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Abstract: The optimal dispatch of hydropower plants consists of the challenge of taking advantage
of both available head and river flows. Despite the objective of delivering the maximum power
to the grid, some variables are uncertain, dynamic, non-linear, and non-parametric. Nevertheless,
some models may help hydropower generating players with computer science evolution, thus
maximizing the hydropower plants’ power production. Over the years, several studies have explored
Machine Learning (ML) techniques to optimize hydropower plants’ dispatch, being applied in the
pre-operation, real-time and post-operation phases. Hence, this work consists of a systematic review
to analyze how ML models are being used to optimize energy production from hydropower plants.
The analysis focused on criteria that interfere with energy generation forecasts, operating policies, and
performance evaluation. Our discussions aimed at ML techniques, schedule forecasts, river systems,
and ML applications for hydropower optimization. The results showed that ML techniques have been
more applied for river flow forecast and reservoir operation optimization. The long-term scheduling
horizon is the most common application in the analyzed studies. Therefore, supervised learning
was more applied as ML technique segment. Despite being a widely explored theme, new areas
present opportunities for disruptive research, such as real-time schedule forecast, run-of-river system
optimization and low-head hydropower plant operation.

Keywords: forecast; hydropower optimization; machine learning; optimal dispatch; power generation

1. Introduction

Hydropower generation has a 75% share of renewable sources in the world electrical
mix [1]. Therefore, optimizing hydropower generation is of utmost importance from an
economic and environmental point of view, which are issues of dominant significance in
today’s world. An optimized hydropower operation has many benefits, such as the better
use of water resources, increased renewable energy production, mitigating the growing
energy demand, reducing equipment losses, and extending equipment useful life. However,
hydropower optimization is not an easy task. To achieve a good result is fundamental
comprehensive monitoring and knowledge of all energy transformation processes in a
hydropower plant.

The hydropower generation forecast consists of estimating the power available to
the grid. This forecast consists of using hydrological and climatic data, and thus, it is
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fundamental to have accurate inflow prediction. This process considers the availability of
the primary source and the gross head, deducted from hydraulic losses in the water intake,
losses of efficiency of the turbine-generator set, internal consumption of auxiliary services,
and electrical losses to the grid.

A more accurate prediction allows a higher quality optimization process to determine
the better configuration and parameters for efficiently using water resources. The great
challenge of energy-efficient power generation is optimally taking advantage of the power
generation process variables. When the generating units are operating in the best efficiency
in this scenario, the optimized dispatch of generating units becomes an important tool,
which necessarily passes through adopting a performance criterion.

A hydropower plant’s operation can be broadly analyzed in a watercourse either
separately or in a cascade, having the system operation classified in run-of-river [2] or
storage reservoir [3]. The energy generation process is divided into three stages: pre-
operation, real-time, and post-operation. The pre-operation steps can be separated into
long-term, medium-term, short-term, and real-time scheduling [4].

The literature presents different approaches to optimize the hydropower plant. For ex-
ample, in terms of real-time operation, [5] presented a system for performance evaluation
and energy optimization of the hydropower plant’s real-time operation using data collected
from sensors and meters and calculated units variables, such as turbine outflows, heads,
losses, and efficiencies.

In another example, an optimization algorithm was proposed to determine energy
production and maximize a power plant’s economic value investment [6]. A method
proposed by [7] focuses on the most efficient operation of the turbine, aiming to maximize
pressure at the end of the penstock, consequently reducing the input flow and increasing
the overall hydropower plant efficiency.

Operation and maintenance in hydropower plants can be optimized with cost re-
duction when using advanced performance monitoring analysis [4]. On the other hand,
the significant challenge is collecting and analyzing data from all equipment and processes
within a plant efficiently to make full use of and take advantage of the information in
the data.

The application of Machine Learning (ML) techniques proved to be a suitable method-
ology to tackle these challenges. For example, operation optimization usually involves
complex models and multi-objective functions, especially the hydropower plants with
multiple-purpose reservoirs. ML is ideal for solving these complex issues, as different
techniques have been developed to find the global optimum faster and more likely. More-
over, the prediction variables’ uncertainty, a common problem that makes it harder to plan
the operation, can also be reduced with ML application which usually produces more
reliable estimations.

Therefore, the literature presents many ML applications in different areas of hy-
dropower operation. The operation of reservoirs is one of the most common applications of
ML in literature. For example, the authors applied ML to reduce the shortage index in two
reservoirs in Taiwan [8]. Run-of-river hydropower plants also present opportunities for
these techniques: [9] applied them to improve the weekly forecast accuracy of Sava River
low-flow in Slovenia.

On the other hand, there are applications regarding the operation of hydropower plants
as well. For example, in [10], three different regression techniques are used in a predictive
maintenance monitoring system. Moreover, ref. [11] presents a hydropower plant managing
system using neural networks over an extensive dataset from plant monitoring systems.

The last decade presented significant development regarding those data challenges.
New technologies and techniques have surfaced, improving data collection and better
analysis. In addition, the amount of data collected in hydropower operations increased
significantly, presenting even more opportunities for applying ML techniques in the sector.

Hence, this work’s primary goal is to perform a systematic review to study and analyze
the state-of-the-art ML techniques used to optimize energy production from hydropower
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plants. The analysis used criteria that interfere with energy generation forecasts, plant (or
units) operating policies, and plant (or units) performance evaluation.

