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Abstract: The prognosis of diffuse large B-cell lymphoma (DLBCL) is heterogeneous. Therefore,
we aimed to highlight predictive biomarkers. First, artificial intelligence was applied into a discovery
series of gene expression of 414 patients (GSE10846). A dimension reduction algorithm aimed to
correlate with the overall survival and other clinicopathological variables; and included a combi-
nation of Multilayer Perceptron (MLP) and Radial Basis Function (RBF) artificial neural networks,
gene-set enrichment analysis (GSEA), Cox regression and other machine learning and predictive
analytics modeling [C5.0 algorithm, logistic regression, Bayesian Network, discriminant analysis,
random trees, tree-AS, Chi-squared Automatic Interaction Detection CHAID tree, Quest, classifica-
tion and regression (C&R) tree and neural net)]. From an initial 54,613 gene-probes, a set of 488 genes
and a final set of 16 genes were defined. Secondly, two identified markers of the immune checkpoint,
PD-L1 (CD274) and IKAROS (IKZF4), were validated in an independent series from Tokai University,
and the immunohistochemical expression was quantified, using a machine-learning-based Weka
segmentation. High PD-L1 associated with poor overall and progression-free survival, non-GCB phe-
notype, Epstein–Barr virus infection (EBER+), high RGS1 expression and several clinicopathological
variables, such as high IPI and absence of clinical response. Conversely, high expression of IKAROS
was associated with a good overall and progression-free survival, GCB phenotype and a positive
clinical response to treatment. Finally, the set of 16 genes (PAF1, USP28, SORT1, MAP7D3, FITM2,
CENPO, PRCC, ALDH6A1, CSNK2A1, TOR1AIP1, NUP98, UBE2H, UBXN7, SLC44A2, NR2C2AP
and LETM1), in combination with PD-L1, IKAROS, BCL2, MYC, CD163 and TNFAIP8, predicted the
survival outcome of DLBCL with an overall accuracy of 82.1%. In conclusion, building predictive
models of DLBCL is a feasible analytical strategy.

Keywords: overall survival; diffuse large B-cell lymphoma; artificial intelligence; Multilayer Percep-
tron; Radial Basis Function; PD-L1 (CD274); IKAROS (IKZF4)

1. Introduction

Diffuse large B-cell lymphoma (DLBCL) is the most common histologic subtype of
non-Hodgkin lymphoma (NHL). DLBCL accounts for approximately 25 percent of adult
NHL cases. It is increasingly appreciated that the diagnostic category of “DLBCL” is
quite heterogeneous in terms of morphology, genetics and biologic behavior. DLBCL is
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curable in approximately half of cases with current therapy, particularly in those who
achieve a complete remission with first-line treatment. The molecular pathogenesis of
DLBCL is a complex, multistep process that ultimately results in the transformation and
expansion of a malignant B-cell clone. This neoplastic B-cell is of germinal or post-germinal
B cell-of-origin. Two molecular subtypes are identified according to the gene expression:
the “germinal center B-cell-like” (GCB) and the “activated B-cell-like” (ABC), including
a third subtype that is “unclassified”. Based on the immunohistochemistry of CD10,
BCL6 and MUM1 (IRF4), the Hans classifier also stratifies the samples into GCB and non-
GCB (ABC). Despite that some of the molecular mechanisms have been elucidated, most of
the pathogenesis remains unknown [1–5]. Therefore, new approaches in analysis may help
to clarify the remaining unknown pathogenic factors.

Deep learning (also known as deep structured learning or differential programming)
is part of a broader family of machine learning methods based on artificial neural networks
with representation learning; the learning can be supervised, semi-supervised or unsuper-
vised [6–9]. Artificial neural networks are a set of algorithms, modeled loosely after the
human brain, that are designed to recognize patterns. They interpret sensory data through
a kind of machine perception, labeling or clustering of the raw input data/information.
The patterns that artificial neural networks recognize are numerical, contained in vectors,
into which all real-world data (be it images, sound, text or time series) must be trans-
lated [10]. In this project, we have used the Trainable Weka Segmentation method to
quantify the raw colors of the immunohistochemical protein expression of markers that are
present in the DLBCL tissue. The Trainable Weka Segmentation is a plugin and library that
combines a collection of machine learning algorithms with a set of selected image features
to produce pixel-based segmentations.

Artificial neural networks allow to cluster and to classify, they can group unlabeled
data according to similarities among the example inputs, and they classify data when they
have a labeled dataset to train on [10]. With classification, the predictive analytics can be
performed by correlations between present and future events. For example, a correlation
between the gene or protein expressions levels of DLBCL samples and future events such as
the patients’ outcome (alive or dead) or other clinicopathological characteristics including
the International Prognostic Index (IPI).

Artificial neural networks are the preferred tool for many predictive data-mining
applications, because of their power, flexibility and ease of use [11]. Artificial neural
networks used in predictive applications, such as the Multilayer Perceptron (MLP) and the
Radial Basis Function (RBF) networks, are supervised in the sense that the model-predicted
results can be compared against known values of the target variables [11]. Both MLP and
RBF have a structure known as a “feedforward architecture” because the connections in
the network flow forward from the input layer to the output layer without any feedback
loops. The architecture composition is the following: (1) an input layer that contains the
predictors; (2) a hidden layer with unobservable nodes, or units; and (3) the output layer
that contains the responses. The value of each hidden unit is some function of the predictors.
The exact form of the function depends, in part, upon the network type and in part upon
user-controllable specifications. The choice of procedure, MLP or RBF, is influenced by the
type of data and the level of complexity to uncover. While the MLP procedure can find
more complex relationships, the RBF procedure is generally faster [11].

We have recently described the use of MLP for the analysis of gene expression of
DLBCL, using a series of 100 cases [12,13]. This continuation project was characterized
by (1) the series of cases expanded up to 414 cases (four times larger), (2) the artificial
neural network analysis included the comparison and integration of both MLP and RBF
methods, and (3) the aim to predict several clinicopathological characteristics, in addition
to the overall survival. Finally, after the integration of the results we validated two of the
most relevant markers by immunohistochemistry in another series of 113 cases from Tokai
University Hospital. The digital quantification of the validation marker was also performed
by using machine learning and the Waikato Environment for Knowledge Analysis (Weka).
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2. Materials and Methods
2.1. Study Subjects

The subjects of the study for the artificial neural network of gene expression data were
obtained from a well-known and robust series of DLBCL from Caucasian subjects (Table 1).
This series belongs to the Lymphoma/Leukemia Molecular Profiling Project (LLMPP) and
the patients are from several institutions in Europe and USA. This series is publicly avail-
able from the NCBI GEO datasets as GSE10846 and comprises 414 cases [14]. The sample
data are from an Affymetrix Human Genome U133 Plus 2.0 Array and the processing used
the MAS 5.0 Data Processing Protocol. The data were analyzed with the Microarray Suite
version 5.0 (MAS 5.0), using the Affymetrix default analysis settings and global scaling as
normalization method. The trimmed mean target intensity of each array was arbitrarily set
to 500. The post-normalized data were log-2 scaled. For the MLP and RBF analysis on this
discovery set all the 414 cases were selected. The clinicopathological characteristics of the
discovery series is shown in the Table 1. In summary, the age ranged from 14 to 92 years
old, with a median of 62.5 years, and 226 were men (54.6%). According to the cell-of-origin
(COO) molecular classification of DLBCL based on the gene expression [1–5], 44.2% of the
cases were of germinal center B-cell subtype (GCB), 40.3% of activated B-cell subtype (ABC)
and 15.5% of unclassified. Fifty-six percent of the cases had received rituximab, cyclophos-
phamide, doxorubicin hydrochloride, vincristine sulfate, and prednisone (RCHOP)-like
therapy. As expected in a conventional series of DLBCL, several variables correlated with
the overall survival of the patients. Patients that had an unfavorable prognosis associated
with several clinical variables including age > 60 years, high LDH, Eastern Cooperative
Oncology Group (ECOG) Performance Status ≥ 2, clinical stage III/IV, extranodal sites >1,
higher National Comprehensive Cancer Network International Prognostic Index (NCCN
IPI) score and an activated B-cell (ABC) molecular subtype. The alive/dead ratio of this
series was 1.51. The clinicopathological characteristics of this series is in concordance with
a standard series of DLBCL.

Table 1. Clinicopathological characteristics of the discovery series (GSE10846).

