
Article

Conformal Wireframe Nets for Trimmed Symmetric Unit Cells
in Functionally Graded Lattice Materials

Eric Trudel and Mostafa S. A. ElSayed *

����������
�������

Citation: Trudel, E.; ElSayed, M.S.A.

Conformal Wireframe Nets for

Trimmed Symmetric Unit Cells in

Functionally Graded Lattice

Materials. Appl. Mech. 2021, 2,

81–107. https://doi.org/10.3390/

applmech2010006

Received: 29 January 2021

Accepted: 23 February 2021

Published: 28 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada;
Erictrudel@cmail.carleton.ca
* Correspondence: mostafa.elsayed@carleton.ca; Tel.: +613-520-2600 (ext. 4138); Fax: +613-520-5715

Abstract: Tessellating a periodic unit cell of lattice material to fill a design space in complex geometries
has many challenges arising from their computer-aided design (CAD) modeling intricacy. A solution
to this difficulty is the use of trimmed micro-truss lattice structures with a conformal net. This paper
presents a novel algorithm for constructing conformal lattice net as wireframe of one-dimensional
line segments suitable for Bravais cubic symmetric truss-based topologies. The novel algorithm is
an excellent candidate when dealing with lattice structures using cubic, body-centered cubic (BCC),
face-centered cubic (FCC), and/or diamond unit cell configurations. The wireframe structure is
easily transferred into one-dimensional beam elements for microscale optimizations to obtain a
functionally graded lattice material. It is shown that introduction of the lattice net resulted in a
significant reduction in the mass of the optimized design.

Keywords: lattice material; FGM; wireframe; conformal net; multiscale optimization

1. Introduction

A periodic micro-truss structure, also known as truss lattice or lattice material, is
generated by tessellating a unit cell in a 2D or a 3D infinite periodicity. The most common
example of a truss lattice material is the cubic and BCC unit cell. Truss lattice materials
expand materials selection design space through providing meta-materials for advanced
engineering applications [1]. The high specific properties of lattice materials make them
an attractive hybrid material to save weight and costs [2]. However, due to their complex
geometries, manufacturing such microstructures was near impossible a few decades ago.
Nevertheless, lattice materials have been gaining popularity due to the advancements in
additive manufacturing.

Due to the complexity of the micro-structure of truss lattice materials, where it involves
a huge number of elements, the possibility of solving all underlying equations in full detail
is computationally expensive and might be impossible. Accordingly, the laws of greatest
importance are the principles of symmetry where the lattice is modeled through a unit cell.
Such concept in continuum mechanics finds its roots in solid-state physics where a lattice
is mainly concerned with replicating the strengths from atomic bonds commonly seen in
metals and metallic alloys. Examples of atomic bonds and their strengths can be seen in
diamonds where carbon atoms share all their valence electrons with other neighboring
carbon atoms forming what is called a diamond lattice. The structure of the diamond lattice
is known to have the highest tensile strength among all atomic topologies and could be a
good candidate for creating strong micro lattice structures [3,4]. The number of possibilities
for lattice topologies is endless. However, only symmetrical lattice structures with clear
crystallographic planes are considered in this paper. The most common symmetric lattice
topologies which are also analyzed in this paper include unit cells with Cubic and Body-
Centered Cubic (BCC), Face-Centered Cubic (FCC), and diamond geometries [5].

There exist many methods for modeling truss lattice structures in computer-aided
design (CAD). These range from the utilization of voxels to implicit surface definitions to

Appl. Mech. 2021, 2, 81–107. https://doi.org/10.3390/applmech2010006 https://www.mdpi.com/journal/applmech

https://www.mdpi.com/journal/applmech
https://www.mdpi.com
https://orcid.org/0000-0002-0741-528X
https://doi.org/10.3390/applmech2010006
https://doi.org/10.3390/applmech2010006
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/applmech2010006
https://www.mdpi.com/journal/applmech
https://www.mdpi.com/article/10.3390/applmech2010006?type=check_update&version=3

Appl. Mech. 2021, 2 82

generate the interior and exterior lattice topologies [6–9]. When it comes to implementing
lattice structures into a design, there exists three main strategies [6]. The first is a swept
interior lattice which distorts the lattice to meet the curvature of the design domain. The
second is by directly meshing the design domain with elements and then converting those
elements into the desired unit cell topology afterwards. The third is a trimmed interior
where the periodic lattice pattern is conserved and is then truncated once outside the
design domain. Sweeping methods require significant user intervention as well as panning
and are very time consuming to produce. The problem is more apparent for complex
geometries where transitions between sections does not guarantee a consistent unit cell
size. Meshed domains also require a user defined mesh, which can be time consuming.
However, if the unit cell size is changed, then the entire mesh will be required to be redone.
The unit cell size could also be inconsistent and is subject to warping in the vicinity of
curved geometries.

There are many advantages for swept and meshed lattice regions such as ease of
application and limited complexity in modeling. The exterior of a domain can also be
easily closed off using the correct lattice topology. However, connecting the exterior struts
of the trimmed lattice is not as easily defined, especially in three-dimensional lattice
configurations. An exterior mesh of structures connecting interior struts together is known
as a conforming skin, lattice net, or a conformal lattice net [6].

Many of the proposed methods focus on modeling the interior lattice and omit the
lattice connections on the surface. Some CAD applications, such as NX [10–12], opt for
Delaunay triangulation to connect the lattice at the surface, which is considered among
the simplest solutions. The drawback of using Delaunay triangulation for a lattice net is its
dissociation from the interior lattice geometry does not always match the interior lattice
geometry. The most robust lattice creation tool in the market currently is nTopology [13],
which offers a suite of tools to insert a wide array of lattices. Sweeping, Voronoi meshing,
and implicit modeling are available to users, however connecting trimmed lattices together
at the surface is not supported [13]. Intralattice [14] is another lattice creation tool which
presents the user with many options for inserting lattice into a closed volume which
also includes trimmed lattice creation using rhino [15]. Unfortunately, at this time of
writing, there is no option to connect the cut struts together to create a conformal lattice
net using Intralattice. One open-source MATLAB code known as GIBBON, developed
by Moerman, allows its users to create and optimize meshes of lattices structures inside
complex geometries. However, trimmed lattices are not available [16].

