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Abstract: Digital image correlation (DIC) systems have been used in many engineering fields to
obtain surface full-field strain distribution. However, noise affects the accuracy and precision of the
measurements due to many factors. The aim of this study was to find out how different filtering
options; namely, simple mean filtering, Gaussian mean filtering and Gaussian low-pass filtering (LPF),
reduce noise while maintaining the full-field information based on constant, linear and quadratic
strain fields. Investigations are done in two steps. First, linear and quadratic strain fields with and
without noise are simulated and projected to discrete measurement points which build up strain
window sizes consisting of 6× 5, 12× 11, and 26× 17 points. Optimal filter sizes are computed for
each filter strategy, strain field type, and strain windows size, with minimal impairment of the signal
information. Second, these filter sizes are used to filter full-field strain distributions of steel samples
under tensile tests by using an ARAMIS DIC system to show their practical applicability. Results for
the first part show that for a typical 12× 11 strain window, simple mean filtering achieves an error
reduction of 66–69%, Gaussian mean filtering of 72–75%, and Gaussian LPF of 66–69%. If optimized
filters are used for DIC measurements on steel samples, the total strain error can be reduced from
initial 240−300 µstrain to 100–150 µstrain. In conclusion, the noise-floor of DIC signals is considerable
and the preferable filters were a simple mean with s̄∗ = 2, a Gaussian mean with σ̄∗ = 1.7, and a
Gaussian LPF with D̄∗0 = 2.5 in the examined cases.
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1. Introduction

Digital image correlation (DIC) was introduced as an alternative method for measuring strains in
the 1980s [1]. It has the potential to measure surface strain optically by capturing images of the sample
during deformation and thereby overcoming limitations such as attaching strain gauges (SGs) to the
sample or the size of measured area. For tracking the displacement on the surface of the sample using
a DIC system, the surface of test samples has to be sprayed with random speckle patterns. The surface
is divided into facets of pixels, each facet has unique pixel patterns, and the centers of these facets
are known as measurement points. The displacement and strain are calculated for the measurement
points of each facet between the deformed and non-deformed images [1–3]. For further details on the
working principle of DIC, please refer to Appendix A.

Unlike SGs, DIC has advantages in measuring surface strains on samples with irregular shape
and different sizes with a relatively easy sample preparation procedure, but the accuracy of SGs is
one order of magnitude higher than that of DIC, especially for DIC systems with a moderate lens
resolution or for testing on irregular geometries such as a whole bone tissue [4–6]. The root mean
square error (RMSE), which is the square root of the mean of the square of all of the error, for the SG
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rosette (1 µstrain) was significantly different compared to DIC on vertebrae, where the error exceeded
25 µstrain [4]. In another study by Acciaioli et al., the intra- and inter-specimen repeatability of strain
gauge measurements was 5 and 2.5 times better than DIC [6]. Nevertheless, for soft materials, SGs
induce perturbation in the results due to their contribution to the load-bearing capacity, leading to
a systematic underestimation of the actual strain distribution [7,8]. DIC has been used recently to
measure strains on the surface of engineered materials as well as biological tissues, however, DIC has
limitations, because the results are influenced by different parameters that lead to unavoidable noise,
and need optimization.

Previous work showed that noise in the calculated DIC strain fields is non-negligible if the
measuring parameters were not optimized [9–16]. Noise sources that can be controlled and optimized
are related to the operator in the case of speckle patterns preparation, hardware parameters such as
camera resolution, and software parameters such as the size of the strain window, facet and step size.
Optimal parameters are not known a priori and can change according to the sample size, strain window
and the expected strain concentration. Larger facets and strain window sizes reduce the noise for
homogeneously deformed regions, whereas for heterogeneous strain fields, the higher the strain
gradients are, the smaller the optimal facet and strain window sizes [11,12,17]. Additionally, hardware
parameters such as vibrations in the DIC system or in the testing machine can be reduced, but cannot
be eliminated permanently. Even with optimized parameters, noise can still be present in the DIC
strain and displacement fields and can become critical in regions with high stress concentration [18].