Variable no. % p-Value Hazard Risk
95.0% CI for HR

Lower Upper

Sex Male 224/414 54.6 0.9 1.021 0.744 1.402
Age > 60 226/414 54.6 2 × 10−6 2.209 1.59 3.069
LDH ratio > 1 182/351 51.9 5.1 × 10−8 2.723 1.899 3.905
LDH ratio > 3 32/351 9.1 2.9 × 10−8 3.673 2.319 5.818
ECOG Performance Status ≥ 2 93/389 23.9 3.1 × 10−10 2.835 2.049 3.921
Clinical stage III or IV 218/406 53.7 2.5 × 10−4 1.834 1.326 2.537
Extranodal disease site > 1 30/383 7.8 0.014 1.927 1.144 3.246
NCCN IPI

Low risk 54/321 16.8 5.2 × 10−08 - - -
Low-intermediate risk 152/321 47.4 3.8 × 10−4 5.221 2.096 13.004
High-intermediate risk 98/321 30.5 4 × 10−6 8.74 3.493 21.871
High risk 17/321 5.3 6.9 × 10−8 17.761 6.244 50.521

Cell-of-origin molecular subtype
Germinal center B-cell (GCB) 183/414 44.2 2.8 × 10−8 - - -
Activated B-cell (ABC) 167/414 40.3 1.1 × 10−8 2.75 1.944 3.891
Unclassified 64/414 15.5 0.2 1.389 0.84 2.298

Treatment
RCHOP-like 233/414 56.3 7.8 × 10−5 0.52 0.376 0.719
CHOP-like 181/414 43.7 - - - -

Overall survival (outcome)
Dead 165/414 39.9 - - - -
Alive 249/414 60.1 - - - -

Overall survival
Dead < 1.5 years 115/414 27.8 3.3 × 10−9 113.448 23.654 544.122
Alive ≥ 7 years 40/414 9.7 - - - -

The first three columns of the table show the clinicopathological characteristics of patients of this series GSE10846 of diffuse large
B-cell lymphoma (DLBCL), with the frequencies of cases per each variable. The variables include clinical variables such as sex, age,
the International Prognostic Index, etc., as well as biological factors, such as the cell-of-origin molecular subtypes. Columns 4 to 7 show
the prognostic relevance of the variables, using a univariate Cox regression analysis for overall survival. The data show the statistical
p-value, the Hazard Risk and the 95% confidence interval (CI) for the Hazard Risk. ECOG, Eastern Cooperative Oncology Group. NCCN
IPI, National Comprehensive Cancer Network International Prognostic Index. RCHOP, rituximab, cyclophosphamide, doxorubicin
hydrochloride, vincristine sulfate, and prednisone.
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The validation set consisted of 113 cases of DLBCL from Tokai University Hospital.
This validation set was used for the immunohistochemical quantification of the protein
expression of two of the most relevant genes, previously identified in the artificial neural
network analysis and later confirmed by Cox analysis. One of the markers was associated
to a poor and the other to a good prognosis of the patients. The clinicopathological
characteristics of the validation set is shown in the Table 2. In summary, the age ranged from
14 to 97 years old, with a median of 67 years, and 64 were men (55.8%). According to the
cell-of-origin classification, using the Hans classifier, 33.6% were GCB and 66.4% non-GCB.
The Hans classifier uses three markers that can be tested by immunohistochemistry (CD10,
BCL-6 and MUM-1), and the cases can be assigned to either of two groups, using a new
nomenclature: GC-group and non-GC group. Ninety-five percent of the cases had received
RCHOP or RCHOP-like therapy. Patients that had an unfavorable prognosis associated
with age > 60 years, high LDH, high sIL2RA, ECOG Performance status ≥ 2, clinical stage
III/IV, extranodal sites > 1, higher IPI score, a non-GCB cell-of-origin subtype and positivity
for Epstein–Barr virus (EBER+). The alive/dead ratio was 0.82. The clinicopathological
characteristics of this series from Tokai University are also in concordance with a standard
series of DLBCL.

Table 2. Clinicopathological characteristics of the validation series (Tokai cases).

Variable no. % p-Value Hazard Risk
95.0% CI for HR

Lower Upper

Sex Male 63/113 55.8 0.9 1.045 0.6 1.821
Age > 60 78/112 69.6 0.01 2.553 1.24 5.253
Location

Nodal (+spleen) 63/113 55.8 0.4 - - -
Extranodal

Waldeyer’s ring 11/113 9.7 0.2 0.486 0.147 1.613
Gastrointestinal 10/113 8.8 0.6 0.735 0.223 2.422
Other extranodal 29/113 25.7 0.4 1.326 0.725 2.427
LDH High (>219) 70/112 62.5 1.8 × 10−3 3.03 1.51 6.083
Seric IL2RA High (>530) 83/106 78.3 1.4 × 10−2 3.627 1.299 10.125

ECOG Performance Status ≥ 2 15/90 16.7 6.2 × 10−4 3.466 1.701 7.062
Clinical stage III or IV 52/105 49.5 0.01 2.138 1.17 3.905
Extranodal disease site >1 20/86 23.3 5.1 × 10−5 3.985 2.041 7.78
B symptoms 24/94 25.5 0.2 1.557 0.805 3.011

International Prognostic Index (IPI)
Low risk (L) 34/96 35.4 1.9−10-2 - - -
Low-intermediate risk (LI) 29/96 30.2 0.01 3.265 1.392 7.656
High-intermediate risk (HI) 20/96 20.8 0.02 2.99 1.193 7.495
High risk (H) 13/96 13.5 4.9 × 10−3 4.326 1.558 12.016

Cell-of-origin subtype (Hans)
GCB 37/110 33.6 - - - -
Non-GCB 73/110 66.4 1.4 × 10−2 2.318 1.186 4.529
Epstein–Barr virus, EBER+ 16/111 14.4 2.5 × 10−2 2.291 1.11 4.729

Treatment
RCHOP 79/106 74.5 0.3 - - -
RCHOP-like 22/106 20.8 0.1 1.677 0.873 3.219
Others 5/106 4.7 0.5 1.701 0.406 7.134

Response to treatment
CR 72/101 63.7 -
PR+PD+SD+NC 29/101 28.7 2.9 × 10−13 11.467 5.956 22.076

Overall survival (outcome)
Dead 51/113 45.1 - - - -
Alive 62/113 54.9 - - - -

The first 3 columns show the frequencies of each clinicopathological variables. Columns 4 to 7 show the results of the univariate Cox
regression analysis for overall survival.
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No cases of primary mediastinal B-cell lymphoma (PMBL) were included in
this research.

This study was conducted in compliance with the Helsinki Declaration, and the project
was approved by the Institutional Review Board (IRB14R-080).

2.2. Statistical Analysis

Statistical analyses were performed by using R programming language version 3.6.3
(29 February 2020) and RStudio (version 1.3.959) [15], and with IBM SPSS (Statistics version
26 and Modeler version 18.0; IBM, New York, United States), following the manufacturers’
instructions. Comparisons of means was performed with independent-samples T-Test or
with non-parametric two-independent-samples test (Mann–Whitney U test) when required.
The criteria for overall survival was based on the time calculated from the date of diagnosis
to the date of death or last follow-up. The survival analysis was performed, using Kaplan–
Meier (with Log rank, Breslow and Tarone–Ware tests) and Cox regression, method (Enter),
contrast (Indicator) and reference category (First). Multivariate Cox regression was also
performed with the backward conditional method. Hazard Ratios/Risks (HRs) were
calculated with Cox regression. The odds ratios (ORs) were determined with binary
logistic regression. The significance level was set up at a priori with a p-value < 0.05.
R programming language software, instructions and methods can be found at http://
cran.r-project.org (accessed on 4 March 2021). Instructions for RStudio are found at https:
//rstudio.com/ and for SPSS at https://www.ibm.com/jp-ja/analytics/spss-statistics-
software (accessed on 4 March 2021).

2.3. Artificial Neural Network Analysis of Gene Expression Data

MLP and RBF analysis on the discovery series was performed, using similar strategy
as previously described [12,13]. The desktop workstation had a Ryzen 7 3700X CPU and
16 GB of RAM.

For MLP analysis, the setup included a series of items. The dependent variable (i.e.,
the nominal variable that we want to predict) was the outcome of the overall survival as
well as several other clinicopathological features including the cell-of-origin classification,
the National Comprehensive Cancer Network International Prognostic Index (NCCN-IPI),
stage, extranodal disease, etc. (Figure 1). The predictor variables were the genes that were
specified as covariates (scale). The rescaling of the covariates was standardized. Partition
dataset: The cases were randomly assigned based on the relative number of cases.