Current research in conformal lattices focus on the meshing approach instead of
trimmed lattices. Sosin et al. [17] utilized sphere packing to automatically generate confor-
mal strut connections in any volume and offer two compatible truss topologies. The trade
off to Sosin et al.’s methods is that it is not applicable for trimmed lattices. Another research
into conforming lattices is by Wu et al. [18], who combined homogenization and topology
optimization to develop lattice structures which conform to principal stress directions and
the enclosed boundaries. The resulting structure contains a lattice net which conforms to
the interior lattice; however, it is not a trimmed lattice. Finally, Liang et al. developed an
algorithm to create conformal lattice structures on parametric solid models and which also
includes a lattice net generation procedure [19]. The work of Liang et al. also includes solid
shell (or skin) creation in place of the lattice net and will generate a NURBS representation
of the new object. Liang et al.’s methods will fit the interior lattice to follow the boundary
of the closed geometry which will not produce an interior trimmed lattice structure.

There are several advantages for selecting a trimmed lattice over the other two meth-
ods including the lack of user intervention when generating the mesh as it can be automated,
unit cells are not distorted due to curved geometries and can be oriented in any direc-
tion, in addition, the unit cell size is also independent of the geometry because geometry
complexity is not a factor in the lattice generation process [6].

Consistently sized unit cells are important to correctly reflect the properties of the lattice
topologies. This is even more of a concern for topology optimizations of lattice structures that

Appl. Mech. 2021, 2 83

rely on asymptotic homogenization [20] where the homogenized relative properties rely on
perfectly repeated unit cell properties. When distortions in the lattice representation occur,
the simulated properties are no longer an accurate representation of the unit cell.

The work of Aremu et al. [6] had successfully developed an algorithm to generate a
lattice net for any lattice unit cell. This method uses voxels to generate both the interior
and the exterior lattice structures. Very few other algorithms can be found in the litera-
ture that focus on trimmed lattice structures and conformal lattice nets [21]. Therefore, a
methodology for building a conformal lattice net as a wireframe is explored in this paper.

An advantage of using a wireframe object for representing lattice structures is that it
can be easily converted into one-dimensional beam elements for finite element analysis and
for structural optimizations. The application of the wireframe for beam-sizing optimizations
is demonstrated in a case study at the end of this paper to determine beneficial uses of a
conforming net. Sizing optimization is also used to obtain an optimal functionally graded
structure. Currently, there has been no algorithm to connect the exterior struts together as
a mean of a wireframe object without resorting to voxelization techniques. In this work,
an algorithm for generating a lattice net for a trimmed lattice is developed along with an
algorithm for generating a lattice net for a trimmed lattice structure.

The major contributions of this paper include the development of a robust method to
generate the interior trimmed lattice structure in a triangulated closed volume. The paper
also presents the methodology to generate the conforming lattice net for symmetric unit
cells of the Bravais family in wireframe format. Finally, the developed methodology is
applied to a case study to a demonstrate the application of the lattice net on a loaded lattice
structure and to obtain a graded material through design optimization.

This paper is organized in eight sections. After this introduction, Section 2 discusses
the mathematical representation of a symmetric unit cell. In Section 3, the methodology
for developing an algorithm to create both an interior trimmed lattices structure and
conforming lattice net is discussed. Section 4 explains the procedure to build an interior
trimmed lattice structure without a lattice net. Section 5 describes the methodology for
generating the conforming lattice net for the interior trimmed lattice structure. Numerical
examples on common geometries for the lattice net are shown in Section 6. A case study
for optimizing the lattice wireframe for functionally graded structure is shown in Section 7.
Finally, Section 8 discusses the advantages and disadvantages of the proposed workflow
for a wireframe trimmed lattice structure with a conforming net.

2. Symmetrical Unit Cells

There are four types of lattice symmetries: rotation, reflection, glide-reflection, and
translation [5]. Here, we use Bravais lattice symmetries to define the unit cell topology,
where a Bravais lattice can be defined as an infinite array of discrete points with arrange-
ment that appears exactly the same from all symmetrical points of view. Position of the

Bravais lattice points can be defined by a position vector
⇀
R of the form

⇀
R =

m

∑
i = 1

ni
⇀
ai (1)

where ni are a set of integers or Miller indices and ai are the periodicity of the unit cell,
while m = 3 is the dimensional space of 3D lattices [5].

On the other hand, a crystallographic plane in a symmetrical lattice can be defined
using the Miller indices in crystal Bravais lattices. Miller indices are defined by the planes
intercepting along the unit cell axes. As shown in Figure 1, for example, the cubic cell has
three crystallographic planes which can be numbered using Miller Indices Bravais system
as (100), (010), and (001) [5].

In this paper, lattice unit cells are constructed by means of nodes and struts where a
strut is a member that connects two nodes. Using the Bravais lattice terminology, a node in
this paper is equivalent to a lattice point and is illustrated as a red point in Figure 2. Nodes

Appl. Mech. 2021, 2 84

occur at the intersections of one or more struts and a strut is a line or a member that is
connected by two nodes. Crystallographic planes are defined when they can be drawn
through a unit cell using only the nodes within that unit cell and that the resulting plane
is either coplanar with the struts or intersects the nodes exclusively. A crystallographic
plane may also be defined by symmetry elements within the unit cell if those planes pass
through nodes.

Appl. Mech. 2021, 2, FOR PEER REVIEW 4

three crystallographic planes which can be numbered using Miller Indices Bravais system
as (100), (010), and (001) [5].

In this paper, lattice unit cells are constructed by means of nodes and struts where a
strut is a member that connects two nodes. Using the Bravais lattice terminology, a node
in this paper is equivalent to a lattice point and is illustrated as a red point in Figure 2.
Nodes occur at the intersections of one or more struts and a strut is a line or a member
that is connected by two nodes. Crystallographic planes are defined when they can be
drawn through a unit cell using only the nodes within that unit cell and that the resulting
plane is either coplanar with the struts or intersects the nodes exclusively. A crystallo-
graphic plane may also be defined by symmetry elements within the unit cell if those

(a) (b) (c)

Figure 1. Miller indices (푛 , 푛 , 푛) planes for cubic system: (a) (100), (b) (010), and (c) (001).

(a) (b) (c)

Figure 2. Bravais cubic lattices (a) cubic/primitive, (b) body-centered cubic (BCC), and (c) face-centered cubic (FCC).

The presented algorithm in this paper exploits the crystallographic planes by using
them to connect cut struts where a cut strut is a section of the lattice inside a domain as
illustrated in Figure 5.

While this can easily be expanded to all types of symmetries, the proposed meshing
algorithm in this paper is only concerned with unit cells with translational or reflection
symmetries. This limits the algorithm to work exclusively with cubic lattices from the Bra-
vais lattice family [5]. However, cubic symmetries can be easily adapted for many other
types of lattice symmetries. As shown in Figure 2, Cubic Bravais lattices have three topol-
ogies including the simple cubic or the primitive structure, the Body-Centered Cube
(BCC), and the Face-Centered Cube (FCC). Symmetrical lattices that are also applicable
for the presented lattice net algorithm include diamond and octet-truss topologies as they
have Bravais cubic symmetry as well.