The remaining sections of this paper are organized as follows. First, in Section 2, we
present the methodology applied to perform the review, our research questions, the inclu-
sion, exclusion, and quality criteria of works, and present the research string and databases
used for the research. Next, in Sections 3 and 4, we discuss the review process and our
findings on the results. Finally, in Section 5 we elaborate on our findings, and we discuss the
opportunities we envision for ML application in hydropower operation and optimization.

2. Research Methodology

Kitchenham and Charters [12] introduced the sequence for planning and preparing a
systematic review. Therefore, a systematic review fairly synthesizes works in some defined
research matter.

The methodology underlined the goal to recognize, assess, and discuss pertinent
attempts to respond to the research topics. Likewise, they expressed that an audit of the
writing should be finished and reasonable; otherwise, it has pretty much nothing scientific.
Systematic reviews might have some advantages, such as research with less biased results
through a well-defined methodology [13]. According to [12], there are three steps for the
systematic review development planning, conducting, and results from the analysis. We
developed the planning and conducting steps throughout the following two subsections
and the results and analysis in the Section 3. Moreover, this systematic review paper was
built according to the PRISMA guidelines [14].

2.1. Review Planning

The first step of a systematic review is its planning. It is crucial to identify the review’s
objectives to define what should be analyzed on the articles, and how and where to conduct
the research.

2.1.1. Research Questions

Defining the research questions is the first step for planning the review. These ques-
tions must be answered towards the conclusion while guiding all analyzing processes of
the articles. For this work, we built research questions to find the most significant number
of published studies and data that could bring answers related to ML techniques applied
for hydropower optimization. Moreover, the research questions we found suitable for this
paper are shown in Table 1.

Table 1. Research questions.

ID Research Question

RQ1 Which ML techniques are mostly used for power generation optimization?

RQ2 What is the planning forecast horizon: long-term schedule (LTS), short-term
schedule (STS), or real-time schedule (RTS)?

RQ3 What is the type of river system: run-of-river, storage reservoir, multiple reser-
voirs or operation in cascade?

RQ4 What is the main expected outcome of ML technique application?

2.1.2. Data Sources and Search Strategies

The second step of planning the review is selecting the databases used to search the
articles. We used two databases for research: Web of Science (WOS) platform, one of the
oldest platforms and provides access to multiple databases from different publishers [15];
and IEEE Xplore database platform, widely used in the engineering area [13]. Finally, it is
essential to mention that all articles researched were written in English, as it is the scientific
area’s standard language.
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2.2. Review Conduction

The review aims to identify the research itself and select primary studies. There-
fore, an extraction technique should be applied to the selected databases; a study quality
assessment and data synthesis are also necessary.

It is essential to highlight that availability of access defined the databases selected to
retrieve the articles. Through a national body, Brazilian universities have partnerships with
some publishers, such as IEEE Access and Elsevier. However, some search engines such as
Scopus, WOS, and even Google Scholar point to articles from publishers not affiliated with
our institution.

We use the databases with which the university has an agreement to search for articles.
With the search string presented below in the article, we used the search tools available on
the website referring to the database, such as IEEE Xplore, to add the search information.
According to the criteria established in the systematic review, the articles resulting from the
search were retrieved and then read and analyzed.

2.2.1. Search String

After choosing all databases, a specific search string is based on ML, deep learning,
and hydropower operation. Hence, the research string used was:

The abstract must contain at least one of the following expressions: ((Machine-learning)
OR (Decision Trees) OR (Neural Networks) OR (Gaussian Process regression) OR (Adaptive
Neural Based Fuzzy Inference System) OR (extreme learning machine) OR (Naive Bayes)
OR (Least Squares) OR (Logistic Regression) OR (Support Vector Machine) OR (Ensemble
Methods) OR (Clustering) OR (Machine Learning) OR (Learning) OR (Learn)) and in all the
paper must contain ((Hydropower) OR(Hydroelectric)) AND ((Operation) OR (Optimized
Operation) OR (Scheduling) OR (Real-time)).

2.2.2. Study Selection

Simply using the search string in the selected databases leads to a significant number
of results, and therefore study selection criteria are necessary. These criteria will define if
each study should be included in, or excluded from, the systematic review.

For this work, we created inclusion (IC), exclusion (EC) and quality (QC) criteria
presented in Tables 2–4, respectively.

Table 2. Inclusion criteria.

Criteria Description

IC1 River flow forecast
IC2 Performance valuation
IC3 Flow and pressure measurement uncertainty
IC4 Water resources management
IC5 Scheduling and Operation policies

Inclusion criteria sought main areas of application for hydropower optimization such
as runoff forecast, flow and pressure measurements uncertainty, scheduling and operation
policies, etc.

Due to a vast range of applications, we applied the exclusion criteria (13 in total)
to eliminate the works that are not directly correlated with hydropower plant operation
optimization, despite being the subject of studies in hydropower plants.
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Table 3. Exclusion criteria.

Criteria Description

EC1 Equipment condition and maintenance
EC2 Operation system control
EC3 Works avoided use of ML
EC4 Operation planning of electric system
EC5 Automatic Generation Control
EC6 Social/Environmental Impacts
EC7 Hybrid or off-grid systems
EC8 Engineering project and construction of power plants
EC9 Turbine and generator design

EC10 Equipment protection
EC11 Synchronization of generators / generator starts
EC12 Hydraulic transients
EC13 Economic analysis

Table 4. Quality criteria.