The partitions were the training (relative number = 7, 70%), the test (3, 30%), the hold-
out (0, 0%). The architecture can be automatically selected, with a minimum number of
units in the hidden layer from 1 to 50 or can be a custom architecture. A custom archi-
tecture includes a setup for the hidden layers and the output layer. In the hidden-layers
section, the following options can be arranged: (1) number of hidden layers (one, two),
(2) activation function (hyperbolic tangent, sigmoid) and (3) number of units (automatically
compute or custom for hidden layer 1 and 2). In the output layer section, the options are:
(1) activation function (identity, softmax, hyperbolic tangent and sigmoid), (2) rescaling
of scale dependent variables (standardized, normalized (correction 0.02 or another value),
adjusted normalized (0.002 or another value) or none). Of note, the activation function
chosen for the output layer determines which rescaling methods are available. The training
can be of batch, online or mini-batch type. The optimization algorithm can be scaled conju-
gant gradient or gradient descent. The training options were initial lambda (0.0000005),
initial sigma (0.00005), interval center (0) and interval offset (+/-0.5).

The output includes a network structure (description, diagram and synaptic weights)
and the network performance (model summary, classification results, ROC curve, cumula-
tive gains chart, lift chart, predicted by observed chart and residual by predicted chart).
In addition, the cases processing summary and the independent variable importance
analysis is also performed. The synaptic weight estimates were exported to a XML file.
As options, the user-missing values were excluded. The stopping rules had a 0.0001 min-

http://cran.r-project.org
http://cran.r-project.org
https://rstudio.com/
https://rstudio.com/
https://www.ibm.com/jp-ja/analytics/spss-statistics-software
https://www.ibm.com/jp-ja/analytics/spss-statistics-software
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imum relative change in the training error and 0.001 minimum relative change in the
training error ratio.

Figure 1. Analysis algorithm. In this project, two types of artificial neural network analyses were
performed: Multilayer Perceptron (MLP) and Radial Basis Function (RBF). The input data were
the gene expression of 54,613 gene-probes from 414 patients with diffuse large B-cell lymphoma
(DLBCL). The target variables were the outcome of the overall survival (dead versus alive), as well
as several relevant clinicopathological characteristics, including the cell-of-origin classification and
the International Prognostic Index (IPI). The gen-probes were ranked according to their normalized
importance (NI). A cutoff of >70% of normalized importance and >1% of averaged normalized
importance was applied. Cox regression analysis (univariate and multivariate) reduced the final
list to the most relevant genes (n = 448). The gene-set enrichment analysis (GSEA) technique
confirmed the association toward bad or good prognosis and PD-L1 and IKAROS were validated in
an independent series of Tokai University. Additional data reduction was performed with Cox and
Kaplan–Meier overall survival analyses, second round of artificial neural networks and predictive
modeling in a multistep process up to a final 16 and 6 genes sets.

For the RBF setup, the architecture can have several units that can be automatically
computed or specified. The activation function for the hidden layer can be normalized or
ordinary Radial Basis Function and the overlap among hidden units can be automatically
computed or specified. Receiver Operating Characteristic (ROC) curve displays a curve
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for each categorical dependent variable. It also displays a table giving the area under each
curve. For a given dependent variable, the ROC chart displays one curve for each category.
Independent variable importance analysis performs a sensitivity analysis, which computes
the importance of each predictor in determining the artificial neural network. The analysis
is based on the combined training and testing samples or only on the training sample if
there is no testing sample. This creates a table and a chart displaying importance and
normalized importance for each predictor.

In this study, the analysis method included several individual MLP and RBF anal-
ysis (Figure 1). Each individual artificial neural network analysis included the gene-
expression data of 414 cases (GSE10846, Affymetrix U133 Plus 2.0 Array, 54,613 gene-
probes), which were correlated with a single target (dependent) variable. The target
variables were the following: survival outcome (dead or alive), outcome only in the
RCHOP-like subgroup, outcome only in the CHOP-like subgroup, cell-of-origin (GCB vs.
ABC, the unclassified was excluded), age (≤60 vs. >60), LDH ratio (≤1 vs. >1), LDH ratio
(≤3 vs. >3), ECOG PS (<2 vs. ≥2), stage (I/II vs. III/IV), extranodal disease (≤1 vs. >1), gen-
der (male vs. female), NCCN-IPI (low + low-intermediate vs. high-intermediate + high),
multi-dependent variable and survival extremes (dead < 1.5 years vs. alive > 7 years).
In total, 28 AI individual analyses were performed. Each AI analysis provided an output
in which the 54,613 gene probes were ranked according to their importance for prediction
of the target variable. Then, the normalized importance values were processed as follows:
(1) The gene probes with a normalized importance ≥70% in each target variable (with
exclusion of gender) were selected and merged in a new database. (2) The normalized
importance of each gene probe was averaged for all the predictive variables (with exclu-
sion of gender) and the averaged values ranked from most to least important. Therefore,
the results comprised 4 lists, top 1% of the averaged normalized importance for MLP
and RBF analyses and the merged ≥70% normalized importance for MLP and RBF. Then,
the gene-probes were merged and the duplicated were deleted.

The relevance of each identified gene-probe was tested in the series, using univariate
and multivariate Cox regression analyses [12,13], with a second round of MLP and RBF,
gene-set enrichment analysis (GSEA), and finally with an overall survival modeling and
screening based on the overall accuracy for prediction of the overall survival outcome
variable. This modeling included the following model types: C5.0 algorithm, logistic re-
gression, Bayesian Network, discriminant analysis, linear support vector machine (LSVM),
random trees, tree-AS, Chi-squared automatic interaction detection (CHAID) tree, Quick,
unbiased, efficient statistical (QUEST) tree, classification and regression (C&R) tree and
neural network. The GSEA was performed as described earlier by Carreras et al. [12],
Hamoudi et al. [16] and Subramanian et al. [17]. In Figure 1, the details of the analysis’s
algorithm are shown.

2.4. Immunohistochemistry

Immunohistochemistry was performed in a Bond-Max Fully automated immunohis-
tochemistry (IHC) and in situ hybridization (ISH) equipment following the manufacturer’s
instructions (Leica K.K., Tokyo, Japan) and using the DAB-based BOND Polymer Refine
Detection kit (#DS9800). In summary, the immunohistochemical protocol follows the next
steps: bake, dewax, rehydrate, antigen retrieval, block endogenous peroxidase, primary an-
tibody, detection of bond antibody (post-primary antibody and polymer), color develop-
ment with 3’-Diaminobenzidine (DAB), counterstain with hematoxylin and mounting.
Each step is followed by washes (standard Bond wash). Mounting was performed, using a
Leica CV5030 Fully Automated Glass Coverslipper.

For the cell-of-origin classification with the Hans classifier, the following antibodies
were used: CD10 antigen (1:100, Clone 56C6, Novocastra, Leica K.K., Tokyo, Japan), BCL-
6 oncoprotein (1:100, LN22, Novocastra) and Multiple Myeloma Oncogene 1 (MUM-1,
also known as IRF4) (1:100, EAU32, Novocastra) can we put the dilutions used for each
Ab. Epstein–Barr virus (EBV) infection status was assessed by in situ hybridization of
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EBV-encoded mRNA (EBER, #BP0589, #AR0833, Novocastra). Validation of the prognostic
markers from artificial neural network analysis was made targeting PD-L1 (Extracellular
Domain Specific) (1:100, enhancer A Toyobo, retrieval in pressure cooker, E1J2J, Cell Sig-
naling Technology K.K., Tokyo, Japan) and IKAROS (1:100, D6N9Y, CST). The antigen
retrieval solution was EDTA-based (Leica BOND epitope retrieval solution 2 for 20 min for
all antibodies, with exception of CD10 that was for 30 min).

2.5. Conventional and Machine-Learning-Based Digital Image Analysis

Slides were visualized in an optical microscope (Olympus BX63, Olympus K.K., Tokyo,
Japan) and later digitalized, using a digital slide scanner (NanoZoomer S360, Hamamatsu
Photonics, Hamamatsu City, Japan). Both conventional and machine-learning-based digital-
image analysis were performed, using Fiji software. Fiji is an image processing package
based on ImageJ, that contains scientific image analysis functions. Fiji is an open-source
project hosted on GitHub (https://github.com/fiji) (accessed on 4 March 2021) maintained
by the Eliceiri/LOCI group at the University of Wisconsin-Madison and the Jug and
Tomancak labs at the MPI-CBG in Dresden (https://fiji.sc/) (accessed on 4 March 2021).
For conventional analysis, the image processing was carried out on the RGB stack and
the positive/negative pixel identification made use of the threshold function. This RGB
method is the gold standard method and depends on the pathologist direct supervision to
define the positive and negative areas (pixels). Percentage quantification was calculated in
excel, using the following formula:

Percentage of positive cells = Area of positive pixels ÷ by the total area (i.e., positive +
negative pixels) × 100.

