regression were much lower than the other models, so their results are not shown here. The 
results are shown explicitly in Table 7. 
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The wrapper operator reported that the best features were number of days between 
the crop’s sown date and harvest date, the cumulative amount of rainfall since the previ-
ous harvest, the day length at the time of the harvest, and the Julian day of the harvest. 
The results of the machine learning models trained on these features is shown in Figure 7 
and Table 8. The best R value of these methods was also k-nearest neighbors getting an 
average R of 0.952. 

 
Figure 7. Results from Wrapper feature selection operator. The results from linear regression and 
Bayesian ridge regression were much lower than the other models, so their results are not shown 
here. The results are shown explicitly in Table 8. 

Table 8. Results from Wrapper feature selection operator. The average scores from using the fea-
tures number of days since the sown date, total rainfall, day length, and the Julian day. 

Model Mean Absolute Error (lbs./acre) R R2 
K-nearest neighbors 199.28 0.952 0.904 

Random rorest 197.782 0.952 0.903 
Regression tree 200.208 0.951 0.902 

Support vector machine 261.395 0.917 0.835 
Neural network 300.245 0.883 0.776 

Linear regression 370.509 0.807 0.651 
Bayesian ridge regression 372.011 0.8 0.634 

Unpaired two-tail t tests were done between the R values of the methods that used 
all the features, the Cfs features (without percent cover), the ReliefF features, and the 
Wrapper features (Table 9). To show these results more clearly, Table 10 shows what fea-
ture selection operator led to the best results for each machine learning method. There 
was no significant difference in the results given by the feature selection operators in the 
same row of Table 10.  



AI 2021, 2 84 
 

Table 9. p-values between R2 values of different feature selection operators. Results from unpaired two-tail t tests. ‘All’ 
represents the results from Table 3, ‘Cfs’ represents the results which used the features from Figure 5/Table 5, ‘ReliefF’ 
represents the results from Figure 6/Table 7, and ‘Wrapper’ represents the results from Figure 7/Table 8. If a p-value is 
followed by a parenthesis, the value in the parentheses is an abbreviation of the feature selection method that resulted in 
the higher average R2 value. Lower p-values are better, and the lowest are bolded.  

T Test RF KNN RT SVR NN Lin Bayes 
All vs. Cfs 0.2973 0.3303 0.0086 (C) 0.0559 0.0871 0.3758 0.3795 

All vs. ReliefF 0.4631 0.2306 0.0140 (R) 0.0001 (A) 0.0010 (A) 2 × 10−13 (A) 3 × 10−15 (A) 
All vs. Wrapper 0.2398 0.3321 0.0045 (W) 0.0038 (A) 0.0035 (A) 0.7555 0.3569 
Cfs vs. ReliefF 0.8331 0.9179 0.8967 0.0002 (C) 0.0156 (C) 3 × 10−12 (C) 3 × 10−11 (C) 

Cfs vs. Wrapper 0.9867 0.9804 0.7840 0.0685 0.2196 0.6726 0.9486 
ReliefF vs. Wrapper 0.8057 0.8924 0.6999 0.0014 (W) 0.1052 5 × 10−10 (W) 8 × 10−13 (W) 

Table 10. Best feature selection operators for each machine learning method. There is no signifi-
cant difference between the results in the same cell. ‘All’ refers to all features being used, ‘Cfs’ 
refers to the set of features found by CfsSubsetEval, ‘ReliefF’ refers to the set of features found by 
ReliefFAttributeEval, and ’Wrapper’ refers to the set of features found by ‘WrapperSubsetEval’. 

Machine Learning Method Feature Selection Operator that Led to the Best Results 
Random forest All, Cfs, ReliefF, Wrapper 

K-nearest neighbors All, Cfs, ReliefF, Wrapper 
Regression tree Cfs, ReliefF, Wrapper 

Support vector regression All, Cfs 
Neural network All, Cfs 

Linear regression All, Cfs, Wrap 
Bayesian ridge regression All, Cfs, Wrap 

Finally, the classification tree can be found in Figure 8. A left split represents data 
with the attribute listed less than the value that is specified, and a right split represents 
the opposite. For example, the first node of the tree splits the data based on the Julian day, 
with data that has a Julian day of prior to the middle of May being sorted into the left 
child node and data that has a Julian day after this date being sorted into the right child 
node. The tree had 12 leaf nodes, as that was found to be the number of leaf nodes that 
gives the best accuracy when trees with 2–15 leaf nodes were tested. The accuracy for this 
final tree was found to be 85.6%, the mean absolute error was found to be 0.144 tons, and 
the R2 value was found to be 0.752. 
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Figure 8. The classification decision tree that sorts data into bins. 