Criteria Description

QC1 Are methodologies applied adequately?
QC2 Is the impact factor of a journal over 0.3?
QC3 Does the article have any citations? (except for 2021)
QC4 Are works published later than 2010?
QC5 Is the publication a complete work?

Additionally, to further refine the articles’ selection, we define quality criteria. Re-
garding the non-numeric criteria: for QC1, we considered if the ML technique was applied
soundly with no glaring misconception and if the article was sufficiently sound as well.
And regarding QC5, we tried to include only articles that could be considered complete in
themselves, not being an isolated part of another work.

Finally, we performed this analysis to search for complete papers published in journals
with a relevant impact factor and cited by other authors at least once, except for those
published in 2021. Furthermore, only recent articles were accepted (2010–2021). An
association of these criteria was employed to determine when a specific work would be
included or excluded from the systematic review [16].

2.2.3. Document Selection

We performed the research on the mentioned platforms on 1 October 2021, gathering
386 works distributed in 58 on IEEE Xplore and 328 on WOS databases. Regarding the
articles on the WOS platform, from the total 328 works found, only 271 were available
on the CAPES portal, 57 works were excluded because we did not have access to the
complete works. (Capes–Brazilian institution—Coordination for the Improvement of
Higher Education Personnel).

The total number of articles from both databases used to start the systematic review
was 329. In addition, there were 34 articles repeated on both platforms, remaining 295 differ-
ent publications. Finally, after reading the abstract and other necessary sections, inclusion,
exclusion, and quality criteria were applied, which excluded more than 222 works, result-
ing in 73 documents for a complete analysis. Figure 1 illustrates the number of articles
separated during the described process. The complete PRISMA flow diagram refer to
supplementary material.
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Figure 1. Articles filtering during the conducting stage.

2.2.4. Data Synthesis

After analyzing the articles applying all criteria, the remaining articles were classi-
fied according to characteristics such as year of publication, operation area, river system,
and expected forecast. Finally, the results were tabulated in Table 5.

Table 5. Articles analysis.

ID Author Year Operation Area River System Technique Main Purpose

1 [17] 2020 LTS Multiple Reservoirs Regression River Flow Forecast

2 [18] 2020 LTS Reservoirs in Cascade Value-iteration based Cascaded Reservoir Operation Optimization

3 [19] 2019 RTS Single Reservoir Classification Reservoir Operation Optimization

4 [20] 2020 LTS Multiple Reservoirs Classification River Flow Forecast

5 [21] 2017 RTS Single Reservoir Classification Reservoir Operation Optimization

6 [22] 2020 STS Reservoirs in Cascade Regression Cascaded Reservoir Operation Optimization

7 [23] 2020 STS Multiple Reservoirs Regression River Flow Forecast

8 [24] 2020 LTS Multiple Reservoirs Value-iteration based Hydropower Plant Operation Optimization

9 [25] 2019 LTS Single Reservoir Regression Reservoir Operation Optimization

10 [26] 2018 LTS Single Reservoir Regression Reservoir Operation Optimization

11 [27] 2016 LTS Multiple Reservoirs Regression/Classification Multi Reservoir Operation Optimization

12 [28] 2018 LTS Multiple Reservoirs Policy-iteration based Reservoir Operation Optimization

13 [29] 2019 LTS Single Reservoir Regression Reservoir Operation Optimization

14 [30] 2016 LTS Multiple Reservoirs Value-iteration based Reservoir Operation Optimization

15 [31] 2020 LTS Multiple Reservoirs Regression Multi Reservoir Operation Optimization

16 [32] 2016 LTS Multiple Reservoirs Density estimation Multi Reservoir Operation Optimization

17 [33] 2020 LTS Reservoirs in Cascade Density estimation Cascaded Reservoir Operation Optimization

18 [34] 2018 LTS Multiple Reservoirs Density estimation Multi Reservoir Operation Optimization

19 [35] 2020 LTS Reservoirs in Cascade Value-iteration based Cascaded Reservoir Operation Optimization

20 [36] 2014 STS Run-of-river Regression Hydropower Plant Operation Optimization
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Table 5. Cont.

ID Author Year Operation Area River System Technique Main Purpose

21 [37] 2020 LTS Single Reservoir Policy-iteration based Reservoir Operation Optimization

22 [38] 2018 LTS;STS;RTS Single Reservoir Regression Reservoir Operation Optimization

23 [39] 2017 LTS Multiple Reservoirs Density estimation Cascaded Reservoir Operation Optimization

24 [40] 2019 LTS Multiple Reservoirs Density estimation/Clustering Reservoir Operation Optimization

25 [41] 2020 LTS Single Reservoir Clustering Multi Reservoir Operation Optimization

26 [42] 2020 LTS Multiple Reservoirs Regression River Flow Forecast

27 [43] 2020 STS;RTS Turbine Clustering Turbine Efficiency

28 [44] 2020 LTS Single Reservoir Regression River Flow Forecast

29 [45] 2017 LTS Single Reservoir Clustering/Regression River Flow Forecast; Sediment Forecast

30 [46] 2016 LTS Reservoirs in Cascade Density estimation Cascaded Reservoir Operation Optimization

31 [47] 2019 STS Single Reservoir Classification Reservoir Operation Optimization

32 [48] 2020 LTS;STS Multiple Reservoirs Regression River Flow Forecast

33 [49] 2011 LTS Single Reservoir Classification Hydropower Plant Operation Optimization

34 [50] 2018 LTS Single Reservoir Regression River Flow Forecast

35 [51] 2019 LTS Multiple Reservoirs Regression Hydropower Plant Operation Optimization