The machine-learning-based image analysis quantified the marker based on the
Waikato Environment for Knowledge Analysis (Weka), developed at the University of
Waikato, New Zealand, version 3.2.24. The Weka can be downloaded from GitHub
(https://github.com/fiji/Trainable_Segmentation) (accessed on 4 March 2021). The raw
immunohistochemical image was loaded into the analysis software and directly analyzed
without type change. For the training input, three types of pixels were selected: Class 1
(positive staining, DAB), Class 2 (negative areas) and Class 3 (absence of cellularity).
Around 30 different areas for each color class in 6 characteristic cases were trained to
set up the classifier properties, which was later used to create a result. Then, the same
classifier was automatically applied to the rest of the cases. Of note, in 13 cases of PD-L1
staining the classifier made a result that was discordant with the conventional RGB-based
method and the ordinal evaluation by the pathologist (Joaquim Carreras). These 13 cases
were re-evaluated, using a new trained classifier that was more sensitive for a lower and
diffuse expression of the PD-L1 marker. The segmentation settings included as training
features the Gaussian blur, Hessian, membrane projections, Sobel filter and difference
of Gaussians. The membrane thickness was set at value 1, membrane patch size at 19,
minimum sigma at 1.0 and maximum sigma at 16.0. The training of the classifier included
fast random forest. The classifying of the whole image used all available CPU threads.
Classifying a characteristic whole image datum took from 80,113 to 89,663 milliseconds.
Finally, the segmentation of the whole image was performed, and each class area was inked
with a different color and quantified.

3. Results
3.1. Artificial Neural Network Analysis of Gene Expression Data

The core of the analysis comprises 28 artificial-neural-network-based analyses (14 MLP
and 14 RBF) that were run independently (Figure 1). The aim was to identify which gene-
probes among the 54,613 input probes had a higher importance for prediction of the
14 target variables. The target variables included the survival outcome (dead or alive)
but also other relevant clinicopathological variables such as the IPI and cell-of-origin as
germinal centre B-cell (GCB) vs. activated B-cell–like (ABC) that also are relevant for the
prognosis of the DLBCL patients. The genes above 70% of normalized importance for

https://github.com/fiji
https://fiji.sc/
https://github.com/fiji/Trainable_Segmentation
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each variable were selected and pooled with the top 1% averaged normalized important as
shown in the Figure 1. After deleting the duplicates, the resulting set comprised 1202 gene-
probes, which equals to a 45 times reduction.

The results are shown in the Tables 3–5 and Figure 2. The two artificial neural network
methodologies of MLP and RBF used distinct activation and error functions. Both meth-
ods had comparable overall performances, with similar training set percentages of cases
(≈70% of the total series), testing set cases of percentages (≈30%), percentages of incorrect
predictions in the training and testing sets (≈30%), and overall percentages of correct
classifications in the training and testing sets (≈70%). Nevertheless, they differed in the
number of units in the hidden layers (nine in MLP and six in RBF), in the training time
(≈7 min for MLP and ≈114 min for RBF) and in the ROC area under the curve (0.7 in MLP
and 0.6 in RBF). Of note, the classification model’s performance differed according the
target variable. For instance, in MLP, the artificial neural network ability to predict the
binary target variable was higher in the variables “Extranodal disease” (Area under the
curve of 0.88), “Alive < 1.5 years vs. Alive => 7 years” (AUC of 0.84), “cell of origin” (0.80),
“Outcome Dead CHOP-like only” (0.76), “LDH ratio >3” (0.75), “ECOG ≥ 2” (0.73) and
“Outcome Dead” (0.70).
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Table 3. Multilayer Perceptron (MLP) artificial neural network analysis for the prediction of DLBCL prognosis.

Multilayer
Perception

Dependent
Variable Outcome Dead

Outcome Dead
RCHOP-Like

Only

Outcome Dead
CHOP-Like

Only

Cell-of-Origin
Activated

B-Cell-Like
Age > 60 LDH Ratio ≥ 1 LDH Ratio > 3 ECOG ≥ 2 Stage III/IV Extranodal

Sites > 1 Sex Male NCCN IPI–like
HI+H

Dead < 1.5 vs.
Alive => 7 y. Multivariate

Case processing
summary

Training 283 161 131 252 279 253 239 264 295 260 268 222 104 187
Training

Percentage 68.40 69.10 72.40 72.00 67.40 72.10 68.10 67.90 72.70 67.90 67.70 69.20 67.10 69.00

Testing 131 72 50 98 135 98 112 125 111 123 128 99 51 84
Testing

Percentage 31.60 30.90 27.60 28.00 32.60 27.90 31.90 32.10 27.30 32.10 32.30 30.80 32.90 31.00

Valid 414 233 181 350 414 351 351 389 406 383 396 321 155 271
Excluded 6 0 0 0 6 69 69 31 14 37 24 99 265 149

Total 420 233 181 350 420 420 420 420 420 420 420 420 420 420

Network
information

Number of
Units 54,613 54,613 54,613 54,613 54,613 54,613 54,613 54,613 54,613 54,613 54,613 54,613 54,613 54,613

Rescaling
Method of
Covariates

Standardized

Hidden layer

Number of
Hidden Layers 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Number of
Units in Hidden

Layer
6 6 9 15 5 9 15 9 8 8 8 8 10 7

Activation
Function Hyperbolic tangent

Output layer

Dependent
variable 1 1 1 1 1 1 1 1 1 1 1 1 1 8

Number of
Units 2 2 2 2 2 2 2 2 2 2 2 2 2 16

Activation
Function Softmax

Error Function Cross-entropy

Model
summary
training

Cross-Entropy
Error 174.16 85.80 79.90 140.50 178.40 163.90 74.50 132.80 193.90 47.50 186.20 136.50 46.49 840.80

Percent of
Incorrect

Predictions
33.90 24.80 33.60 27.80 38.40 36.80 10.50 24.60 39.30 6.50 45.40 33.80 19.20 30.20

Stopping Rule
Used * 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Time in Minutes 9.12 4.92 4.60 7.10 8.20 8.02 6.80 7.92 9.35 7.63 9.33 7.32 2.98 7.83

Model
summary

testing

Cross-Entropy
Error 77.39 36.10 25.30 49.80 87.30 63.00 22.70 61.50 69.60 27.60 80.60 59.10 18.80 397.90

Percent of
Incorrect

Predictions
32.10 26.40 26.00 25.50 39.30 35.70 6.30 23.20 34.20 8.90 35.20 30.30 19.60 32.90

Classification
Training

Overall Percent 66.10 75.20 66.40 72.20 61.60 63.20 89.50 75.40 60.70 93.50 54.50 66.20 80.80 69.80

Testing Overall
Percent 67.90 73.60 74.00 74.50 60.70 64.30 93.80 76.80 65.80 91.10 64.80 69.70 80.40 67.10

Area under the
curve

Alive 0.70 0.69 0.76 0.80 0.68 0.67 0.75 0.73 0.66 0.88 0.60 0.68 0.84 0.66
Dead 0.70 0.69 0.76 0.80 0.68 0.67 0.75 0.73 0.66 0.88 0.60 0.68 0.84 0.66

RCHOP, rituximab, cyclophosphamide, doxorubicin hydrochloride, vincristine sulfate and prednisone; LDH, lactate dehydrogenase; IPI, International Prognostic Index; HI, high intermediate; H, high;
* consecutive with no decrease in error.
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Table 4. Radial Basis Function (RBF) artificial neural network analysis for the prediction of DLBCL prognosis.

Radial Basis
Function

Dependent
Variable Outcome Dead

Outcome Dead
RCHOP-Like

Only

Outcome Dead
CHOP-Like

Only

Cell-of-Origin
Activated

B-Cell-Like
Age > 60 LDH Ratio ≥ 1 LDH Ratio > 3 ECOG ≥ 2 Stage III/IV Extranodal

Sites > 1 Sex Male NCCN
IPI–Like HI+H

Dead < 1.5 vs.
Alive => 7 years Multivariate

Case processing
summary

Training 283 161 131 239 301 239 240 264 295 261 269 222 104 187
Training

Percentage 68.30 69.10 72.40 68.30 72.70 68.10 68.40 67.90 72.70 68.10 67.90 69.20 67.10 69.00

Testing 131 72 50 111 113 112 111 125 111 122 127 99 51 84
Testing

Percentage 31.60 30.90 27.60 31.70 27.30 31.90 31.60 32.10 27.30 31.90 32.10 30.80 32.90 31.00

Valid 414 233 181 350 414 351 351 389 406 383 396 321 155 271
Excluded 6 0 0 70 6 69 69 31 14 37 24 99 265 149

Total 420 233 181 420 420 420 420 420 420 420 420 420 420 420

Network
information

Number of
Units 54,613 54,613 54,613 54,613 54,613 54,613 54,613 54,613 54,613 54,613 54,613 54,613 54,613 54,613

Rescaling
Method of
Covariates

Standardized

Hidden layer

Number of
Hidden Layers 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Number of
Units in Hidden