Numerous literature showed that the accuracy of a DIC algorithm depends on the way in which
the algorithm is employed to identify the facets for the matching process between the deformed
and non-deformed images [1,19–22]. For displacement calculation, DIC algorithm can follow a local
DIC approach, where the reference facet centered at each measurement point is traced along the
deformed images, or a global DIC approach, where the position of all the measurement points are
traced simultaneously [20,21]. Most commercial DIC software follows a local DIC approach for
displacement calculation, which is prone to more uncertainties in the displacement computation
compared to a global DIC approach [20] for small facet size. Wang and Pan showed that local DIC
outperforms its global counterpart when facet size is no less than 11 pixels [21]. Additionally, since the
strain fields are derived quantities from the displacement, the noise in the original displacement
measurements gets amplified in the strain fields, which in some cases, does not allow for accurate strain
computation [12,19,23,24], especially where measurement errors are high in the case of discontinuous
displacement fields [18,24,25].

Different approaches have been followed in the literature to filter the noise, either by filtering,
the displacement fields [18,19,24,26,27] or the strain fields [28], or by filtering the DIC images prior to
correlation computation [28–30]. While all the above mentioned filtering approaches are important,
for practical reasons, this paper is dedicated to data processing and noise filtering of strain fields
computed by a commercial DIC system, without introducing other methods for strain computation.

Filtering of the strain fields plays an important role in noise reduction, but it is a trade-off between
losing information and removing noise. Baldoni et al. explored different filtering strategies to reduce
the noise, while minimizing the loss of information in the DIC strain fields. In the first strategy,
they filtered DIC images using a median adaptive LPF and notch filters; these methods increased the
noise rather than reducing it. In the second strategy, they applied a Gaussian LPF on a linear strain field.
Only when an optimal cutoff frequency was selected for each stage—load level—the noise was reduced
without excessive loss of information [28]. There are two limitations to this approach. First, the cutoff
frequency changes for each stage, which means each captured strain field at each load level needs
to be filtered with a different cutoff frequency. Ideally, an optimal cutoff frequency is advantageous;
that is, independent of the load level, strain field size and the degree of strain concentration, which is
explored in this study. Second, in their study, Baldoni et al. computed the residual noise as the root
mean square error (RMSE) of the filtered DIC strain in the unstrained condition, however, we propose
to compute the residual noise for each stage (load level) and not against the zero-load stage.
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While the focus in the literature is on filtering the displacement field or improving the correlation
algorithm, few studies focus on filtering the strain fields. This study follows a systematic approach
to find optimal filter parameters for filtering strain fields exported directly from a commercial DIC
software (ARAMIS v6.3.1; GOM, Braunschweig, Germany). The primary objective of this study is to
show how the noise can be reduced for different strain window sizes (number of measurement points)
and strain field types (linear, quadratic, constant), using three practical filters (simple mean, Gaussian
mean, Gaussian LPF) and how the total error changes when filter parameters change. The secondary
objective is to apply the filter parameters—independent of the load level—on experimental data from
a commercial DIC system (ARAMIS v6.3.1; GOM) and to demonstrate the practical applicability of the
theoretical findings.

2. Materials and Methods

2.1. Simulated Strain Fields

In order to test the viability of the filtering options and to compute optimal filter parameters,
three simulated strain fields were created, showing linear, quadratic, and constant strain changes.
These fields were created for three different strain windows with measurement points of 6× 5 (smallest,
DIC systems require minimum 5–6 facets to calculate strain), 12× 11 (extensometer gauge region),
and 26× 17 (typical for biological samples). Figure 1 shows these strain measurement points Refεi
(a), the simulated strain fields Refεi without noise (b1, b2 and b3). The advantage of using simulated
fields is that the values of the measurement points and the measurement random error are known,
and one can evaluate the residual noise and the loss of information precisely. All three functions
were created using Python SciPy and plotted with Scipy plt.image function. First, the coordinates
system (x,y) for a 2D plane was created and the strain fields are computed simply from the analytical
function. Second, values were assigned (mapped) to the measurement points. For the constant
field, the measurement points at the respected (x,y) were assigned with one single value. For the
linear and quadratic fields, the values were assigned using a linear and a quadratic equation,
respectively. Linear and quadratic fields are ranging from 0–1000 µstrain and the constant fields
show a value of 500 µstrain which corresponds to the elastic regime of many engineering materials.
Each of these simulated strain measurement points was subjected to a random noise with standard
deviation of 300 µstrains. The standard deviation value of the noise was obtained from experimental
findings, as described in Section 2.2. The noise was imposed on the simulated fields using a Gaussian
random generator in Python SciPy, since the noisy data points are typical—normally distributed—DIC
outcome and are referred to as sDICεi (s for simulated, ε for strain). For a better visualization, these data
points were interpolated using Python SciPy to give the strain fields sDICε, as shown in Figure 1c1–c3.
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Figure 1. Simulated strain distribution: (a) Discrete strain distribution showing measured points at
the facets center for three strain windows with 6 × 5, 12 × 11 and 26 × 17 points which corresponds
to a 4.5 × 4 mm2, 9.6 × 9.2 mm2, and 20.8 × 13.6 mm2 area, respectively. (b1–b3) Two-dimensional
representation of linear, quadratic and constant simulated strain fields respectively. (c1–c3) strain
distributions with imposed Gaussian noise obtained from digital image correlation (DIC) measured
data points.