Figure 1. Miller indices (n1, n2, n3) planes for cubic system: (a) (100), (b) (010), and (c) (001).

Appl. Mech. 2021, 2, FOR PEER REVIEW 4

three crystallographic planes which can be numbered using Miller Indices Bravais system
as (100), (010), and (001) [5].

In this paper, lattice unit cells are constructed by means of nodes and struts where a
strut is a member that connects two nodes. Using the Bravais lattice terminology, a node
in this paper is equivalent to a lattice point and is illustrated as a red point in Figure 2.
Nodes occur at the intersections of one or more struts and a strut is a line or a member
that is connected by two nodes. Crystallographic planes are defined when they can be
drawn through a unit cell using only the nodes within that unit cell and that the resulting
plane is either coplanar with the struts or intersects the nodes exclusively. A crystallo-
graphic plane may also be defined by symmetry elements within the unit cell if those
planes pass through nodes.

(a) (b) (c)

Figure 1. Miller indices (푛 , 푛 , 푛) planes for cubic system: (a) (100), (b) (010), and (c) (001).

(a) (b) (c)

Figure 2. Bravais cubic lattices (a) cubic/primitive, (b) body-centered cubic (BCC), and (c) face-centered cubic (FCC).

The presented algorithm in this paper exploits the crystallographic planes by using
them to connect cut struts where a cut strut is a section of the lattice inside a domain as
illustrated in Figure 5.

While this can easily be expanded to all types of symmetries, the proposed meshing
algorithm in this paper is only concerned with unit cells with translational or reflection
symmetries. This limits the algorithm to work exclusively with cubic lattices from the Bra-
vais lattice family [5]. However, cubic symmetries can be easily adapted for many other
types of lattice symmetries. As shown in Figure 2, Cubic Bravais lattices have three topol-
ogies including the simple cubic or the primitive structure, the Body-Centered Cube
(BCC), and the Face-Centered Cube (FCC). Symmetrical lattices that are also applicable
for the presented lattice net algorithm include diamond and octet-truss topologies as they
have Bravais cubic symmetry as well.

Figure 2. Bravais cubic lattices (a) cubic/primitive, (b) body-centered cubic (BCC), and (c) face-centered cubic (FCC).

The presented algorithm in this paper exploits the crystallographic planes by using
them to connect cut struts where a cut strut is a section of the lattice inside a domain as
illustrated in Figure 5.

While this can easily be expanded to all types of symmetries, the proposed meshing
algorithm in this paper is only concerned with unit cells with translational or reflection
symmetries. This limits the algorithm to work exclusively with cubic lattices from the
Bravais lattice family [5]. However, cubic symmetries can be easily adapted for many
other types of lattice symmetries. As shown in Figure 2, Cubic Bravais lattices have three
topologies including the simple cubic or the primitive structure, the Body-Centered Cube
(BCC), and the Face-Centered Cube (FCC). Symmetrical lattices that are also applicable
for the presented lattice net algorithm include diamond and octet-truss topologies as they
have Bravais cubic symmetry as well.

Appl. Mech. 2021, 2 85

3. Trimmed Lattice with Conforming Net Algorithm Workflow

An interior trimmed lattice is a periodic structure that retains its periodicity within
an arbitrary volume where the boundary of the volume does not influence the interior. A
conforming net is a skin on the boundary of the trimmed lattice structure which connects
the trimmed sections together in a mathematical or a logical pattern. The methodology for
a conforming net (or lattice net) is presented to create a wireframe representation for sym-
metric unit cells of the Bravais family. The full workflow for generating a trimmed lattice
with a conforming lattice net is presented in Figure 3. Each sub-algorithm is discussed in
detail in the proceeding sections of this paper. The trimmed wireframe structure is then
used for micro-truss optimizations to obtain functionally graded lattice materials.

Appl. Mech. 2021, 2, FOR PEER REVIEW 5

3. Trimmed Lattice with Conforming Net Algorithm Workflow
An interior trimmed lattice is a periodic structure that retains its periodicity within

an arbitrary volume where the boundary of the volume does not influence the interior. A
conforming net is a skin on the boundary of the trimmed lattice structure which connects
the trimmed sections together in a mathematical or a logical pattern. The methodology for
a conforming net (or lattice net) is presented to create a wireframe representation for sym-
metric unit cells of the Bravais family. The full workflow for generating a trimmed lattice
with a conforming lattice net is presented in Figure 3. Each sub-algorithm is discussed in
detail in the proceeding sections of this paper. The trimmed wireframe structure is then
used for micro-truss optimizations to obtain functionally graded lattice materials.

Figure 3. Block diagram of workflow for a wireframe trimmed lattice with a conforming net.

4. Algorithm for an Interior Trimmed Lattice
This section presents an algorithm for generating an interior wireframe structure of

a trimmed lattice. The methodology implements the work of Tang et al. [8] but replaces a
functional volume (FV) with a closed surface that is composed of triangles such as the
CAD geometry presented in StereoLithography (StL) files [22], as shown in Figure 4; the
algorithm includes four stages.

Clean
Up Step

Compute Feature
Edges

Unit Cell
Definition

A. Crystallographic
Planes

B. Inter-planar
Distances

Closed Volume
A. Center of Rotation

B. Triangulated Surface

Additional Connections

Final
Wireframe
Structure

Lattice Net

Interior Trimmed Lattice

Surface
Nodes

Seeding
Point

Convert
to FEM

Optimize to
obtain FGM

Figure 3. Block diagram of workflow for a wireframe trimmed lattice with a conforming net.

4. Algorithm for an Interior Trimmed Lattice

This section presents an algorithm for generating an interior wireframe structure of
a trimmed lattice. The methodology implements the work of Tang et al. [8] but replaces
a functional volume (FV) with a closed surface that is composed of triangles such as the
CAD geometry presented in StereoLithography (StL) files [22], as shown in Figure 4; the
algorithm includes four stages.

The first stage for creating the interior trimmed lattice replicates a lattice unit cell to
fill a volume. This can be achieved through voxelization in a three-dimensional space [6].
The advantage of using voxels to fill a closed volume is that the boundary voxels can be
extracted to be used in the trimming section of the algorithm. By limiting the number of
struts to be processed by ignoring those which are fully inside, the volume increases the
computational efficiency of the trimming algorithm. After trimming, the fully interior
struts are combined with the cut struts to create the final trimmed lattice structure.