5. Discussion 
Overall, this work demonstrated that we could improve on previous research to pre-

dict crop yields by applying a feature selection to our ML models. Our main improve-
ments was a higher accuracy than the previous work, which we achieved by using a simpler 
dataset with fewer features, reporting our results using more intuitive and transferable met-
rics, and extending recent success with feature selection to the alfalfa crop. 

The Cfs operator was the best overall feature selection method because it led to the 
best results for each method. None of the other feature selection operators led to the best 
results for each method. The feature set that the Cfs operator found consisted of the Julian 
day, the number of days between the sown and harvest date, the cumulative solar radia-
tion since the previous harvest, and the cumulative rainfall since the last harvest. 

There was no significant difference in any of the random forest results, no matter the 
feature selection method. The same was true for k-nearest neighbors. Even though using 
all features did not result in a significant difference from using a feature selection opera-
tor, it would still be beneficial to use a feature selection operator. Doing so would lower 
computational time and could simplify the models. The same can be said for support vec-
tor regression and the neural network, which got the best results from using either all the 
features or Cfs. For the regression tree, using any of the three feature selection methods 
resulted in better results than if all the features were used. In this case, even though fewer 
features were used, the results still improved. This may be because different features can 
embed the same information. For example, the Julian day of the harvest and the day length 
features both referred to seasonal information; therefore, they would have a high correla-
tion with each other (Figure 4). Thus, including both the Julian day of the harvest and the 
day length could add noise to the model. For linear regression and Bayesian ridge regres-
sion, using anything but the ReliefF operator led to the best results. This is probably be-
cause forming a linear prediction function with only three features is not appropriate for 
this domain. 
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This work may be helpful because it describes a framework that can be applied to 
other machine learning problems in predicting crop and biomass yield. This work also 
shows what features are most important for predicting alfalfa yield in the southeast 
United States from Spring to the end of Fall. The best results came from training the mod-
els with the Julian day, the amount of solar radiation and rainfall since the previous har-
vest, and the number of days since the crop was sown. This is useful because gathering 
data is resource intensive and knowing the best features can help make data collecting 
more efficient. These four features are also relatively easy to obtain. The Julian day and 
amount of time since the crop was sown are trivial to retrieve, and the amount of solar 
radiation and rainfall can be obtained from weather data sources. 

Moreover, besides possibly improving the results of the models, feature selection can 
provide insight into the problem domain [16]. By understanding what features are most 
important for predicting yield, one may gain insight into what factors most impact a 
crop’s yield. The cumulative rainfall since the previous harvest and the number of days 
between the harvest date and sown date were chosen by all the feature selection methods, 
so this is evidence that they may be the most important features for this problem. Simi-
larly, the Julian day was chosen by two out of three feature selection methods, so this is 
evidence that it is also an important feature. 

This work could be extended by providing this framework to alfalfa crops grown in 
other locations besides Georgia and Kentucky. It could also be improved by incorporating 
more data from other locations in the Southeast United States. This work may also be 
extended to use with transfer learning and domain adaptation techniques. 

Supplementary Materials: The code used for this project can be found at 
https://github.com/chriswhitmire/alfalfa-yield-prediction. 
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Appendix A 
The grid for the hyperparameters of each model is as follows: 
Decision Tree 

• ‘criterion’: [‘mae’]; 
• ‘max_depth’: [5,10,25,50,100]. 

Random forest- 
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• ‘n_estimators’: [5,10,25,50,100]; 
• ‘max_depth’: [5,10,15,20]; 
• ‘criterion’: [“mae”]. 

K-nearest neighbors 
• ‘n_neighbors’: [2,5,10]; 
• ‘weights’: [‘uniform’, ‘distance’]; 
• ‘leaf_size’: [5,10,30,50]. 

Support vector machine 
• ‘kernel’: [‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’]; 
• ‘C’: [0.1, 1.0, 5.0, 10.0]; 
• ‘gamma’: [“scale”, “auto”]; 
• ‘degree’: [2,3,4,5]. 

Neural Network 
• ‘hidden_layer_sizes’:[(3), (5), (10), (3,3), (5,5), (10,10)]; 
• ‘‘solver’: [‘sgd’, ‘adam’]; 
• ‘learning_rate’ : [‘constant’, ‘invscaling’, ‘adaptive’]; 
• ‘learning_rate_init’: [0.1, 0.01, 0.001]. 

Bayesian ridge regression 
• ‘n_iter’:[100,300,500]; 
• ‘lambda_1’: [1.e−6, 1.e−4, 1.e−2, 1, 10]. 

Linear Regression- no hyperparameters 
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