36 [52] 2016 LTS Single Reservoir Policy-iteration based Reservoir Operation Optimization

37 [53] 2019 RTS Single Reservoir Regression River Flow Forecast

38 [54] 2021 LTS Single Reservoir Density estimation River Flow Forecast

39 [55] 2021 LTS;STS Single Reservoir Regression Reservoir Operation Optimization

40 [56] 2019 LTS Single Reservoir Regression Reservoir Operation Optimization

41 [57] 2020 LTS Multiple Reservoirs Density estimation Multi Reservoir Operation Optimization

42 [58] 2019 STS single Reservoir Regression River Flow forecast

43 [59] 2020 LTS Single Reservoir Regression River Flow forecast

44 [60] 2016 RTS Single Reservoir Regression River Flow Forecast;Hydropower Plant Operation Optimization

45 [61] 2017 STS Single Reservoir Regression Hydropower Plant Operation Optimization

46 [62] 2020 LTS Multiple Reservoirs Regression/Density Estimation Multi Reservoir Operation Optimization

47 [63] 2015 LTS Single Reservoir Regression/Policy-iteration Based Reservoir Operation Optimization

48 [64] 2020 LTS Single Reservoir Classification River Flow Forecast;Hydropower Plant Operation Optimization

49 [65] 2019 STS SIngle reservoir Classification Hydropower Plant Operation Optimization

50 [66] 2021 RTS Single reservoir Regression Hydropower Plant Operation Optimization

51 [67] 2021 STS Reservoirs in Cascade Clustering/Regression/Classification Cascaded Reservoir Operation Optimization

52 [68] 2015 STS Reservoirs in Cascade Density estimation Cascaded Reservoir Operation Optimization

53 [69] 2018 LTS Multiple Reservoirs Regression Multi Reservoir Operation Optimization

54 [70] 2018 STS Reservoirs in Cascade Regression Cascaded Reservoir Operation Optimization

55 [71] 2019 LTS Single Reservoir Regression River Flow forecast

56 [72] 2018 RTS Single Reservoir Regression Reservoir Operation Optimization

57 [73] 2014 LTS Multiple Reservoirs Dimensionality Reduction Multi Reservoir Operation Optimization

58 [74] 2021 LTS Single reservoir Clustering/Regression River Flow forecast

59 [75] 2015 RTS Single Reservoir Regression River Flow forecast

60 [76] 2021 LTS Reservoirs in Cascade Clustering Cascaded Reservoir Operation Optimization

61 [77] 2017 RTS Single Reservoir Regression RIver Flow forecast

62 [78] 2021 LTS Reservoirs in Cascade Clustering Cascaded Reservoir Operation Optimization

63 [79] 2011 RTS Multiple Reservoirs Regression Multi Reservoir Operation Optimization

64 [80] 2015 STS Single Reservoir Classification Reservoir Operation Optimization

65 [81] 2015 LTS Multiple Reservoirs Regression Multi Reservoir Operation Optimization

66 [82] 2010 LTS Single Reservoir Clustering/Regression Hydropower Plant Operation Optimization

67 [83] 2019 LTS;STS Single Reservoir Regression Hydropower Plant Operation Optimization

68 [84] 2018 LTS;STS Reservoirs in Cascade Regression Cascaded Reservoir Operation Optimization

69 [85] 2016 STS;RTS Reservoirs in Cascade Regression Cascaded Reservoir Operation Optimization

70 [86] 2019 LTS Single Reservoir Regression River Flow forecast

71 [87] 2015 STS Reservoirs in Cascade Regression Cascaded Reservoir Operation Optimization

72 [88] 2016 RTS Run-of-river Regression River Flow forecast

73 [89] 2020 LTS Run-of-river Clustering River Flow forecast



AI 2022, 3 85

Finally, after finishing the review planning and conduction, we analyzed the resulting
articles thoroughly. The results and our discussions will be presented in the next section of
this paper.

3. Result Analysis

This section presents the outcomes of all analyzed works, and answers to the four
research questions are given to understand better what is being applied to hydropower
optimization. It is essential to point out that the articles considered and discussed in this
section meet all inclusion, exclusion, and quality criteria.

First of all, considering the quality criteria for the period of publication (QC4), from
2011 to 2021, Figure 2 shows the distribution of years’ frequency. It is noticed that among
73 chosen papers, 68 works (93%) have been published in the last six years. The recent
articles’ high percentage shows us that ML applied to hydropower operation is an actual
topic target of many researchers, proving that this systematic review theme is appropriate.
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Figure 2. Year of publication.

In Table 6, articles were stratified by year of publication and by the database where
the article was published.

Table 6. Articles per year and database.

Year Total IEEE WOS

2010 1 – [82]
2011 2 [49] [79]
2012 0 – –
2013 0 – –
2014 2 – [36,73]
2015 6 [87] [63,68,75,80,81]
2016 8 [85,88] [27,30,32,46,52,60]
2017 5 – [21,39,45,61,77]
2018 9 – [26,28,34,38,50,69,70,72,84]
2019 13 [25,86] [19,29,40,47,51,53,56,58,65,71,83]
2020 20 [22–24,48] [17,18,20,31,33,35,37,41–44],

[57,59,62,64,89]
2021 7 – [54,55,66,67,74,76,78]
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Regarding RQ1—Which ML techniques are mostly used for power generation op-
timization?—the answers brought diverse sorts of one application for ML techniques.
Nevertheless, some techniques were more applied, such as artificial neural networks
(ANN), extreme machine learning, support vector machine, particle swarm optimization,
variational mode decomposition, Bayesian techniques, Gaussian regression, and genetic
algorithms.