2.2. Experimental Strain Fields

Ten steel samples (mild steel 1.0037) were prepared according to ASTM guidelines for metallic
materials (E8) [31] for tensile tests. Speckle patterns were applied to the steel samples’ surface using a
high precision airbrush (Profi-AirBrush, Wiesbaden, Germany). The airbrush settings were adjusted
(air pressure of 200 kPa, 3 turns of the airbrush opening, and 9 cm distance between the airbrush and
the sample) to obtain a speckle size of 3–5 pixels [9] with a random distribution (coverage 45–50%).
The samples were mounted on a Zwick (Z030) machine (ZwickRoell GmbH, Ulm, Germany). ARAMIS
3D commercial system (ARAMIS 150/6M/Rev.02, GOM GmbH, Braunschweig, Germany) was set up
with two CCD cameras. The cameras were positioned perpendicular to the sample at 35 cm distance,
see Figure 2a.

The noise-floor of the DIC measurement was evaluated by capturing 10 images of each sample,
at 1 Hz and 8 ms exposure time, while the sample was mounted on the testing machine without
any load applied (zero-strain). The strain window corresponding to the measurement area between
the extensometer has 12× 11 measurement points for a facet size of 19× 19 pixels with a facet step
of 16 pixels (50% overlapping); these parameters are recommended by ARAMIS for 6 Megapixel
CCD cameras [32], see Figure 2b in red as the region of interest (ROI). This pre-test was used to
obtain reasonable noise levels for the simulated noise. The maximum noise at zero-load was less than
800 µstrain, the average noise ranged from 140–210 µstrain and the standard deviation ranged from
200–270 µstrain for the 10 captured images (a value of 300 µstrain was taken as a worst case scenario
and imposed on the simulated strain fields). The histograms of the strain measured were similar to
Figure 2c. Finally, the steel samples were subjected to a uniaxial tensile load along the vertical direction
with cross-head movement of 5 mm min−1 until fracture. A universal extensometer (ZwickRoell
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GmbH, Germany) was attached to the samples in the gauge region (25 mm in length), from which the
uniaxial global strain was obtained and referred to as reference strain (Refεi). The strain fields were
subsequently exported from the ARAMIS Professional software (ARAMIS v6.3.1; GOM) as .csv file
containing the node number, x-, y-, z-coordinates, and the measured strain values for plotting and
post-processing with Python SciPy.

Figure 2. (a) Tensile test setup. Steel samples were mounted on Z030 machine, an extensometer was
attached to the sample and ARAMIS DIC system was capturing images of the test. ROI is the region
of interest for DIC measurement points. (b) Facets and grid sizes. (c) Histogram of a strain field
distribution at zero-strain for a facet size of 19 × 19 pixels and a facet step of 16 pixels.

3. Filtering Approach

Three filtering approaches were applied on the strain fields: (1) simple mean filter which is also
used in the DIC commercial software (ARAMIS v6.3.1; GOM), (2) Gaussian mean filter in the spatial
domain which is used in Python SciPy. (3) A self-written script that implements Gaussian LPF in
the frequency domain. In the following section, the difference between these filters is explained, as
depicted in Figure 3. All three filters are in-house implementations.