Appl. Mech. 2021, 2 86Appl. Mech. 2021, 2, FOR PEER REVIEW 6

Figure 4. Interior trimmed lattice workflow.

The first stage for creating the interior trimmed lattice replicates a lattice unit cell to
fill a volume. This can be achieved through voxelization in a three-dimensional space [6].
The advantage of using voxels to fill a closed volume is that the boundary voxels can be
extracted to be used in the trimming section of the algorithm. By limiting the number of
struts to be processed by ignoring those which are fully inside, the volume increases the
computational efficiency of the trimming algorithm. After trimming, the fully interior
struts are combined with the cut struts to create the final trimmed lattice structure.

The second stage determines which nodes in the voxelated structure are outside or
inside the closed surface. This is to group line segments based on the placement of the
nodes in relation to the triangulated surface. The methods to sort the nodes are those for-
mulated by Tuszynski [23] and Sven [24]. Ray-triangle intersection algorithms [25–27] de-
termine if the point is interior or exterior of a closed surface. If an even number of ray
intersection is found, then the point is outside of the surface, the point is outside the closed
surface if an odd number is calculated.

Ray-triangle intersections can be determined by evaluating the intersection point be-
tween the ray and the plane given by the normal to the triangles. If the intersection point
is expressed in terms of barycentric coordinates for that triangle, then it is possible to clas-
sify whether the ray intersects the triangle. In a mathematical sense, a ray with direction
d and origin o intersects a triangle with edge vertices 푣 , 푣 , and 푣 if the following crite-
ria shown in Equations (2) and (3) are satisfied:

{푡, 푢, 푣, (1 − 푢 − 푣)} ≥ 0 (2)

[−푑 푣 − 푣 푣 − 푣]
푡
푢
푣

= (표 − 푣) (3)

where 푡 is the parametric distance along the ray and 푢 and 푣 are components of bary-
centric coordinate system for a triangle. In practice, Cramer’s rule is used to solve for 푡,
푢, and 푣 [26]. Details of ray-search algorithms for interior/exterior point classification are
shown in [12,13].

The third stage determines which nodes lay on the surface of the triangulated mesh.
This stage is used for collecting information for classifying line segments in the fourth

Voxelization of Unit Cells Select Boundary Unit Cells

Determine nodes which are
outside, inside and on the

triangulated surface

Classify Line Segments based on
node locations and intersections

with closed surface

Collect interior line segments
(Trimmed lattice Sub Algorithm)

Combine internal line segments
with interior lines from step 1

Stage 1

Stage 2 & 3

Stage 4

Figure 4. Interior trimmed lattice workflow.

The second stage determines which nodes in the voxelated structure are outside or
inside the closed surface. This is to group line segments based on the placement of the
nodes in relation to the triangulated surface. The methods to sort the nodes are those
formulated by Tuszynski [23] and Sven [24]. Ray-triangle intersection algorithms [25–27]
determine if the point is interior or exterior of a closed surface. If an even number of ray
intersection is found, then the point is outside of the surface, the point is outside the closed
surface if an odd number is calculated.

Ray-triangle intersections can be determined by evaluating the intersection point
between the ray and the plane given by the normal to the triangles. If the intersection
point is expressed in terms of barycentric coordinates for that triangle, then it is possible
to classify whether the ray intersects the triangle. In a mathematical sense, a ray with
direction d and origin o intersects a triangle with edge vertices v0, v1, and v2 if the following
criteria shown in Equations (2) and (3) are satisfied:

{t, u, v, (1− u− v)} ≥ 0 (2)

[
−d v1 − v0 v2 − v0

] t
u
v

 = (o− v0) (3)

where t is the parametric distance along the ray and u and v are components of bary-centric
coordinate system for a triangle. In practice, Cramer’s rule is used to solve for t, u, and
v [26]. Details of ray-search algorithms for interior/exterior point classification are shown
in [12,13].

The third stage determines which nodes lay on the surface of the triangulated mesh.
This stage is used for collecting information for classifying line segments in the fourth stage.
Each node is projected onto the plane of each triangle and barycentric coordinates are used

Appl. Mech. 2021, 2 87

to check if the projected nodes lay within the triangles [14,15]. The criteria to determine if a
node is within a triangle in three dimensions are

q = (v0 − β)·⇀n (4)

K(q, Λα, θ) = i f

1,

q ≤ θ

1− θ ≤ ∑ Λα ≤ 1 + θ

{Λα} ≥ 0
0, otherwise

(5)

where K(q, Λα, θ) is a function to determine if the node lies on a surface, v0 is the first vertex
of a triangle in R3, β is the node being evaluated,

⇀
n is the unit normal of the triangle, θ is

the numerical tolerance, and Λα is the barycentric coordinates of a point α for the triangle
where α is equal to

α = (q)
⇀
n − β (6)

The fourth stage is the trimming algorithm which begins by evaluating each line
segment from the voxelized structure and checks if an intersection occurs within it and
the triangulated surface. Möller–Trumbore’s ray-triangle intersection algorithm is adopted
for this operation [16,17]. During the trimming process, the nodes at the surface of the
trimmed structure are also extracted to be used for constructing the lattice net.

After calculating all possible intersections between the line and the triangulated
surface, the algorithm is used to classify the intersections depending on the locations of the
nodes from the second and third stage. The type of class determines if the line should be
cut, kept, or rejected and which line segment pieces are to be retained. There are two main
cases and eleven subcases for classifying line segments and is illustrated in Figure 5.

Appl. Mech. 2021, 2, FOR PEER REVIEW 7

stage. Each node is projected onto the plane of each triangle and barycentric coordinates
are used to check if the projected nodes lay within the triangles [14,15]. The criteria to
determine if a node is within a triangle in three dimensions are

푞 = (푣 − 훽) ∙ 푛⃑ (4)

퐾(푞, Λ , 휃) = 푖푓

⎩
⎪
⎨

⎪
⎧

1,

푞 ≤ 휃

1 − 휃 ≤ Λ ≤ 1 + 휃

{Λ } ≥ 0
0, 표푡ℎ푒푟푤푖푠푒

 (5)

where 퐾(푞, Λ , 휃) is a function to determine if the node lies on a surface, 푣 is the first
vertex of a triangle in ℝ , 훽 is the node being evaluated, 푛⃑ is the unit normal of the tri-
angle, 휃 is the numerical tolerance, and Λ is the barycentric coordinates of a point 훼
for the triangle where 훼 is equal to

훼 = (푞)푛⃑ − 훽 (6)

The fourth stage is the trimming algorithm which begins by evaluating each line seg-
ment from the voxelized structure and checks if an intersection occurs within it and the
triangulated surface. Möller–Trumbore’s ray-triangle intersection algorithm is adopted
for this operation [16,17]. During the trimming process, the nodes at the surface of the
trimmed structure are also extracted to be used for constructing the lattice net.