ANN were present in 19 papers, being the most applied ML technique. However,
its application has a wide variability, demonstrating a summary of possible strategies for
hydropower optimization.

For example, the papers [27,31,69,81] apply ANN to multi-reservoir operation op-
timization. Ref. [27] uses ML to overcome the problem in deriving complex models as
occurs in multipurpose multi-reservoir systems. Therefore, ANN is applied to derive the
optimized reservoir release, solving a multi-objective function: minimize water demand
deficits and reservoir spills as convex functions while maximizing hydropower energy
production as a nonconvex function. On the other hand, ref. [31] investigates the impacts
of average annual inflow volume (AAIV) variations on the long-term operation of a multi-
hydropower-reservoir system. ANN is used to derive the adaptive operation rule with
nonlinear relationships between decision variables (inflow volume at the current period
and water storage volume at the beginning of the current period) and decision-making
factors (water storage volume at the end of the current period).

In work [69], the authors state that Bellman stochastic dynamic programming is
the most famous approach to multi-reservoir operation optimization. However, in these
applications, the computational effort increases exponentially with the number of reservoirs.
Therefore, in some cases, this approach becomes intractable to solve. The author proposes
an implicit stochastic optimization for this scenario where ANNs derive the Nile River
basin’s release rules. Thus, an open-loop method approximates the release rules to the
optimal policy.

Many papers are focused mainly on providing accurate predictions of river flow/inflow
parameters focus on its importance to hydropower plants and reservoir operation, and ANN
is the most applied tool to achieve this goal [50,58–60,86,88].

Among these papers cited above, ref. [88] is the only one regarding run-of-rivers power
plants to develop river flow prediction. For run-of-river power plants, the impossibility of
storing water for an extended period (annual/seasonal/monthly) makes the hourly river
flow prediction vital to plan the operation. Therefore, the paper uses ANNs to hourly inflow
forecasts of a run-of-river hydropower plant. The authors used a three-layer feed-forward
ANNs and Levenberg–Marquardt training algorithm with backpropagation. In addition,
they tested different types of ANN input such as temperature, precipitation, and historical
water inflow.

Paper [50] developed a hybrid model for monthly streamflow forecasting (LTS) to flood
risk mitigation. The hybrid models are designed by incorporating artificial intelligence
models (which include Feedforward backpropagation and Radial basis function with
decomposition methods). Ref. [59] applies ANN to forecast the reservoir inflow seven
days of the lead time to improve the reservoir STS. In work of Jose, the authors performed
reservoir inflows predictions applying different static and dynamic ANN models (static
feed-forward neural networks, nonlinear autoregressive, and nonlinear autoregressive with
exogenous inputs). The models are training using inflows discharges and precipitation
data with different time delays.

Furthermore, for assessing the effect of periodicity time index is added to the input data
(indicate the number of months from 1 to 12). In work presented in [60], the authors perform
the reservoir inflow forecast by ANN to feed the multi-objective numerical optimization
of hydropower production, solving by the application of a novel combined Pareto multi-
objective differential evolution. In the paper [86], the monthly flow of a river is predicted
by two recurrent neural networks techniques: Long-Short Term Memory (LSTM) and
Gated Recurrent Unit (GRU). The monthly flow prediction is important to the long-term
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generation schedule of the Brazilian electrical power system, for example, to decide whether
thermoelectric power plants should begin operation.

Paper [53] adopted an alternative strategy, where the authors use ANNs to predict
the downstream water in real-time, and not the typical prediction of river flow widely
found in the revision. The objective was to develop an accurate forecast of downstream
water levels because this parameter dramatically impacts the economic operation of re-
regulating hydropower stations. The ANNs were trained using historical measured input
parameters such as power generation, upstream level, river flow, and downstream water.
The results show downstream water level predictions in real-time with stable results and
greater accuracy.

There are applications of ANNs, where the authors’ proposal is the cascade reservoirs
operation optimization. In this system, the operation of one of the reservoirs impacts the
operating parameters of the others. Therefore, this correlation is represented by coupling
models used for the correctly joint operation optimization in [70]. Backward propagation
neural network calculates the downstream reservoir’s inflow and the upstream reservoir’s
tailwater. Its accuracy in exploring water flow hysteresis and the aftereffect of tailwater
level variation significantly improves the coupling model’s accuracy.

Papers [85,87] are also regarding cascade reservoirs operation optimization. However,
the focus is financial. Paper [85] is a multi-objective optimization with a primary objec-
tive of profits maximization with additional sub-objectives of startups and shutdowns of
generators reduction. The goal of paper [87] is the maximization of time average revenue.
Both papers use stochastic optimization algorithms to solve the problems and use ANNs to
predict energy pricing and water inflow.

Extreme machine learning were used in many works by [17,29,40,42,46]. Because of
the high diversity of ML techniques found in the revision, we decided to organize the
methods according to Figure 3. In other words, ML techniques are classified into three big
groups: Supervised Learning, Unsupervised Learning, and Reinforcement Learning.

Figure 3. Machine learning techniques.