The three filters have similar working principle, since the simple mean and Gaussian mean
filtering perform convolution in spatial domain and differ only in two aspects; (a) the shape of the
filter being ideal or Gaussian distributed; and (b) the shape of the kernel (hexagonal or square).
Gaussian mean and Gaussian LPF are well alike, since convolution in the spatial domain is equivalent
to multiplication in the frequency domain and vice versa [33]. Despite the similar working principle of
these filters, differences in the results are observed.
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Figure 3. Overview of the three filters approaches. (a) Simple mean filter, all measurement points
at a specific distance are averaged together. (b) Gaussian mean filter, each measurement point is
replaced with the mean value of its neighbours. (c) Gaussian low-pass filtering (LPF), by converting
the measurement points into the frequency domain, an LPF can reduce the noise by eliminating
high frequency components. Filtering is done on the measurement points and fields are shown for
visualization purposes only.

3.1. Simple Mean Filter

This filter follows the implementation of an ARAMIS average filter and is implemented in
Python 2.7. According ARAMIS/GOM guidelines [22], if the size (s) of the filter h(x, y) is 1, all points
that are adjacent to the measurement point in a strain distribution f (x, y) will be averaged together
and saved in a new filtered strain distribution g(x, y), see Figure 3a for s = 1, 2, 3. Since DIC data
are represented by a hexagonal grid, the shape of the filter is also hexagonal and all points are
weighted equally. At the boundary, the strain points were extrapolated by reflecting the last three rows
and columns.

3.2. Gaussian Mean Filter in Spatial Domain

Gaussian mean filtering replaces the value of each pixel in an image plane f (x, y) with the mean
value of its neighbours including the pixel itself [33], see Figure 3b. The shape of the filter h(x, y)
weight the pixels based on their distance to the measured point.

h(x, y) =
1

2πσ2 exp−
x2+y2

σ2 (1)

where (x, y) are the coordinates of a measurement point in a 2D strain distribution, and σ is the standard
deviation of a Gaussian function. The filtering is applied via convolution g(x, y) = h(x, y) ∗ f (x, y).
During optimization, a Gaussian mean filter was applied with σ = 0.1 to 10 with 0.1 increment using
a built-in function in Python.

3.3. Gaussian Lpf in Frequency Domain

Filtering in the frequency domain is recommended, since the noise is represented by a high
frequency component [28]. In this study, a Gaussian LPF [33], H(u, v), was applied:

H(u, v) = exp
−

D2
(u,v)

2D0
2 (2)
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where D(u,v) is the distance of point (u, v) from the center of the spectrum, and D0 is the cutoff
frequency of the filter that controls the shape of the Gaussian. Basic steps of filtering in the frequency
domain are, see Figure 3c:

(a) The strain distribution F(x, y) is transformed from the spatial domain into the frequency
domain, F(u, v), using discrete Fourier transform (DFT).

(b) The obtained spectrum from DFT is shifted to the center by multiplying F(u, v) with (−1)x+y,
to locate the low frequency peaks at the center of the image F(0, 0).

(c) A Gauss LPF, H(u, v), with D0 = 0.1 to 10 with 0.1 increment, is multiplied with the centered
spectrum

(
G(u, v) = H(u, v).F(u, v)

)
.

(d) Using inverse Fourier transform (IFT), G(u, v) is transformed back to the spatial domain G(x, y),
and the real part of this inversion is shifted again by (−1)x+y.

3.4. Error Reduction of Full-Field Strain Evaluation

The filtering efficiency is measured by two terms of error; the loss of information and the
residual noise. The loss of information is the amount of true signal lost when the reference strains
at measurement points (Refεi) were filtered (Ref′ εi) Equation (3). The residual noise is the distance
between each reference point (Refεi) and filtered noisy point (sDIC′ εi) for each stage (see Equation (4)
and Figure 4). The total error is the square-root of the sum of the quadratic of both error terms
Equation (5) [28]. The reference strain is either null in the case of zero-strain or the simulated strain
field without noise imposed, or is the global strain determined from the extensometer in case of the
loaded steel samples. The error was calculated as the RMSE with the following equations.

RMSEloss of info =

√
1
n

Σn
i=1

(
Refεi − Ref′ εi

)2
(3)

RMSEresidual noise =

√
1
n

Σn
i=1

(
Refεi − sDIC′ εi

)2
(4)

Total error =
√

RMSE2
loss of info + RMSE2

residual noise (5)

where n is the number of local strain measurement points (i), e.g., computed by ARAMIS, Refεi is the
value of the reference strain, Ref′ εi is the value of the filtered reference strain, and sDIC′ εi is the value of
the filtered noisy point. Smaller RMSE means better denoising. The error reduction is described by
how good the noise elimination is and was calculated as following:

Error reduction =
Imposed noise− Total error

Imposed noise
× 100% (6)

where the imposed noise is 300 µstrains for simulated cases. Ideally, the total error is zero and the error
reduction is at its maximum. The error reduction increases with decreasing total error.