After calculating all possible intersections between the line and the triangulated sur-
face, the algorithm is used to classify the intersections depending on the locations of the
nodes from the second and third stage. The type of class determines if the line should be
cut, kept, or rejected and which line segment pieces are to be retained. There are two main
cases and eleven subcases for classifying line segments and is illustrated in Figure 5.

Figure 5. Line segment classification within a hollow sphere: (red) exterior node, (blue) interior
node, (green) surface node, (dotted line) interior segment, and (solid line) exterior segment.

A hollow sphere is used to illustrate the different possibilities for a line segment in-
tersection with a closed surface. Case 1 in Figure 5 shows six subcases where a node is on
the surface of the triangulated surface while Case 2 contains five general subcases. The
distinction between Case 1 and 2 is required because a node on the surface cannot be clas-
sified as either outside or inside the design space and the general method will fail. Dotted
lines are line segments inside the hollow sphere and solid lines are located outside of the

(2.1)

(2.2)

(2.3)

(2.5)

(2.4)

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

Case 1 : Node On Surface Case 2 : Nodes not On Surface

Figure 5. Line segment classification within a hollow sphere: (red) exterior node, (blue) interior node, (green) surface node,
(dotted line) interior segment, and (solid line) exterior segment.

A hollow sphere is used to illustrate the different possibilities for a line segment
intersection with a closed surface. Case 1 in Figure 5 shows six subcases where a node
is on the surface of the triangulated surface while Case 2 contains five general subcases.

Appl. Mech. 2021, 2 88

The distinction between Case 1 and 2 is required because a node on the surface cannot
be classified as either outside or inside the design space and the general method will fail.
Dotted lines are line segments inside the hollow sphere and solid lines are located outside
of the closed surface. The goal of the trimming and classification process is to retain the
interior (dotted) line segments. The line subcase is used to determine a starting point (or
reference node) for a pairing algorithm to determine the correct line segment pieces to
be extracted. Intersection points at the surface are saved as surface nodes to build the
lattice net.

Appendix A.1 contains Algorithm A1 that exploits line segments classification given
positions of the nodes and its intersections with the triangulated surface. Algorithm A1
uses Boolean logical arrays to sort the line segments efficiently. After sorting, the interior
line segment pieces can be identified by grouping nodes without replacement based on their
distance from a reference node. In addition, Appendix A.2 presents the process of selecting
the proper reference node for collecting the interior line segment pieces where a reference
node is either an intersection point or an interior point depending on the line segment
case. After the final step, the interior line segments are retained as the final trimmed lattices
structure. The entire algorithm for generating the interior struts and collecting surface
nodes is shown in Appendix A.3.

5. Algorithm for a Conformal Lattice Net for a Trimmed Symmetric Lattice

For a given closed surface and an interior trimmed lattice, it is possible to connect
the cut struts together using the common crystallographic planes of the unit cell. Closing
open connections is important, as unconnected struts bear no loads and only unnecessarily
increase the weight and manufacturing time of the final design. Connecting the exterior
lattice nodes also helps with ensuring that the entire volume is utilized.

Before initializing the lattice net generation algorithm, the center of rotation (for the
triangulated surface), surface node coordinates (intersection between the truncated struts
and the triangulated surface), and a seeding point are required. The seeding point is the
minimum coordinates for a unit cell or voxel centroid. The seeding point is used to orient
and correctly space the contours along the triangulated surface. The center of rotation is
used for plane-surface contour collection which rotates the triangulated surface so its z-axis
is equivalent to the plane normal direction of the unit cells crystallographic planes. In
addition, information about the unit cell crystallographic planes is required and includes
the inter-planar spacing between common planes and their associated unit normal. Figure 6
displays and categorizes the necessary input required for the lattice net algorithm.

Appl. Mech. 2021, 2, FOR PEER REVIEW 8

closed surface. The goal of the trimming and classification process is to retain the interior
(dotted) line segments. The line subcase is used to determine a starting point (or reference
node) for a pairing algorithm to determine the correct line segment pieces to be extracted.
Intersection points at the surface are saved as surface nodes to build the lattice net.

Appendix A.1 contains algorithm 1 that exploits line segments classification given
positions of the nodes and its intersections with the triangulated surface. Algorithm 1 uses
Boolean logical arrays to sort the line segments efficiently. After sorting, the interior line
segment pieces can be identified by grouping nodes without replacement based on their
distance from a reference node. In addition, Appendix A.2 presents the process of select-
ing the proper reference node for collecting the interior line segment pieces where a ref-
erence node is either an intersection point or an interior point depending on the line seg-
ment case. After the final step, the interior line segments are retained as the final trimmed
lattices structure. The entire algorithm for generating the interior struts and collecting sur-
face nodes is shown in Appendix A.3.

5. Algorithm for a Conformal Lattice Net for a Trimmed Symmetric Lattice
For a given closed surface and an interior trimmed lattice, it is possible to connect the

cut struts together using the common crystallographic planes of the unit cell. Closing open
connections is important, as unconnected struts bear no loads and only unnecessarily in-
crease the weight and manufacturing time of the final design. Connecting the exterior lat-
tice nodes also helps with ensuring that the entire volume is utilized.

Before initializing the lattice net generation algorithm, the center of rotation (for the
triangulated surface), surface node coordinates (intersection between the truncated struts
and the triangulated surface), and a seeding point are required. The seeding point is the
minimum coordinates for a unit cell or voxel centroid. The seeding point is used to orient
and correctly space the contours along the triangulated surface. The center of rotation is
used for plane-surface contour collection which rotates the triangulated surface so its z-
axis is equivalent to the plane normal direction of the unit cells crystallographic planes. In
addition, information about the unit cell crystallographic planes is required and includes
the inter-planar spacing between common planes and their associated unit normal. Figure
6 displays and categorizes the necessary input required for the lattice net algorithm.

Figure 6. Input information for lattice net generation.

The lattice net generation algorithm contains five stages, as shown in Figure 7: a con-
tour collection stage, additional nodes from contour intersection and “important features”
collections stage, then the lattice net generations stage which includes a projection filter,
then a feature preservation stage followed by a final clean-up stage. A feature is a sharp
angle on the triangulated surface to be retained in the lattice net during the contour col-
lection stage. After generating the lattice net, a postprocessing step is applied to remove
any duplicate line segments. The final cleanup step, which collapses beams with less than

Center of Rotation

Triangulated Surface

Surface node Coordinates

(intersection nodes)

Seeding Point

(minimum voxel centroid)

Collect Information

Closed Surface

Trimmed Structure

Unit Cell

Crystallographic Plane

Unit Normals

Plane Spacing

Figure 6. Input information for lattice net generation.