The supervised learning techniques are the most found in our revision, with 53 articles,
or 72.6% of applications overall. Within supervised learning techniques, we found 43
applications of regression techniques and ten applications of classification techniques.
The regression techniques are applied for several purposes, such as prediction (inflow,
pricing) to derive the optimal operation rule for a reservoir, multiple reservoirs, and cascade
reservoirs. The principal regression algorithm applied is ANNs. Classification techniques
have applications concentrated in deriving better operation rules for hydropower release
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or/and decision-making for the operation of reservoirs/hydropower plants [19,21,47], that
is, hydropower/reservoirs operation optimization. In addition, decision tree modeling is
often found in classification algorithms in these papers, such as in [47,49,65].

The unsupervised learning application is the second most, with 20 or 27.4% overall.
Among these ten applications of clustering techniques, nine density estimation techniques,
and one application of density reduction. It is essential to point out that many papers ap-
plied more than one ML algorithm. The authors combined different unsupervised learning
algorithms to maximize its features and reach better results in most cases. On the other hand,
refs. [45,57] applied unsupervised learning algorithms to better tune a regression algorithm.

Reinforcement learning techniques were the least applied in the reviewed papers,
with eight applications or 10.9% overall. Four applications for each, policy-iteration and
value-iteration, were found. Both algorithms share the same working principle, but with
different approaches to find the optimal policy: in policy-iteration, policy evaluation and
policy improvement are iteratively repeated until policy converges, while in value-iteration,
the algorithm iterates until it find an optimal value function. The optimal policy is then
derived from the optimal value function. Reinforcement learning techniques are used
primarily for optimal hydropower/reservoir operation [18,28,30,37,52].

For research question RQ2—What is the planning forecast horizon: long-term sched-
ule (LTS), short-term schedule (STS), or real-time schedule (RTS)—It is essential to state
that papers regarding deriving operation rules and operation policies were classified as
LTS. In addition, works that provide annual and monthly flow forecasts or operation
optimization were also classified as LTS. On the other hand, works that provide weekly and
daily flow forecasts or operation optimization were tagged as STS. Finally, works related to
hourly flow forecasts or operation optimization were classified as RTS.

After analyzing the selected papers, we conclude that the most explored planning
horizon is the long-term. As shown in Figure 4, 49 articles, or 67.1%, represent long-term
planning forecasts. Short-term and real-time schedules are analyzed in 19 and 13 papers,
respectively. This result indicates that improving the operation strategies long before the
operation dispatch may mean the most common motivation and where the ML techniques
are concentrated to improve the operation. It isn’t easy to point out any reason for the
paper’s concentration on a long-term schedule.
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Figure 4. Works per forecast horizon.

Answering question RQ3—What is the type of river system: run-of-river, single reser-
voir, multiple reservoirs or operation in cascade—ML was applied for reservoir operation
optimization, both for single or multiple units and power plant operation in cascade.
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The operation optimization is more flexible on reservoirs with long regulation capacity
periods, representing the ability to store water resources. Run-of-river hydropower plants
present small reservoirs with low regulation capacity; therefore, we assume that this type
of power plant does not present reservoirs.

The articles regarding hydropower plants with reservoirs represent 94.5% of analyzed
works. We can explain it by observing the restricted operation possibilities in run-of-river
hydropower systems. This hydropower plant must respect the rule during operation: water
flow income equals the outcome. Therefore, the model-based optimization might deal
appropriately with these issues with very few exceptions. On the other hand, the applica-
tion with hydropower plants with reservoirs, multiples reservoirs, and cascaded reservoirs
face challenging issues such as multi-objective optimization, complex or coupling mod-
els, explosive number of possibilities, and uncertainty forecast parameters, among others.
Therefore, the ML application is the demand to achieve meaningful results. Among the
69 articles that present reservoirs, 21 deal with multi reservoirs (30.4%), 35 single reservoirs
(50.7%), and 13 cascade reservoirs (18.8%). Only three articles are about the run-of-river
system [36,88,89]. These results are detailed in Figure 5. It is important to clarify that the
article regarding turbine efficiency curves adjustment [48] does not have a specific river
system application. Thus, we did not compute this paper in any river system type.
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Figure 5. River system in each work.

Regarding question RQ4—What is the primary expected outcome of the ML technique
application?—the results showed mostly applications on river flow forecast/inflow. Nearly
31.5% (Figure 6) of the proposals were developed to find water flow estimation. The result
is expected since the papers present as motivation generate more accurate water flow data
to manage hydropower and reservoirs operation or feed optimization models with proper
parameters essential to accurate results.



AI 2022, 3 90

C
RO

H
PO

M
RO

RO
O

RF
F TE

14

11 11

17

22

1

N
um

be
r

of
A

rt
ic

le
s

Figure 6. Main purpose of each work.

Figure 7 represents the combination of ML groups with the article’s primary purpose.
Supervised learning is the most applied technique to river flow forecast, with 17 cases.
ANNs are applied in seven papers, and extreme learning in three between supervised
learning algorithms. For example, the paper [58] uses ANNs to predict reservoir inflow
seven days ahead to optimize reservoir operation. Weather forecasts and antecedent
hydrological variables were used as ANNs inputs. As a result, additional energy production
can be achieved with more accurate inflow predictions without flood risk. It is an important
conclusion: the accurate inflow forecast enables optimal and safe operations of reservoirs.
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Figure 7. Machine learning vs main purpose.

Another example, paper [17] adopted a hybrid model for annual runoff forecast.
The hybrid model uses the Variational Mode Decomposition algorithm to decompose the
yearly time series into subcomponents. Thus, extreme machine learning is applied to for-
mulate the process hidden in each subcomponent, and the aggregated output is the forecast
data. The final results show that the proposed model to predict the annual runoff forecast
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has improved prediction accuracy compared to several traditional methods. Therefore,
the hybrid model can be helpful in the mid-long-term operation of water resources and the
power system.