The optimal specific filter parameters s∗, σ∗, D∗0 were found as the filter parameter that had the
minimum total error for each strain window size. The overall optimal filter parameters s̄∗, σ̄∗, D̄∗0 were
calculated as the mean of the optimal specific filter values s∗, σ∗, D∗0 from the linear and quadratic
fields, as per the following equation:

σ̄∗ =
Σ3

j=1
linearσ∗ + Σ3

j=1
quadraticσ∗

6
(7)

where j is the number of strain windows. Parameters obtained from constant strain fields are neglected
because finding an optimal filter in such cases is not meaningful for higher-order strain fields.
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Figure 4. Overview of the RMSE calculations. Fields are only shown for visualization; calculations are
done by using the measurement points. The loss of information is defined as the difference between the
reference field and the filtered reference field (top row). The residual noise is defined as the difference
between the reference field and the filtered noisy field.

4. Results

4.1. Simulated Strain Fields

Figures 5–7 show the influence of filtering on the loss of information, residual noise and total
error, respectively. The loss of information increases with changing the filter size for both the simple
means and the Gauss mean filtering, while it decreases for Gauss LPF, as depicted in Figure 5c,c1.
The residual noise increases for the simple mean filtering for the smallest window size, and it increases
sharply for Gauss mean filtering and mildly for Gauss LPF, as depicted in Figure 6b–c1. The optimal
filtering parameters were found based on the total error curve, as depicted in Figure 7; the opaque
pink bar shows the range of the optimal filtering parameters, which was determined where the total
error had a minimum for each strain window and field type. Figure 8 shows the corresponding linear
and quadratic strain fields with the specific filtering parameters for each strain window and the overall
optimal filtering parameter.

The simple mean filter shows a considerable influence of the size s for different strain window
sizes and types (Figure 7a,a1). Graphically, this is also visible in Figure 8a. A good compromise is
found with s̄∗ = 2, with an error reduction of 38, 69 and 73% for linear fields and 32, 66 and 74% for
the quadratic fields for the different sizes of the strain windows.
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Figure 5. Curves of loss of information for different strain window sizes for linear and quadratic
strain fields. The unit of the kernel size (s), standard deviation (σ), and cutoff frequency (D0) is
measurement points.
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Figure 6. Curves of residual noise for different strain window sizes for linear and quadratic strain fields.
The unit of the kernel size (s), standard deviation (σ), and cutoff frequency (D0) is measurement points.
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Figure 7. Curves of total error for different strain window sizes for linear and quadratic strain fields.
The opaque pink bar shows the range of the optimal filtering parameters.The unit of the kernel size (s),
standard deviation (σ), and cutoff frequency (D0) is measurement points.



Appl. Mech. 2020, 1 185

Figure 8. Two-dimensional visualization of (1) linear and (2) quadratic strain fields (a) Simple mean
filter for s = 1, 2, and 3, (b) Gaussian mean filter with σ∗ for each strain window and σ̄∗ = 1.7,
(c) Gaussian LPF with D∗0 for each strain window and D̄0

∗ = 2.5.

The range of the specific filter parameter σ∗ for Gaussian mean filtering was from 1 to 2.9 for
the linear fields and from 0.9 to 2.5 for the quadratic fields as depicted in Figure 7b,b1 with overall
filtering parameter σ̄∗ = 1.7. The corresponding strain fields (Figure 8b), for σ∗ and σ̄∗ show less
error compared to simple mean filtering and Gaussian LPF, except for the 6× 5 quadratic field when
σ̄∗ = 1.7 was applied. Applying σ̄∗ = 1.7, Gaussian mean filtering reconstructed the linear fields with
error reduction of 45, 74 and 79%, and the quadratic fields with error reduction of 37, 72 and 80% for
the different sizes of the strain windows.

Gaussian LPF had D0 between 2.1 and 2.7 for linear fields and between 2.6 and 2.8 for the quadratic
fields; see Figure 7c,c1 with overall filtering parameter D̄∗0 = 2.5. Applying D̄∗0 = 2.5, Gaussian LPF
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reconstructed the linear fields with error reduction of 60%, 69% and 77%, and the quadratic fields with
error reduction of 59%, 69% and 77% for the different sizes of the strain windows. Figure 8 shows a 2D
visualization of the filtered strain fields.