Appl. Mech. 2021, 2 89

The lattice net generation algorithm contains five stages, as shown in Figure 7: a contour
collection stage, additional nodes from contour intersection and “important features” col-
lections stage, then the lattice net generations stage which includes a projection filter, then
a feature preservation stage followed by a final clean-up stage. A feature is a sharp angle
on the triangulated surface to be retained in the lattice net during the contour collection
stage. After generating the lattice net, a postprocessing step is applied to remove any
duplicate line segments. The final cleanup step, which collapses beams with less than three
connections, is done to simplify the wireframe structure. A pseudocode is developed for
the whole process and can be found in Appendix A.7.

Appl. Mech. 2021, 2, FOR PEER REVIEW 9

three connections, is done to simplify the wireframe structure. A pseudocode is developed
for the whole process and can be found in Appendix A.7.

Figure 7. Lattice net workflow.

5.1. Initial Contour Collection
The first step collects the contours for all possible planes along the triangulated sur-

face. The rotation center is used to rotate the triangulated surface so that the z-axis matches
the normal of a particular crystallographic plane as illustrated in Figure 8. A rotation ma-
trix is calculated for each crystallographic plane normal and can be defined as [28,29]

푅 = 퐼 + [휏]× + [휏]×
1 − 푣⃑ ∙ 푢⃑
‖푣⃑ × 푢⃑‖ , i = 1,2,3, … k (7)

where 푅 is the rotation matrix to align 푣⃑ with 푢⃑, 퐼 is the identity matrix, [휏]× is a
skew-symmetric cross product matrix between 푣⃑ , and 푢⃑ and 푖 is a subscript for the 푘
crystallographic planes.

Figure 8. Axis realignment and planar elevations calculations.

(z-axis)

(x-axis)

(y-axis)

푹풊

(z-axis’)

(x-axis’)

(y-axis’) 풖풛⃑

풗⃑

풄 풄

풖풛⃑

풗⃑

풔̇

풔̇

풅풊

풛 풏⃑

Contour
Collection

Calculate and add
Contour

Intersection Nodes
to Surface nodes

Lattice Net Workflow

Loop Around
Contour Segment and

Create Lattice Net
Struts from surface

Calculate and
add Important

Feature Nodes to
Surface nodes

Send Lattice Net
struts through

Projection Filter

Add Important
Feature to Lattice

Net

Combine All
Accepted

Lattice Net
Segments
Together

Clean-Up
Step

Algorithm 8:
Additional
Connection
Algorithm

Algorithm 6:
Projection Filter

Algorithm 4:
Contour Collection

Algorithm 5:
Additional Surface nodes

Figure 7. Lattice net workflow.

5.1. Initial Contour Collection

The first step collects the contours for all possible planes along the triangulated surface.
The rotation center is used to rotate the triangulated surface so that the z-axis matches the
normal of a particular crystallographic plane as illustrated in Figure 8. A rotation matrix is
calculated for each crystallographic plane normal and can be defined as [28,29]

Ri = I + [τ]× + [τ]2×
1−⇀

vi·
⇀
uz

‖⇀vi ×
⇀
uz‖

2 , i = 1, 2, 3, . . . k (7)

where Ri is the rotation matrix to align
⇀
v i with

⇀
uz, I is the identity matrix, [τ]× is a

skew-symmetric cross product matrix between
⇀
v i, and

⇀
u z and i is a subscript for the k

crystallographic planes.

Appl. Mech. 2021, 2 90

Appl. Mech. 2021, 2, FOR PEER REVIEW 9

three connections, is done to simplify the wireframe structure. A pseudocode is developed
for the whole process and can be found in Appendix A.7.

Figure 7. Lattice net workflow.

5.1. Initial Contour Collection
The first step collects the contours for all possible planes along the triangulated sur-

face. The rotation center is used to rotate the triangulated surface so that the z-axis matches
the normal of a particular crystallographic plane as illustrated in Figure 8. A rotation ma-
trix is calculated for each crystallographic plane normal and can be defined as [28,29]

푅 = 퐼 + [휏]× + [휏]×
1 − 푣⃑ ∙ 푢⃑
‖푣⃑ × 푢⃑‖ , i = 1,2,3, … k (7)

where 푅 is the rotation matrix to align 푣⃑ with 푢⃑, 퐼 is the identity matrix, [휏]× is a
skew-symmetric cross product matrix between 푣⃑ , and 푢⃑ and 푖 is a subscript for the 푘
crystallographic planes.

Figure 8. Axis realignment and planar elevations calculations.

(z-axis)

(x-axis)

(y-axis)

푹풊

(z-axis’)

(x-axis’)

(y-axis’) 풖풛⃑

풗⃑

풄

풄

풖풛⃑

풗⃑

풔̇

풔̇

풅풊

풛 풏⃑

Contour
Collection

Calculate and add
Contour

Intersection Nodes
to Surface nodes

Lattice Net Workflow

Loop Around
Contour Segment and

Create Lattice Net
Struts from surface

Calculate and
add Important

Feature Nodes to
Surface nodes

Send Lattice Net
struts through

Projection Filter

Add Important
Feature to Lattice

Net

Combine All
Accepted

Lattice Net
Segments
Together

Clean-Up
Step

Algorithm 8:
Additional
Connection
Algorithm

Algorithm 6:
Projection Filter

Algorithm 4:
Contour Collection

Algorithm 5:

Additional Surface nodes

Figure 8. Axis realignment and planar elevations calculations.

If both vectors
⇀
v and

⇀
u are equivalent, then the rotation matrix Ri cannot be calculated

and is instead replaced with the identity matrix. Another condition which results in a
singular rotation matrix is when

⇀
v i = −⇀

u z; Ri and must be replaced with −I. The vector
⇀
v i is the crystallographic plane normal while

⇀
uz is the direction of the z-axis and is (0, 0, 1).

Surface contours are collected at different elevations determined by crystallographic
plane distances. The plane distances are the inter-planar distance between the same planes
in a repeated unit cell structure. The planar elevations are calculated as

si = Ri(s− c) + c (8)

⇀
zin = siz + din, n = 1, 2, 3 . . . m (9)

where
⇀
zin is a sequence of elevations, di is the inter-planar distance, and si is the re-oriented

seeding point for crystallographic plane i. m is an integer number such that the maximum
elevation is higher than the rotated triangulated surfaces highest surface node. s is the
original coordinate of the seeding point and c is the center of rotation.