Four papers explore unsupervised learning techniques to improve streamflow predic-
tion [45,54,74,89]. Nevertheless, the strategy for these papers is to work on the available
data to find hidden correlations, patterns or select data subsets properly to improve pre-
diction accuracy. For example, the paper [54] investigates the potential of selection of the
best subsets of historical climatological to maximize Ensemble Stream Flow prediction
performance. Furthermore, the Genetic Algorithm determines the best set of scenarios.
In conclusion, exploring data analysis to use the proper data subsets (size, scenarios, correla-
tion, among others) to feed forecast models/algorithms significantly impacts the prediction
quality and accuracy. Moreover, it is indeed an important area that is little explored.

Reservoir operation optimization is another relevant area in the papers reviewed with
18 applications. Within these papers, supervised learning is the leading ML technique
with eight cases, followed by reinforcement learning with six applications. The reser-
voirs’ operations are derived typically by linear regression, ANNs, others by applying a
fitting strategy.

A different approach investigates the impacts on the operation rules caused by uncer-
tainty on the inflow prediction and the optimization models parameters [19]. A supervised
learning method (classification), Bayesian Deep learning, was proposed to include the
inflow predictions and model parameters’ uncertainty to derive real-time reservoir rules.
The results showed Bayesian Deep learning method derived four operation rules. It is reli-
able, robust, and performed better than the Linear Regression method (without uncertainty
consideration) regarding hydropower generation. Furthermore, the inflow uncertainty
significantly impacts the operation rules output than model parameters uncertainty and its
sensibility rise at dry season.

In conclusion, the hydropower operation is subject to model and inflow predictions
uncertainty that generally prejudice operation optimization. Nevertheless, the proper appli-
cation of ML can consider these uncertainties in the optimization methods and significantly
improve the operation results.

The reservoirs’ operation rules for long-term scheduling are generally established
by a well-known fitting strategy such as linear regression, ANNs (widely present in this
review), and other nonlinear methods. However, this methodology of optimal parameters
for specific functions might not consider uncertainty and nonlinear dependence structure
of hydrological variables [37]. Thus, this work proposes a combination of copulas with
Implicit Scholastic Optimization to perform reservoir operation rules. The methodology
presents three stages: Simulation of synthetic streamflow scenarios based on a periodic Vine
Copula-Entropy model; estimation of the optimal reservoir dispatch by implicit stochastic
optimization; and estimation of the optimal reserve operation policy by a probabilistic
approach with copulas. Furthermore, this methodology represents a typical reinforcement
learning technique (more specific policy-iteration-based), which is considerably applied to
reservoir operation optimization [28,30,52,63].

Combining the results obtained from RQ2, RQ3, and RQ4, it was possible to find
what applications and their respective planning horizon for each group of works. Figure 8
analyzes the combination of ML groups and type of River system. As a result, we conclude
that the combination of supervised learning with a single reservoir system is most used
with 21 cases or 28.7% overall. Figure 9 shows the result of combining the planning forecast
horizon and the primary purpose. The most applied combination is LTS with River Flow
Forecast, 16 cases or 21.9% overall. Figure 10 combines the ML group and the forecast
horizon. The results show 31 applications of supervised learning for LTS, 42% overall.
Moreover, supervised learning is also the most applied for STS and RTS with 14 and 7 cases.



AI 2022, 3 92

M
R SR RC RR Tu

16

21

9

1
0

2

10

3
2

1
3

4

1
0 0

N
um

be
r

of
A

rt
ic

le
s

Supervised
Unsupervised
Reinforcement

Figure 8. Machine Learning vs river system.
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Figure 9. Main purpose forecast horizon.

These combined results are expected and reproduce the previous analysis regarding
the article’s main purpose, type of river system, planning horizon, and ML technique
performed individually.

An important exception is a work with ML application done in [48], where the turbine
efficiency curves are adjusted. It is also essential to point out that one article deals with
water flow and sediment forecast [45].
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Figure 10. Machine Learning vs forecast horizon.

4. Discussions

This systematic review aims to identify the state-of-the-art of how ML has been applied
in the technical literature to improve hydropower plants’ operation optimization. It is
important to emphasize that the paper reached the main objective. Another significant
contribution was as follows: most articles use ML to improve the LTS; the applications are
majority about hydropower plants with reservoirs (single reservoirs); supervised learning
techniques are the most used ML technique.

These findings of our review may present a weakness in the current research on the
matter. The prevalent use of supervised learning techniques implies that the models are
being built using previous knowledge about the systems, which might reinforce bias or
mask unknown correlations between variables in the model.

Moreover, the systematic review indicates approaches little explored to improve the
operation optimization, and it may be the subject of future research in this area. As an
example, we consider that applying ML techniques that consider the uncertainty on the
inflow prediction will help derive more accurate models for hydropower plant opera-
tion optimization.

We did not find many articles dealing with optimization dispatch of run-of-river power
plants. Therefore, it represents a gap in this systematic review. A possible explanation
for this gap would be the restricted possibilities for dispatching the run-of-river power
plants, which it is not possible to store water in the reservoirs. Additionally, optimizing the
operation of these plants by applying model-based techniques would already be satisfactory.
However, there are indeed plants with many generators units that would benefit from ML
application. For example, the work [90] deals with the dispatch of the Santo Antonio plant,
a hydropower plant in the Amazon basin in Brazil with 50 generator units. The explosive
number of generating units combinations possible to dispatch the hydropower plant open
the way for ML application.