The application of s̄∗ = 2, σ̄∗ = 1.7, and D̄∗0 = 2.5 to the constant simulated strain fields
are summarized in Figure 9, where the error reduction for different strain window sizes is shown.
Regardless of the size of the strain windows, Gaussian mean filtering performs best (error reduction
73–81%) whereas for a window size of 6× 5 and 12× 11, Gaussian LPF performs at least with error
reduction of 55%. For a window size of 26× 17, all filters achieved a similar level of error reduction.

Figure 9. Error reduction achieved for simulated constant strain fields (a) Percentage of error reduced
for the different sizes of the strain windows and the filters, (b) Two-dimensional visualization of the
filtered constant strain fields.

An overview of error reduction achieved for a selected strain window of 12 × 11 points is
summarized in Table 1.

Table 1. Achieved error reduction for simulated strain fields and filtering approaches for a 12× 11
strain window.

Filter/Field Quadratic Linear Constant

Simple mean (s̄∗ = 2) 66% 69% 67%
Gaussian mean (σ̄∗ = 1.7) 72% 74% 75%
Gaussian LPF (D̄∗0 = 2.5) 69% 69% 66%

4.2. Experimental Strain Fields

For samples deforming under tensile load, the size of the strain window was about 12 × 11
measurement points and the noise had an RMSE amplitude of 234.23 ± 60.06 to 302.50 ± 45.64 µstrain
independent of the load level. The reference strain measurements, DIC strain measurements and its
standard deviation for the four load levels are presented in Table 2.
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Table 2. Reference strain (measured by the extensometer) vs. DIC strain and standard deviation
measured on the surface of steel samples under tensile load.

Load [N] Reference Strain [µstrains] DIC Average Strain ± Std [µStrains]

500 288.42 267.64 ± 217.76
1500 689.11 610.85 ± 281.87
2000 1068.57 997.15 ± 266.51
3000 1448.31 1394.57 ± 234.39

The overall optimal filters (s̄∗ = 2, σ̄∗ = 1.7, D̄∗0 = 2.5) were applied on the strain windows
from the steel samples. The total error and the error reduction level are depicted in Figure 10a at four
loading steps 500, 1500, 2000 and 3000 N load, Figure 10b shows the corresponding 2D interpolated
strain fields overlaid with the discrete measurement points. The total error was reduced by 50% when
applying the three overall optimal parameters, without any remarkable difference with regards to the
load level.

Figure 10. (a) Total error and accuracy of filtering a 12 × 11 stain window of steel samples.
(b) Two-dimensional interpolated strain fields overlaid with the discrete measurement points. Both
presented at 500, 1500, 2000, and 3000 N load steps. No Filter is the raw DIC measurement points.

5. Discussion

The goal of this study was to examine three practical filtering approaches, to compare their
effectiveness on three simulated strain fields (linear, quadratic, and constant) where the ’True’ reference
strain is known, to find optimal filter parameters with minimum compromising between residual
noise and loss of information, and to apply such filters to experimental strain fields. A simple mean
with s̄∗ = 2, a Gaussian mean with σ̄∗ = 1.7, and a Gaussian LPF with D̄∗0 = 2.5 were identified
as the overall optimal filter parameters for the examined strain window size and strain field type.
These filters give at least an error reduction above 32%, 37% and 59% for simulated fields and an error
reduction above 47%, 46% and 50% for experimental fields.

On the one hand, the Gaussian mean filtering is outstanding in terms of error reduction for
constant strain windows (Figure 9). On the other hand, for linear and quadratic strain windows
(Figure 7), the shape of the total error curve shows high gradients around the minimum point,
which implies a sharper increase in the total error when deviating from the specific optimal σ∗.
The increase in total error (Figure 8) from when σ∗ to σ̄∗ was applied is around 75 µstrain for the
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smallest (6× 5) strain window size, and about 12 µstrain for the other strain window sizes. The same
can be seen for the loss of information and residual noise Figure 5b,b1 and Figure 6b,b1, respectively.