Contour edges are computed using the Möller–Trumbore’s algorithm for surface inter-
sections [30,31]. As shown in Figure 9, one large equilateral triangle is used for slicing the
triangulated surface; the contour edges are collected into organized lists to form a loop and
then stored into an individual “bin” for each elevation and plane. For each contour, the nodes
defining the path of the contour must be reoriented from the current z-axis to their original
axis using R−1

i about c. A pseudocode for this process can be seen in Appendix A.4.

5.2. Additional Surface Nodes Calculations

Using the trimming algorithm, additional nodes are added to the input surface defini-
tion which are calculated from the intersections between the plane slicing contours. This
occurs for lattice topologies such as BCC where an “X” shape of the interior struts must be
projected onto the surface of the volume and can be seen in Figure 11a. In addition to the
intersections, important sharp features can also be preserved. Important features can also
be retained by supplying an edge list of sharp features. For example, the edges of a cube,
shown in Figure 11b, are sharp features that can be preserved and retained in the lattice
net. In MATLAB, this can be done using the function “featureEdges” [32].

Appl. Mech. 2021, 2 91

Appl. Mech. 2021, 2, FOR PEER REVIEW 10

If both vectors 푣⃑ and 푢⃑ are equivalent, then the rotation matrix 푅 cannot be calcu-
lated and is instead replaced with the identity matrix. Another condition which results in
a singular rotation matrix is when 푣⃑ = −푢⃑ ; 푅 and must be replaced with −퐼. The vec-
tor 푣⃑ is the crystallographic plane normal while 푢⃑ is the direction of the z-axis and is
(0,0,1).

Surface contours are collected at different elevations determined by crystallographic
plane distances. The plane distances are the inter-planar distance between the same planes
in a repeated unit cell structure. The planar elevations are calculated as

푠 = 푅 (푠 − 푐) + 푐 (8)

푧 ⃑ = 푠 + 푑 푛, 푛 = 1,2,3 … 푚 (9)

where 푧 ⃑ is a sequence of elevations, 푑 is the inter-planar distance, and 푠 is the re-
oriented seeding point for crystallographic plane 푖. 푚 is an integer number such that the
maximum elevation is higher than the rotated triangulated surfaces highest surface node.
푠 is the original coordinate of the seeding point and 푐 is the center of rotation.

Contour edges are computed using the Möller–Trumbore’s algorithm for surface in-
tersections [30,31]. As shown in Figure 9, one large equilateral triangle is used for slicing
the triangulated surface; the contour edges are collected into organized lists to form a loop
and then stored into an individual “bin” for each elevation and plane. For each contour,
the nodes defining the path of the contour must be reoriented from the current z-axis to
their original axis using 푅 about 푐. A pseudocode for this process can be seen in Ap-
pendix A.4.

Figure 9. Surface intersection: (a) orientation and (b) sphere sliced by triangle creates con-
tour at 풛풊풏 = 풅풊.

5.2. Additional Surface Nodes Calculations
Using the trimming algorithm, additional nodes are added to the input surface defi-

nition which are calculated from the intersections between the plane slicing contours. This
occurs for lattice topologies such as BCC where an “X” shape of the interior struts must
be projected onto the surface of the volume and can be seen in Figure 11a. In addition to
the intersections, important sharp features can also be preserved. Important features can
also be retained by supplying an edge list of sharp features. For example, the edges of a
cube, shown in Figure 11b, are sharp features that can be preserved and retained in the
lattice net. In MATLAB, this can be done using the function “featureEdges” [32].

The additional nodes for both the contour intersection and important features are
found by first rotating the contour lines and the important feature edges around the center
of rotation 푐 so that the crystallographic plane normal points into the z-direction. This
rotation strategy is the same as for the contour collection algorithm shown in Equation
(7). The second step is to calculate the intersection nodes from the specified planar heights

(z-axis’)

(x-axis’)

(y-axis’)
풖풛⃑

풗⃑

풄

풔̇

(z-axis’)

(x-axis’)

(y-axis’)
풄

풔̇

풅풊

풛 풏⃑

a) b)

Figure 9. Surface intersection: (a) orientation and (b) sphere sliced by triangle creates contour at zin = di.

The additional nodes for both the contour intersection and important features are
found by first rotating the contour lines and the important feature edges around the center
of rotation c so that the crystallographic plane normal points into the z-direction. This
rotation strategy is the same as for the contour collection algorithm shown in Equation (7).
The second step is to calculate the intersection nodes from the specified planar heights for
the given rotation. The heights or elevations are calculated using Equations (8) and (9).
Edges in plane with the current plane or elevations are omitted. To find the intersection
points, the feature and contour edges are converted into a parameterized line formulated as

f (t) = p1 + t(p2 − p1) (10)

where t is the independent variable, and p1 and p2 are points along the line segment or
edge. To solve for t, Equation (10) can be rearranged as

⇀
tiz =

(
⇀
zin − p1Z

)
/(p2Z − p1Z) (11)

where
⇀
zin is a sequence of target elevations from the planar distances for a particular

crystallographic plane i. A valid intersection occurs when 1 ≥ t ≥ 0. Valid intersection
points are rotated about c with R−1

i and added to the “bin” (or list) of surface nodes bin
with duplicate nodes removed. This bin of nodes is then used to generate the lattice net in
the third stage. A pseudocode is written to further explain the method and is referred to as
“Appendix A.5. Algorithm A5: Additional Surface Nodes” in Appendix A.5.

5.3. Connecting the Lattice Net

The proposed algorithm loops through all the contours and connects the cut struts
together based on a collection of surface nodes acquired from the second stage. Note in
this research paper that the surface nodes obtained by the intersection points calculated
from the trimming algorithm are the same as those calculated from the contour–contour
intersection nodes. For this reason, it is possible to construct the net independently from
the interior trimmed lattice.

For a collection of contours for a specific crystallographic plane (i), the lattice net
generation algorithm collects any surface nodes that lie within the specified contour loop
into a list. That list is then converted into new line segments that represent wireframe
sections of the lattice net.

When all the contours have been evaluated for the current plane, a projection filter
is used to remove line segments that do not satisfy the unit cells strut orientation for

Appl. Mech. 2021, 2 92

that crystallographic plane. The filter also aims to remove zero-length line segments when
projected into specific planes. If a line segment is accepted by the filter at certain angles, then
it is retained in the lattice net. An illustration of this procedure can be seen in Figure 10a
for a BCC lattice. The red segments are the accepted sections from the filter while the black
sections are the rejected pieces. The summation of all the accepted contour sections will
create the final lattice net. An example of the final lattice net and its construction is shown
in Figure 10c.