In general, the methodology applied in the systematic review is solid with include,
exclude, and quality criteria for article selections. It is essential to emphasize the impor-
tance of the exclude and quality criteria: the exclusion criteria were essential to focus the
review on hydropower operation optimization by ML application. For example, many
papers deal with hybrid generation systems, being the hydropower generation operation
optimized with the specific contributions and restrictions in the process of other/others
generation types (photovoltaic, wind, among others types of generation). The quality
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criteria were addressed to reduce the number of articles deeply analyzed, giving preference
to higher quality publications. An important issue to note is the addition of maintenance
articles to the exclusion criteria. Papers that applied ML focused on improving activities
related to equipment maintenance were excluded. The decision to exclude these articles
was motivated to focus only on articles directly linked to optimizing the operation of
hydroelectric plants. However, the improvement of maintenance activities for generators,
turbines, transformers, pumps, among other equipment, indirectly impacts the operation.
For example, it increases the operational reliability and the availability of generating units.
Therefore, the maintenance activities can be added as inclusion criteria to a systematic
review in future works related to the operation optimization of hydropower plants.

5. Conclusions

The paper aimed to review the academic literature on ML techniques applied for
hydropower optimization. After research on technical databases, we classified 73 works for
this study. Therefore, analyses and discussions were made considering three main points:
forecast schedule, ML technique groups, and river system.

Regarding ML technique groups considered for the analysis, supervised learning is
broadly applied using regression and classification techniques. Furthermore, It was noted
the extensive use of Artificial Neural networks due to its capacity to fits appropriately
for most of the applications of ML on hydropower operation optimization: derivation
of parameters for a forecast of river flow; optimization model for reservoir operation;
multi-objective optimization model operation of multi-propose reservoirs; and derivation
of operation rules; among others.

We found clustering and density estimation techniques for unsupervised learning,
representing the second most used application. Additionally, this group’s main application
is for river flow forecast. Most of them are for single reservoirs.

Despite the reinforcement learning group being the least frequent application, we
found both policy and value-interaction mainly applied to single and multiples reservoirs.

Regarding the type of river system, most of the applications were in hydropower plants
with reservoirs. Therefore, it is an important contribution of this study. Furthermore, due to
the complex issues present in the operation of single, multiple, and cascaded reservoirs, ML
is an alternative in the search for improvements. Therefore, ML has been widely applied to
deal with these complex problems successfully and accurately.

Regarding the planning forecast horizon, the study identifies most of the applications
about LTS. It represents another contribution of this work. The weak part about the
planning forecast horizon analysis is the few real-time applications (only 13).

A significant gap observed in this study is the reduced number of run-of-river hy-
dropower plants found in the review. Hence, there is an open space for future works
focusing on this type of hydropower plant. Another opportunity is regarding the articles
mainly focused on maintenance activities, which can also be the theme of future studies.

Finally, the evolution of connectivity, instrumentation, and computer science towards
emerging concepts like Internet-of-Things and Industry 4.0 will lead hydropower plants to
rely even more on ML and big data tools and applications. These techniques are very well
suited to deal with the complexity of the challenges presented in the sector.

Our work envisions future opportunities for ML applications in several areas of hy-
dropower operation. Areas such as inflow forecasts, scheduling, and operation policies
already use ML applications, but will still present challenges suitable for them. Addition-
ally, we believe that ML applications can significantly benefit areas like optimal dispatch,
maintenance, and general operations.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ai3010006/s1, PRISMA Flow Diagram.

Author Contributions: This paper is a collaborative work of the all the authors. Conceptualization,
E.B. and G.S.B.; data curation, T.A., J.B.J., L.P.J., D.M. and M.S.; formal analysis, J.B.J. and T.A.;

https://www.mdpi.com/article/10.3390/ai3010006/s1
https://www.mdpi.com/article/10.3390/ai3010006/s1


AI 2022, 3 95

investigation, T.A., J.B.J., L.P.J., D.M. and M.S.; methodology, T.A., J.B.J., L.P.J., D.M. and M.S.; project
administration, G.S.B., E.B., M.F. and P.V.; supervision, G.S.B. and J.B.J.; visualization, L.P.J.; writing—
original draft, T.A., J.B.J., L.P.J., D.M. and M.S.; writing—review and editing, G.S.B., E.B., M.F., P.V.,
and R.J. All authors have read and agreed to the published version of the manuscript.

Funding: This project is regulated by ANEEL and developed under P&D program of JIRAU ENER-
GIA (PD06631-0011/2020).

Acknowledgments: The authors would like to thank JIRAU ENERGIA, CAPES and IF Sul de Minas
for their continued support.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:
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Forecast Horizon
LTS Long-term Schedule
STS Short-term Schedule
RTS Real-Time Schedule
River System
MR Multiple Reservoirs
SR Single Reservoir
RC Reservoirs in Cascade
RR Run-of-River
Tu Turbine
Main Purpose
RFF River Flow Forecast
CRO Cascaded Reservoir Operation Optimization
ROO Reservoir Operation Optimization
HPO Hydropower Plant Operation Optimization
MRO Multi Reservoir Operation Optimization
TE Turbine Efficiency
SF Sediment Forecast
Criteria
IC Inclusion Criteria
EC Exclusion Criteria
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