The Gaussian LPF behaved based on the shape of the strain window rather than the size.
For homogeneous/constant strain field, the noise can be filtered using a D0 < 0.5, by letting only the
smallest frequency pass and blocking all higher frequency components, as this might work well for
homogeneous/constant fields. This does not work for linear and quadratic fields and will result in a
corrupted strain distribution, as confirmed as well by Baldoni et al. [28] with total error, in our case,
higher than the original noise (Figure 7c,c1). As well, when applying filtering on the speckled DIC
image prior to the correlation calculation, Butterworth LPF produced the lowest random error [30].
The Gaussian LPF was the only filter where the loss of information was reduced with increased cutoff
frequency. This is because the reference strain—in case of the simulated fields—is noiseless, and when
increasing the cutoff frequency, the whole signal passed, allowing the filtered field to be identical
to the original field. However, for the residual noise, with increasing the cutoff frequency, the noise
remaining in the filtered field is increasing mildly, as depicted in Figure 6c,c1.

These three overall optimal parameters that reduced the noise in both the simulated and the
experimental fields can be used, for comparable strain window sizes, when no prior information
is available on the strain field. Simple mean filtering is handy since it is a built-in function that
comes usually with commercial DIC systems, but for the smallest strain window 6 × 5 points
(Figure 8, top, left)—if the optimal filter size was not used—a serious compromise of the results
can occur, with noise reduction from 300 to 287 µstrains. If the overall optimal parameter was used,
the noise reduction is limited to 38% and 32% for the linear and quadratic fields, respectively.

It was demonstrated here how the size of the strain window influences the noise reduction,
better denoising is achieved for bigger strain window sizes [17,34,35], which is expected, since for
bigger stain windows, more facets can be calculated and the signal to noise ratio is higher than
for smaller strain windows. This can be seen clearly in the total error curves in Figure 7, where the
minimum and maximum total error were reached for the 26× 17 and 5× 6 strain windows, respectively.
Filtering, either on the displacement field, the strain fields or the speckled images, helps reducing noise
in DIC fields [12,19,28,30], but the optimization of other factors that influence the noise is necessary,
such as facet and step size. For facet size; a bigger facet size results in better identification of the
facets and is favoured for the correlation algorithm [17,36,37]. Other studies showed that the error
can be largely reduced by increasing the facet size [6,38]. However, since we seek to improve DIC
measurements for non-homogenous specimens or for specimens with geometry that allow strain
concentration, choosing a bigger facet size is not ideal and would lead to hide the strain concentrations.
For our case, with a fixed dimensions of the strain fields between the extensometer, more data points can
be measured with smaller facet size and/or step, but at the cost of more noise which was confirmed by
other studies [6,11,21,39]. When the facet size was set to be 13× 13 pixels with 11× 11 pixels facet step,
the RMSE doubled from 300 to 600 µstrains with maximum apparent strain exceeding 1000 µstrains,
thus, when non-homogenous strain concentration is expected, a good compromise is needed between
a larger facet size to suppress the noise and a smaller one to capture the strain concentration.

As a general DIC filtering guideline, filters available by the DIC commercial software or
by a computational software such as Python can be useful in reducing the noise in DIC fields.
However, as demonstrated above, the selection of the filter parameter should be based on an
optimization process to ensure the minimum loss of information and the preservation of the strain
gradient. The concept of the total error as a combination of the loss of information and residual noise
is a powerful tool to see the influence of each filter on the DIC measured data points. When applying
filters provided by a commercial DIC software, it is important to keep in mind the relation between
the filter parameter and the size of the strain field.

The limitations of this study are that specific simulated strain fields were tested and the
experimental results represent only homogeneous strain fields. In future, it has to be proven that
the presented approach works also for real measured higher-order strain fields. Only strain window
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sizes up to 26× 17 points (20.8× 13.6 mm) are considered, since smaller strain windows sizes are
influenced by higher noise. One length scale of the noise was investigated in this study, which was
obtained from the experimental findings. Additionally, filtering was applied directly on strain field
measurement points obtained from the software i.e. no filtering on displacement fields, no investigation
on different strain computation methods, or different correlation algorithms, such as global and local
DIC approaches, were investigated in this study. Finally, optimal filtering parameters presented here
might not be optimal for other applications with different DIC systems or at different length scales.