Layer
10 2 3 10 2 10 9 3 2 10 2 8 8 8

Activation
Function Softmax

Output layer

Dependent
variable 1 1 1 1 1 1 1 1 1 1 1 1 1 8

Number of
Units 2 2 2 2 2 2 2 2 2 2 2 2 2 16

Activation
Function Identity

Error Function Sum of Squares

Model
summary
training

Cross Entropy
Error 57.50 31.20 31.30 47.60 74.20 55.90 23.70 48.40 73.30 15.50 66.60 49.40 16.60 293.60

Percent of
Incorrect

Predictions
33.60 26.70 41.20 27.60 46.20 39.70 11.30 24.20 46.10 7.70 46.10 34.70 23.10 31.10

Stopping Rule
Used * -

Time in Minutes 171.08 32.70 21.07 127.07 221.92 127.37 117.73 145.20 145.75 141.83 171.65 107.20 13.33 57.70

Model
summary

testing

Cross Entropy
Error 27.80 12.90 12.50 24.90 28.00 27.00 5.30 22.30 27.70 8.60 31.20 22.60 9.30 138.30

Percent of
Incorrect

Predictions
32.10 23.60 44.00 36.00 43.30 41.10 4.50 23.20 46.80 8.20 48.80 35.40 29.40 33.60

Classification
Training

Overall Percent 66.40 73.30 58.80 72.40 53.80 60.30 88.80 75.80 53.90 92.30 53.90 65.30 76.90 68.90

Testing Overall
Percent 67.90 76.40 56.00 64.00 56.60 58.90 95.00 76.80 53.20 91.80 51.20 64.60 70.60 66.40

Area under the
curve

Alive 0.71 0.58 0.54 0.75 0.54 0.62 0.59 0.52 0.49 0.83 0.52 0.58 0.75 0.64
Dead 0.71 0.58 0.54 0.75 0.54 0.62 0.59 0.52 0.49 0.83 0.52 0.58 0.75 0.64

RCHOP, rituximab, cyclophosphamide, doxorubicin hydrochloride, vincristine sulfate and prednisone; LDH, lactate dehydrogenase; IPI, International Prognostic Index; HI, high-intermediate; H, high.
* Consecutive with no decrease in error.
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Table 5. Comparison of Performance between MLP and RBF artificial neural networks for prediction of DLBCL prognosis.

Artificial Neural Network
Parameters

MLP RBF p-Value
(n = 14) (n = 14)

Training set number 228.4 ± 59.7 228.3 ± 60.9 0.995
Training set percentage 69.4% ± 2.0 69.2% ± 1.9 0.864
Testing set number 101.2 ± 28.2 101.4 ± 26.9 0.989
Testing set percentage 30.6% ± 2.0 30.7% ± 1.9 0.872
Valid number of cases 329.6 ± 86.7 329.6 ± 86.7 1
Number of gene-probes
(units) 54,613 54,613 1

Rescaling method for
covariates Standardized Standardized N/A

Hidden layer(s)
Number of hidden layers 1 1 N/A
Number of units in

hidden layer 8.8 ± 2.9 6.2 ± 3.6 0.048

Activation function Hyperbolic tangent Softmax N/A
Output layer

Dependent (target)
variable 1 (8 for multivariate) 1 (8 for multivariate) 1

Number of units 2 (16 for multivariate) 2 (16 for multivariate) 1
Activation function Softmax Identity N/A
Error function Cross-entropy Sum of Squares N/A

Model summary
Training

Cross-entropy error 177.2 ± 197.7 63.2 ± 69.1 0.058
Percent of incorrect

predictions 28.9% ± 11.0 31.4% ± 12.3 0.559

Training time (min) 7.2 ± 1.8 114.4 ± 61.9 7.5 × 10−7

Testing
Cross-entropy error 76.9 ± 95.2 28.5 ± 32.8 0.091
Percent of incorrect

predictions 26.8% ± 9.8 32.1% ± 13.5 0.245

Classification
Training sample, overall

percent correct 71.1% ± 11.0 68.6% ± 12.3 0.583

Testing sample, overall
percent correct 73.2% ± 9.8 67.8% ± 13.4 0.239

Area under the curve
(ROC) 0.7 ± 0.1 0.6 ± 0.1 0.007

After the +/- symbol, the standard deviation is shown.

The number of genes with a normalized importance >70% for each individual artificial
neural network analysis of MLP ranged from 1 to 132, with an average of 34 and a median
of 12. In case of RBF ranged from 3 to 84 with an average of 34 and a median of 24. Af-
ter integration with the top 1% of normalized importance set and once the duplicates were
deleted, the final set comprised 1202 gene-sets. In order to identify the most relevant ones
we performed a univariate Cox regression analysis and only the probes with significant
correlation for overall survival were selected (n = 448). The most relevant genes based on
their p-value and Hazard Risk are shown in Tables 6–8.
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Figure 2. Multilayer Perceptron (MLP) analysis: The artificial neural network analysis consisted of
applying of Multilayer Perceptron (MLP) and Radial Basis Function (RBF) artificial neural networks
on publicly available gene-expression data from DLBCL patients. For both MLP and RBF, the inputs
(covariates) were the 54,613 gene-probes, and the target variables (dependent variables) were the
overall survival outcome (dead vs. alive) and a series of clinicopathological variables, including the
cell of origin molecular classification, age, LDH, ECOG Performance Status, clinical stage, extranodal
disease and IPI. A total of 26 individual AI analyses were performed. The most relevant genes were
selected according to their normalized importance, following a strategy as described in Material and
Methods and in Table 3. This figure shows part of the results of the MLP analysis. AUC, area under
the curve.
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Table 6. Top 10 genes according to the p-value (set of 448 gene-probes).

Gene Probe B SE Wald df p-Value Hazard
Risk Lower Upper

ALG3 207396_s_at 0.74 0.134 30.257 1 3.8 × 10−8 2.095 1.61 2.727
UCK2 209825_s_at 0.589 0.11 28.454 1 9.6 × 10−8 1.803 1.452 2.238

ZMYND19 227477_at 0.687 0.13 27.96 1 1.2 × 10−7 1.988 1.541 2.564
ELFN1-

AS1 231443_at 0.551 0.107 26.369 1 2.8 × 10−7 1.735 1.406 2.141

PHTF2 1554780_a_at -0.55 0.108 25.968 1 3.5 × 10−7 0.577 0.467 0.713
EXOSC7 212627_s_at 0.546 0.11 24.453 1 7.6 × 10−7 1.726 1.39 2.144
BCAT2 203576_at 0.594 0.121 23.946 1 9.9 × 10−7 1.81 1.427 2.296
TBRG4 220789_s_at 0.645 0.133 23.646 1 1 × 10−6 1.906 1.47 2.471
THOC1 204064_at 0.906 0.186 23.676 1 1 × 10−6 2.476 1.718 3.566
KIF13B 202962_at 0.413 0.086 23.247 1 1 × 10−6 1.511 1.278 1.787

Table 7. Top 10 bad prognostic genes according to the Hazard Risk (set of 448 gene-probes).

Gene Probe B SE Wald df p-Value Hazard
Risk Lower Upper

THOC1 204064_at 0.906 0.186 23.676 1 1 × 10−6 2.476 1.718 3.566
TMX2 201175_at 0.878 0.184 22.698 1 2 × 10−6 2.407 1.677 3.455

HNRNPC 214737_x_at 0.748 0.202 13.762 1 2 × 10−4 2.113 1.423 3.138
ALG3 207396_s_at 0.74 0.134 30.257 1 3.8 × 10−8 2.095 1.61 2.727

NELFA 203112_s_at 0.719 0.153 22.04 1 3 × 10−6 2.052 1.52 2.77
PPP6R2 202791_s_at 0.695 0.158 19.292 1 1.1 × 10−6 2.003 1.469 2.73

ZMYND19 227477_at 0.687 0.13 27.96 1 1.2 × 10−7 1.988 1.541 2.564
TBRG4 220789_s_at 0.645 0.133 23.646 1 1 × 10−6 1.906 1.47 2.471
GLO1 200681_at 0.643 0.157 16.795 1 4 × 10−5 1.903 1.399 2.588

BORCS8 1553978_at 0.62 0.163 14.513 1 1 × 10−5 1.859 1.351 2.558

Table 8. Top 10 good prognostic genes according to the Hazard Risk (set of 448 gene-probes).