6. Conclusions

DIC offers a method for capturing full-field deformation on the surface of the samples,
regardless of their size, shape or material. With appropriate analysis parameters, DIC can capture the
strain on the surface of tested samples. The present study has illustrated that strain computed by DIC
commercial software (ARAMIS v6.3.1; GOM) is comparable to strains obtained from a high precision
extensometer attached to the same sample. The DIC noise was stable over the different load levels in
the elastic deformation region of the material.

However, DIC measurement cannot be taken for granted without checking the noise-floor;
thus, preliminary tests at zero-strain can give an idea on the noise-floor of the measurement due
to software or hardware parameters. Few studies focus on filtering the strain fields, in this study
a procedure to select an optimal filter parameters has been presented. The results found in this
study show that optimal filtering can have a positive effect on reducing the noise, but at the cost
of losing information, especially for simple mean and Gauss mean filters. Optimal Gauss LPF
proved to be effective in reducing the noise without excessive loss of information. This effect can
only be shown by using simulated strain fields where a noiseless reference strain field is known.
When filtering DIC measurement on sample with irregular shape or non-homogenous material such
as bone, practical filtering guidelines as given in this study can be very helpful.

Author Contributions: Conceptualization, N.A. and D.H.P.; methodology, N.A., A.R. and D.H.P.; software, D.H.P.;
validation, N.A., A.R. and D.H.P.; formal analysis, N.A.; investigation, N.A.; resources, N.A.; data curation, N.A.;
writing—original draft preparation, N.A.; writing—review and editing, N.A., A.R. and D.H.P.; visualization, N.A.;
supervision, A.R. and D.H.P.; project administration, D.H.P.; funding acquisition, N.A. and D.H.P. All authors
have read and agreed to the published version of the manuscript.

Funding: The authors disclosed receipt of financial support from the Niederoesterreiche Forschung and Buildung
(NFB) Institute via the Dissertation scholarship 2018 [grant number SC18-006] for the research of this article.
The authors acknowledge TU Wien Bibliothek for financial support through its Open Access Funding Program.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The working principle of DIC is based on comparing two digital images of the surface of interest
acquired in undeformed (reference) and deformed state. Through this comparison, DIC can provide
full-field displacements to sub-pixel accuracy. For tracking the displacement on the surface of the
sample using a DIC system (in this study Aramis commercial system is used), the surface of test
samples has to be sprayed with random speckle patterns. The surface is divided into facets of pixels;
the centers of theses facets are known as measurement points Figure A1a. Each facet is has a unique
grey-value distribution of pixels and location in space. The facets are identified and matched along
the image series using the method of image correlation. The best matching region of the two images,
where the maximum correlation coefficient is found, is taken as the new position of the measurement
point [1,3,22,28]. After defining the coordinates of the points in the reference image and in the image of
the deformed state, displacements in x-, y- and z-direction can be computed as the difference between
the deformed and the reference states, e.g., x-x∗, y-y∗ or z-z∗.

For three-dimensional computation (3D), two cameras are needed to be able to calculate the
coordinates in the deformed stage via triangulation. Strains are calculated from the obtained
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displacements, similar as in finite element methods [22]. A triangular mesh is placed onto the ROI,
with the nodes being the measurement points where the displacements were computed, see Figure
A1b, the coordinates of the reference image correspond to A, B and 0, forming one triangular element.

Figure A1. (a) Measurement point (center of facets) on a speckled surface. (b) Background of
displacement computation, displacements of each measurement point is computed in x-, y- and
z-direction.

The deformation gradient is computed as in the following Equation (A1)

[dxA, dxB, dxC] = F · [dXA, dXB, dXC] (A1)

where F is the deformation gradient, dx and dX are the position of a measurement point in the
deformed and reference position respectively. The position of the measurement point in the deformed
state is the position of the measurement point in the reference state plus the displacement, as per the
following equation

dx = dX + du (A2)

where du is the displacement gradient. The movement and deformation of an element (O, A, B) can be
computed based on the movement of its points and can be described as following for point A[

ax

ay

]
=

[
ux

uy

]
+

[
F11 F12

F21 F22

] [
Ax

Ay

]
(A3)

Since the point distribution is based on triangles (see Figure A1a), one needs at least three
points with known undeformed and deformed coordinates for computing the displacement and the
deformation. The Green–Lagrange strain tensor can be computed as per the following equation

ε =
1
2
(FT · F− I) (A4)

From the strain tensor, specific strains in x-, y- and z-direction of an element can be obtained and
assigned to the measurement point.
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