Gene Probe B SE Wald df p-Value Hazard
Risk Lower Upper

TTC3 208663_s_at −0.124 0.034 13.115 1 0.0002 0.884 0.826 0.945
YTHDC1 214814_at −0.134 0.043 9.514 1 0.002 0.875 0.803 0.952

B3GALNT1 223374_s_at −0.146 0.058 6.326 1 0.012 0.864 0.771 0.968
ZNF277 1555193_a_at −0.152 0.074 4.246 1 0.039 0.859 0.744 0.993
RAB39B 238695_s_at −0.154 0.063 5.87 1 0.015 0.857 0.757 0.971
ITPR1 211323_s_at −0.156 0.065 5.671 1 0.017 0.856 0.753 0.973
CLIC5 213317_at −0.157 0.066 5.745 1 0.017 0.854 0.751 0.972
SEL1L 202062_s_at −0.16 0.077 4.335 1 0.037 0.852 0.732 0.991
N/A 242693_at −0.167 0.069 5.962 1 0.015 0.846 0.74 0.968

MFSD6 219858_s_at −0.171 0.064 7.251 1 0.0071 0.843 0.744 0.955

In general, MLP was more “efficient” than RBF. In comparison to the RBF artificial
neural network, the MLP characterized by a significantly lower training time and better
areas under the curve. In addition, although not statistically significant, MLP also had a
lower percentage of incorrect predictions and higher overall percent correct.

The set of 448 genes was subjected to GSEA analysis in order to confirm the asso-
ciation to the prognosis outcome (dead vs. alive phenotype), using the same series of
cases (Figure 3). Within the core enrichment 233 genes were found. The top five genes
were DMBT1, OR14J1, OCRL, DEFA1 and ELFN1-AS1. Within the core enrichment an
important marker of the tumoral immune response with known potential relevance for the
pathogenesis of DLBCL was highlighted, the Programmed Cell Death 1 Ligand 1 (PD-L1,
CD274). Of note, PD-L1 can be targeted by immune checkpoint inhibitors. In the previous
univariate Cox regression analysis, PD-L1 was associated to a bad overall survival of the
patients, with a Hazard Risk of 1.178 (95%CI 1.023–1.356, p = 0.023). Outside the core
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enrichment, and towards the good prognosis phenotype we identified IKAROS. IKAROS
also belongs to the immune checkpoint pathway, with a Hazard Risk of 0.488 (95%CI:
0.376–0.633, p = 7.3 × 10−8). Due to the biological importance of both PD-L1 and IKAROS
for the pathogenesis of DLBCL, these two markers were selected for validation in an inde-
pendent series of DLBCL patients from Tokai University Hospital, the protein expression
was evaluated by immunohistochemistry and AI-based image segmentation and digital
quantification was performed.

Figure 3. Gene-set enrichment analysis on the set of 448 genes. The set of 448 genes was used
in a GSEA analysis, to confirm the association of this set to the overall survival outcome of the
patients (dead vs. alive phenotype). In the core enrichment associated to poor prognosis (dead),
the PD-L1 (CD274) gene was identified. In the side of good prognosis (alive), the gene IKAROS was
identified. Both markers that belong to the immune checkpoint pathway were further validated by
immunohistochemistry in an independent series of DLBCL from Tokai University Hospital.

The set of 448 genes was also analyzed by a functional network association analysis;
the results are shown in the Figure 4.

In order to highlight the most relevant markers and to reduce the number of genes
within the set of 448, a second round of artificial neural network analysis was performed,
including MLP and RBF, as shown in Figure 1. As a result, the set was reduced to 16 genes:
PAF1, USP28, SORT1, MAP7D3, FITM2, CENPO, PRCC, ALDH6A1, CSNK2A1, TOR1AIP1,
NUP98, UBE2H, UBXN7, SLC44A2, NR2C2AP and LETM1 (Table 9).

A multivariate Cox regression for overall survival analysis, using the backward
conditional, was applied to the set of 16 genes and the final step included only six genes
(Table 10). In Figure 5, the relevance of these six genes for the overall survival of the
patients is shown. A cutoff that stratified the patients according to the gene expression
of each marker (70% vs. 30% approximately). In Figure 6, the correlation with known
genes that are relevant for the pathogenesis of DLBCL is shown. The genes BCL2 and MYC
are relevant for the pathogenesis of the tumoral B-lymphocytes of DLBCL (anti-apoptosis
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and cell cycle), CD163 is a marker of M2-like tumor associates macrophages (TAMs) and
TNFAIP8 is an apoptosis inhibitor expressed by the B-lymphocytes of DLBCL as well as for
the TAMs. The biological functions of the set of 16 genes is shown in the Table 11.

Prognostic modeling for overall survival outcome (dead vs. alive) was also applied
to the set of 16 genes, and the tests with an overall accuracy above 70% were selected
(Figures 7–9): classification and regression tree (C&R tree) (overall accuracy of 74.39%),
C5 decision tree (72.46) and Bayesian Network (72.38).

Figure 4. Functional network association analysis on the set of 448 genes. In order to analyze the
set of 448 genes according to the biological processes, molecular function, cellular component and
pathways, a network analysis was made. The network was characterized by 390 nodes, 791 edges,
an average node degree of 4.06, average local clustering coefficient of 0.376 and a protein-protein
interaction (PPI) enrichment p-value of 1 × 10−16. In general, the set belonged to the Gene Ontology
(GO) nuclei acid metabolic process (GO: 0090304, False Discovery Rate (FDR) = 0.00012). Of note,
within the general network, five clusters could be identified.
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Table 9. Set of 16 prognostic genes.

Gene Probe B SE Wald df p-Value Hazard
Risk Lower Upper

PAF1 202093_s_at 0.237 0.118 4.01 1 0.045 1.267 1.005 1.597
USP28 1552678_a_at 0.422 0.133 10.083 1 0.0015 1.526 1.175 1.98
SORT1 212807_s_at 0.177 0.081 4.758 1 0.03 1.194 1.018 1.401

MAP7D3 219626_at 0.376 0.135 7.79 1 0.005 1.456 1.118 1.896
FITM2 226805_at 0.302 0.148 4.162 1 0.04 1.352 1.012 1.807

CENPO 226118_at 0.324 0.108 8.946 1 0.003 1.383 1.118 1.71
PRCC 208938_at 0.229 0.117 3.856 1 0.05 1.258 1 1.581

ALDH6A1 221588_x_at 0.515 0.158 10.57 1 0.0012 1.673 1.227 2.282
CSNK2A1 212075_s_at 0.418 0.134 9.715 1 0.0018 1.52 1.168 1.977
TOR1AIP1 212409_s_at 0.384 0.162 5.607 1 0.018 1.468 1.068 2.017

NUP98 203194_s_at 0.339 0.131 6.718 1 0.009 1.404 1.086 1.814
UBE2H 221962_s_at -0.415 0.121 11.699 1 0.0006 0.66 0.521 0.838
UBXN7 217100_s_at 0.269 0.108 6.187 1 0.013 1.309 1.059 1.618

SLC44A2 224609_at 0.251 0.107 5.503 1 0.019 1.286 1.042 1.586
NR2C2AP 226839_at 0.355 0.149 5.687 1 0.017 1.427 1.065 1.911

LETM1 222006_at 0.282 0.137 4.275 1 0.038 1.326 1.015 1.733

Table 10. Set of six prognostic genes.

Gene Probe B SE Wald df p-Value Hazard
Risk Lower Upper

USP28 1552678_a_at 0.44309 0.155462 8.123335 1 0.004 1.558 1.148 2.112
SORT1 212807_s_at 0.196301 0.082305 5.688408 1 0.017 1.217 1.036 1.430

ALDH6A1 221588_x_at 0.403888 0.167332 5.825904 1 0.016 1.498 1.079 2.079
CSNK2A1 212075_s_at 0.304248 0.152804 3.964474 1 0.047 1.356 1.005 1.829
TOR1AIP1 212409_s_at 0.313668 0.169528 3.423401 1 0.06 1.368 0.982 1.908

UBE2H 221962_s_at −0.63261 0.113921 30.83679 1 2.8 × 10−8 0.531 0.425 0.664

Multivariate Cox regression for overall survival analysis (backward conditional).

3.2. Machine-Learning-Based Quantification of the Immunohistochemical Expression and
Correlation with the Clinicopathological Characteristics of the Patients

The results of this section are shown in Figures 10 and 11 and Tables 12 and 13.
Two markers were selected from the gene expression analysis for validation in an

independent lymphoma series of DLBCL from Tokai University Hospital. PD-L1 and
IKAROS were immuno-stained. After image digitization, the protein expression was
quantified by using a machine-learning-trainable segmentation method.

The protein expression of PD-L1 ranged from 0.01% to 92.5%, with a median of
16.9% and a mean of 25.0% ± 24.0 STD. The PD-L1 staining was also quantified by using
a conventional RBG approach. Both quantifications had a good correlation (Pearson
Correlation 0.853, p = 4.6 × 10−33) (Figure 11). The PD-L1 values from the AI Weka
segmentation were ranked and the most significant cutoff point for overall survival was
calculated (31%). The patients with a high PD-L1 expression had an 86% more risk of dying
than the patients with low expression (Hazard Risk = 1.86, 95%CI 1.05–3.31). The five-years
overall survival of the patients, high vs. low PD-L1, was 40% (95%CI 58–23%) vs. 67%
(95%CI 77–56%) (p = 0.031), respectively. PD-L1 expression was also correlated with several
clinicopathological characteristics. High PD-L1 expression correlated with a non-GCB
phenotype, Epstein–Barr virus infection (EBER+), high RGS1 expression, high sIL2RA,
clinical stage III/IV, presence of B symptoms and high to high-intermediate IPI. High
PD-L1 also associated to a worse progression free survival (p = 0.054, “trend of association”)
(Table 12; Figures 10 and 11)



AI 2021, 2 123

Figure 5. Univariate overall survival analysis of the set of six genes. For each of the six genes, a cutoff was searched to
stratify the patients into high and low expression. Then, the overall survival for each marker was analyzed, using the
Kaplan–Meier with Log rank test.
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Figure 6. Correlation with known pathogenic biomarkers of DLBCL. The clinical relevance for overall survival of known
pathogenic biomarkers, including BCL2, MYC, CD163 and TNFAIP8, was tested in this series. After that, an unsupervised
hierarchical clustering was performed with the set of six genes (USP28, SORT1, ALDH6A1, CSNK2A1, TOR1AIP1 and
UBE2H), PD-L1 (CD204), IKAROS, BCL2, MYC, CD163 and TNFAIP8. The dendrogram for the rows showed how TNFAIP8,
ALDH6A1, PD-L1 and USP2B clustered in the same group. In addition, CSNK2A1 and MYC were also close.

Table 11. Biological function of the set of 16 prognostic genes.

Gene Function

PAF1 Positive regulation of cell cycle G1/S phase transition
USP28 DNA damage response checkpoint and MYC proto-oncogene stability
SORT1 Endocytosis

MAP7D3 Microtubule cytoskeleton organization
FITM2 Cytoskeleton organization and lipid and energy homeostasis

CENPO Mitotic progression and chromosome segregation
PRCC Regulation of cell cycle progression

ALDH6A1 Pyrimidine metabolism, RNA binding
CSNK2A1 Cell cycle, apoptosis process
TOR1AIP1 Regulation of nuclear membrane integrity, protein localization to nucleus

NUP98 Role in the nuclear pore complex (NPC) assembly and/or maintenance
UBE2H ATP binding, ubiquitin-protein transferase activity
UBXN7 Ubiquitin binding

SLC44A2 Positive regulation of I-kappaB kinase/NF-kappaB signaling
NR2C2AP Transcription initiation from RNA polymerase II promoter

LETM1 Regulation of concentration of calcium ion.
Based on data provided by UniProt database (https://www.uniprot.org/) (accessed on 4 March 2021).

https://www.uniprot.org/
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Figure 7. Classification and regression tree (C&R tree): Prognostic modeling was performed, using the
set of 16 genes, as shown in Figure 1, and 12 different types of machine-learning analyses were tested.
Then, the ones with >70% of overall accuracy were selected. This figure shows the result of the C&R
tree. Decision list models identify subgroups or segments that show a higher or lower likelihood of a
binary (yes or no) outcome relative to the overall sample. C&R tree node generates a decision tree
that allows you to predict or classify future observations. The method uses recursive partitioning
to split the training records into segments by minimizing the impurity at each step. Dead outcome,
red color (number 1). Alive outcome, blue color (number 0).
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Figure 8. C5 decision tree: The set of 16 genes was also tested, using C5 decision tree. This result had
an overall accuracy above 70%. The C5.0 node builds either a decision tree or a rule set. The model
works by splitting the sample based on the field that provides the maximum information gain at
each level. The target field must be categorical (in our case, the overall survival outcome as dead vs.
alive). Multiple splits into more than two subgroups are allowed. Dead outcome, red color (number
1). Alive outcome, blue color (number 0).
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Figure 9. Bayesian Network: The set of 16 genes was also tested, using a Bayesian Network.
The result had an overall accuracy above 70%. A Bayesian Network is a graphical model that displays
variables (nodes) in a dataset and the probabilistic, or conditional, independencies between them.
Causal relationships between the several variables may be represented by a Bayesian Network;
however, the links (arcs) between the nodes do not necessarily represent a direct cause and effect.

Figure 10. Machine-learning-based digital-image analysis of immunohistochemical expression of
PD-L1 and IKAROS and their correlation with the survival of the patients. The markers of PD-L1
and IKAROS were identified in the artificial neural network analysis of gene-expression data as bad
prognosis and good prognosis markers, respectively. The immunohistochemical expression was
tested in an independent DLBCL series from Tokai University. For the digital-image quantification,
an AI-based segmentation method was used. Correlation with the survival of the patients confirmed
the AI results.



AI 2021, 2 128

Figure 11. PD-L1 (CD274) marker validation, using digital image. Digital image quantification of PD-L1. PD-L1 was
analyzed, using a conventional RGB-based analysis, as well as with a machine-learning trainable segmentation method.
Good correlation was found between both methods.

Table 12. Correlation between PD-L1 and the clinicopathological features of the patients in the validation series (Tokai cases).

Predictors for High PD-L1 p-Value Odds Ratio
95% CI for OR

Lower Upper

Sex Male 0.211 1.699 0.741 3.898
Age > 60 0.994 1.004 0.415 2.429
Location

Nodal (+spleen)
(Reference) - - - -

Extranodal
Waldeyer’s ring 0.999 0 0 -
Gastrointestinal 0.756 1.242 0.317 4.875
Other extranodal 0.487 0.71 0.27 1.864

LDH High (>219) 0.115 2.037 0.841 4.933
Seric IL2RA high (>530) 0.016 12.453 1.598 97.065
ECOG Performance Status ≥ 2 0.207 2.111 0.661 6.741
Clinical stage III or IV 0.006 3.585 1.452 8.851
Extranodal disease site > 1 0.741 0.825 0.263 2.588
B symptoms 0.004 4.333 1.618 11.606
IPI HI+H 0.041 2.579 1.037 6.411
Non-GCB Subtype (Hans’s
algorithm) 0.014 3.757 1.307 10.794

Epstein–Barr virus, EBER+ 0.005 4.931 1.620 15.005
High RGS1 protein expression 0.015 3.003 1.241 7.264
Absence of clinical response to
treatment 0.078 2.284 0.912 5.717

Binary logistic regression setup: dependent variable (PD-L1) and predictors (the clinicopathological features).

The protein expression of IKAROS ranged from 0.53% to 44.1%, with a median of 18.9%
and a mean of 18.0% ± 12.5. The cutoff for overall survival was 28.85%. High IKAROS
expression associated with favorable prognosis. The five-years overall survival, high vs.
low, 82% (95%CI 98–66%) vs. 55% (95%CI 67–43%), respectively (p = 0.034, Breslow).
The correlation with the clinicopathological characteristics of the patients showed that
high IKAROS associated with a GCB phenotype and with a positive clinical response
to treatment. High IKAROS also correlated with a favorable progression free survival
(p = 0.003) (Table 13, Figure 10).
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Finally, no correlation was found between the expression of PD-L1 and IKAROS.

Table 13. Correlation between IKAROS and the clinicopathological features of the patients in the validation series (Tokai
cases).

Predictors for High IKAROS p-Value Odds Ratio
95% CI for OR

Lower Upper

Sex Male 0.216 0.549 0.213 1.418
Age > 60 0.768 1.173 0.405 3.4
Location

Nodal (+spleen)
(Reference) - - - -

Extranodal
Waldeyer’s ring 0.317 0.33 0.038 2.887
Gastrointestinal 0.869 1.133 0.256 5.004
Other extranodal 0.483 0.661 0.208 2.101

LDH high (>219) 0.407 0.669 0.259 1.728
Seric IL2RA high (>530) 0.189 0.481 0.162 1.433
ECOG Performance Status ≥ 2 0.632 0.711 0.176 2.873
Clinical stage III or IV 0.955 0.972 0.368 2.566
Extranodal disease site >1 0.802 0.86 0.264 2.796
B symptoms 0.635 0.739 0.213 2.566
IPI HI+H 0.731 1.206 0.414 3.512
GCB subtype (Hans’s algorithm) 0.008 3.756 1.405 10.04
Epstein–Barr virus, EBER+ 0.276 0.418 0.087 2.008
High RGS1 protein expression 0.112 0.459 0.176 1.199
Clinical response to treatment 0.031 9.767 1.226 77.796

Binary logistic regression setup: dependent variable (PD-L1) and predictors (the clinicopathological features).

3.3. Integration of the Data with Known Prognostic Biomarkers for the Assessment of the Overall
Survival of the Patients with Diffuse Large B-Cell Lymphoma, Using Machine-Learning Analysis

Finally, the set of 16 genes, PD-L1 (CD274) and IKAROS were merged with biomarkers
known to play a role in the pathogenesis and prognosis of the patients with DLBCL,
including BCL2, MYC, CD163 and TNFAIP8 [13]. Machine learning analysis was applied
testing 11 models including C5, logistic regression, Bayesian Network, discriminant, LSVM,
random trees, tree-AS, CHAID, Quest, C&R tree and neural net. After analysis, the models
were ranked according to their overall accuracy (%) for prediction of the overall survival.
The best models were C5 (82.126%), CHAID (81.401%) and Bayesian Network (79.286%).
The result of the Bayesian Network and C5 decision tree are shown in Figures 12 and 13.

Figure 12. Final integrated Bayesian Network. The set of 16 genes, PD-L1 (CD274) and IKAROS
were merged with known biomarkers with prognostic relevance in diffuse large B-cell lymphoma
(DLBCL), including BCL2, MYC, CD163 and TNFAIP8. The resulting machine-learning analysis had
an overall accuracy for prediction of the overall survival of 79.3%.
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Figure 13. Final integrated C5.0 decision tree. The set of 16 genes, PD-L1 (CD274) and IKAROS
were merged with known biomarkers with prognostic relevance in diffuse large B-cell lymphoma
(DLBCL), including BCL2, MYC, CD163 and TNFAIP8. The resulting machine-learning analysis had
an overall accuracy for prediction of the overall survival of 82.1%. Dead outcome, red color (number
1). Alive outcome, blue color (number 0).
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4. Discussion

Diffuse large B-cell lymphoma is the most common subtype of non-Hodgkin lym-
phoma (NHL), accounting for approximately 25 percent of NHL cases. The diagnostic
category of DLBCL is morphologically, genetically and biologically heterogeneous [1–5].

The molecular genetics of DLBCL have focused on the study of the cell-of-origin,
which is based on the gene expression profiling (GEP). GEP is the gold standard for
determining the cell-of-origin but this technique requires the use of RNA and frozen
tissue. Therefore, alternative methods based on immunohistochemistry have been de-
veloped, such as the Hans classifier. The Hans classifier has a good correlation with the
GEP. This classifier is an algorithm based on three markers: CD10, BCL-6 and MUM-1
(IRF4) [1–5]. Nowadays it is possible to perform GEP from paraffin-embedded formalin-
fixed using the Lymph2Cx platform, which provides comparable results to the gold stan-
dard technique that is based on fresh frozen tissue [18]. In addition to the cell-of-origin
analysis, the GEP has also identified different DLBCL subgroups that have distinct genetic
profiles. These subtypes have been shown to influence the tumor biology and improve
the prediction value of the gene-expression-based survival analysis [19]. A correlation
between copy-number changes and GEP was performed and putative target genes were
identified, such as REL and XPO1 (2p14-p16); PDCD10 and TNFSF10 (3q); PPHLN1, SENP1
and MCRS1; (12q) and MADH2, MALT1 and BCL2 (18q) [19]. The gene expression has also
managed to characterize the tumoral immune microenvironment and has also enabled the
prediction of patients’ survival [20]. Recently, the gene expression analysis has also focused
on specific subtypes such as the IRF4-rearranged DLBCL [21].

In this study, we have used as a discovery set the well-recognized series of GEP of
DLBCL, the GSE10846 that is comprised of 414 cases. This series is relevant not only
because it is has a lot of cases but also because it has served to develop the current cell-of-
origin classification. In this research we have also used a validation set of 113 cases from
Tokai University Hospital and for the cell-of-origin classification we have used the Hans
algorithm. This algorithm is still valid in the modern rituximab-based therapy era [22].
In this research, we had the following aims: (1) to reanalyze the gene-expression data of
GSE10846, using artificial intelligence (AI), based on artificial neural networks, in order
to identify biomarkers; (2) to compare the efficiency between two techniques, the Multi-
layer Perceptron (MLP) and Radial Basis Function (RBF) networks, and to integrate the
results; and (3) to validate the AI results in another series, using immunohistochemistry, by
quantifying the protein expression by also using the AI-based Weka segmentation.

Artificial neural networks are the preferred tool for many predictive data-mining
applications because of their power, flexibility and ease of use. Predictive artificial neural
networks are particularly useful in applications where the underlying process is complex.
We used both the MLP and RBF procedures. Both are supervised learning techniques as
they map relationships implied by the data. Both use feedforward architectures, as the data
move in only one direction, from the input nodes through the hidden layer of nodes to the
output nodes. While MLP procedure can find more complex relationships, the RBF proce-
dure is generally faster [23]. In this research we found that the performance comparison
between MLP and RBF was similar in most of the parameters. Both methods managed to
reduce a list of 54,613 gene-probes to a final set of 24 and 33, respectively, which accounts
for more than a 99.9% reduction. Nevertheless, they differed in the activation and error
functions, the number of units in the hidden layer, the training time and in the areas under
the curve of the ROC analysis. In summary, we found that MLP has an overall better
performance with shorter training time and a better predictive power, that is better areas
under the curves. Therefore, MLP may be more appropriate for the analysis of this type of
data. Both techniques managed to identify prognostically relevant markers, most of them
not previously highlighted in the literature. Interestingly, a 30% of the identified genes
were common between both techniques. On the other hand, a 70% of the final sets had
different genes. All of them are potentially relevant and should be explored with more
detail in future research. In this research we used the gene-probes without collapsing as



AI 2021, 2 132

the start input for the artificial neural network analyses. Nevertheless, a more robust and
reproducible approach would include the dataset collapsing, which could include the max,
median, mean or sum of probes values.

From the final set of genes, we selected two biomarkers for validation by immuno-
histochemistry in another cohort from Tokai University. The two biomarkers are CD274
(PD-L1) for the set of bad prognosis; and IKZF4 (IKAROS) for the good prognosis set.

Programmed cell death 1 ligand 1 (PD-L1, CD274) plays a critical role in induction
and maintenance of the immune tolerance to self [24]. As a ligand for the inhibitory
receptor PDCD1/PD-1, modulates the activation threshold of T-cells and limits T-cell
effector response [24]. Through a yet unknown activating receptor, PD-L1 may costimulate
T-cell subsets that predominantly produce interleukin-10 (IL10) [25–27]. The PDCD1 (PD-
1)-mediated inhibitory pathway is exploited by tumors to attenuate antitumor immunity
and escape destruction by the immune system, thereby facilitating tumor survival [28,29].
The interaction with PD-1 inhibits cytotoxic T lymphocytes (CTLs) effector function [28].
The blockage of the PD-1-mediated pathway results in the reversal of the exhausted T-
cell phenotype and the normalization of the antitumor response, providing a rationale for
cancer immunotherapy [27,28]. Our data showed that a high expression of PD-L1 in DLBCL
is associated to an unfavorable overall survival and progression-free survival of the patients.
In addition, high PD-L1 levels also correlated with several unfavorable clinicopathological
features such as a non-GCB cell-of-origin subtype (Hans’s classifier), Epstein–Barr virus
positivity, high RGS1 expression and IPI high/high-intermediate. Of note, our findings are
in concordance with previous literature [29,30].

DNA-binding protein Ikaros (IKAROS, IKZF1) is a transcription regulator of hematopoi-
etic cell differentiation. IKAROS binds gamma-satellite DNA and plays a role in the de-
velopment of lymphocytes, B-cells and T-cells. IKAROS regulates transcription through
association with both HDAC-dependent and HDAC-independent complexes and in adult
erythroid cells increases normal apoptosis [27,31–33]. IKAROS has multiple functions in
hematological malignancies (leukemia), solid tumors (lung, ovarian and colorectal cancer)
and autoimmune diseases (systemic lupus erythematosus and Sjogren’s syndrome) [34].
In solid cancers, high IKAROS has been associated with poor prognosis [34]. In our series
of DLBCL, we have found that high IKAROS protein expression associated to a good
prognosis of the patients, with a favorable overall survival and progression-free survival.
In addition, high IKAROS also associated to a GCB cell of origin subtype and good clinical
response to treatment.

In conclusion, artificial neural network analysis can be a useful computational tool
to identify prognostic markers from gene-expression data and to quantify immunohisto-
chemical biomarkers in the tumor samples; thus, it provides a complete tool to identify and
validate diagnostic and prognostic disease-specific biomarkers. This study found that MLP
is slightly more “efficient” than RBF artificial neural network, and the AI methodology
identified two DLBCL prognostic biomarkers (PD-L1 and IKAROS) that were validated.
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