There are two possible filtering methods developed in this work. The first filter works
by comparing the ratio of the projected normalized crystallographic plane normal into the
x, y, and z planes with the projected length of the line segments normalized directions into
the same x, y, and z planes. However, any projection plane can be used depending on the
type of lattice topology or crystallographic family. Projection of a line onto a plane can be
calculated as

⇀
g =

⇀
a ‖

⇀
b =

⇀
b ×

⇀
a ×

⇀
b

‖
⇀
b ‖

 1

‖
⇀
b ‖

(12)

where
⇀
a is the normalized direction of the line,

⇀
b is the plane unit normal, and

⇀
g is the

resulting projected line. For both discussed filters in the paper, the projected normal of the
crystallographic plane is projected along with the list of line segments.

If the line segment can satisfy the projection onto any of the three planes, then it is
not rejected. A tolerance is given for the ratios to relax the acceptance criteria; a tighter
tolerance would mean that the remaining line segments will need to strictly satisfy the
projection lines. A tolerance of zero would work best if the curvature of the surface is zero
such as a cube. For curved surface a higher tolerance is needed. Equation (13) is used to
determine if a line segment will be accepted by the first filter.

Accept =

 true, 1− θ < ‖⇀gz‖
‖⇀g i‖

< 1 + θ

f alse, otherwise
(13)

where
⇀
g i is the projected crystallographic plane normal onto the projection plane, gz is a

projected line segment onto the projection plane, and θ is a tolerance level.
The second projection filter method compares the components of the projected seg-

ments
⇀
gz to

⇀
g i and −⇀

g i as the filtering criterion. The criteria to determine if the line
segment is accepted by the second filter type can be expressed as

Accept =

true, i f 2 ≤

3
∑

j = 1

1,

⇀
g ij

+ θ < gz j <
⇀
g ij

+ θ

1, −⇀
g ij

+ θ < gz j < −
⇀
g ij

+ θ

0, otherwise
f alse, otherwise

(14)

where j indexes the dimensional entries of the vectors.
The second filter type cannot be applied to cubic unit cell crystallographic planes

(100), (010), and (001) because all line segments will be rejected. However, this method has
shown to work very well with BCC unit cell topologies for planes (110), (101), and (011).
The pseudocode for the projection filters is given in Appendix A.6.

Appl. Mech. 2021, 2 93
Appl. Mech. 2021, 2, FOR PEER REVIEW 12

(a)

(b) (c)

Figure 10. (a) Filtering of lattice net segments for each crystallographic plane of a BCC unit cell (Red = Accepted, Black =
Rejected), (b) input mesh, and (c) final construction.

There are two possible filtering methods developed in this work. The first filter works
by comparing the ratio of the projected normalized crystallographic plane normal into the
x, y, and z planes with the projected length of the line segments normalized directions
into the same x, y, and z planes. However, any projection plane can be used depending
on the type of lattice topology or crystallographic family. Projection of a line onto a plane
can be calculated as

푔⃑ = 푎⃑‖푏⃑ = 푏⃑ ×
푎⃑ × 푏⃑

푏⃑
1
푏⃑

 (12)

where 푎⃑ is the normalized direction of the line, 푏⃑ is the plane unit normal, and 푔⃑ is the
resulting projected line. For both discussed filters in the paper, the projected normal of the
crystallographic plane is projected along with the list of line segments.

If the line segment can satisfy the projection onto any of the three planes, then it is
not rejected. A tolerance is given for the ratios to relax the acceptance criteria; a tighter
tolerance would mean that the remaining line segments will need to strictly satisfy the
projection lines. A tolerance of zero would work best if the curvature of the surface is zero
such as a cube. For curved surface a higher tolerance is needed. Equation (13) is used to
determine if a line segment will be accepted by the first filter.

Figure 10. (a) Filtering of lattice net segments for each crystallographic plane of a BCC unit cell (Red = Accepted, Black = Re-
jected), (b) input mesh, and (c) final construction.

Appl. Mech. 2021, 2 94

5.4. Additional Connections for the Conformal Lattice Net

After the initial construction of the lattice net, unit cells could be projected onto sharp
corners or features. If the unit cell size does not precisely match the dimensions of the sharp
geometries, a discontinuity between the struts will occur at the sharp feature. This occurs
when the corner of a unit cell is not placed directly at a vertex. Figure 11a shows a cube
without any additional connections at the edges, while Figure 11b shows the addition of
the important features into the lattice net. The added features allow structural loads to be
transferred uniformly throughout the net eliminating discontinuities and improving the
mechanical behavior of the lattice structure.

Appl. Mech. 2021, 2, FOR PEER REVIEW 13

퐴푐푐푒푝푡 = 푡푟푢푒, 1 − 휃 <
‖푔⃑‖
‖푔⃑ ‖ < 1 + 휃

푓푎푙푠푒, 표푡ℎ푒푟푤푖푠푒
 (13)

where 푔⃑ is the projected crystallographic plane normal onto the projection plane, 푔 is
a projected line segment onto the projection plane, and 휃 is a tolerance level.

The second projection filter method compares the components of the projected seg-
ments 푔⃑ to 푔⃑ and −푔⃑ as the filtering criterion. The criteria to determine if the line seg-
ment is accepted by the second filter type can be expressed as

퐴푐푐푒푝푡 =

⎩
⎪
⎨

⎪
⎧

푡푟푢푒, 푖푓 2 ≤
1, 푔⃑ + 휃 < 푔 < 푔⃑ + 휃
1, −푔⃑ + 휃 < 푔 < −푔⃑ + 휃

0, 표푡ℎ푒푟푤푖푠푒
푓푎푙푠푒, 표푡ℎ푒푟푤푖푠푒

 (14)

where 푗 indexes the dimensional entries of the vectors.
The second filter type cannot be applied to cubic unit cell crystallographic planes

(100), (010), and (001) because all line segments will be rejected. However, this method
has shown to work very well with BCC unit cell topologies for planes (110), (101), and
(011). The pseudocode for the projection filters is given in Appendix A.6.

5.4. Additional Connections for the Conformal Lattice Net
After the initial construction of the lattice net, unit cells could be projected onto sharp

corners or features. If the unit cell size does not precisely match the dimensions of the
sharp geometries, a discontinuity between the struts will occur at the sharp feature. This
occurs when the corner of a unit cell is not placed directly at a vertex. Figure 11a shows a
cube without any additional connections at the edges, while Figure 11b shows the addi-
tion of the important features into the lattice net. The added features allow structural loads
to be transferred uniformly throughout the net eliminating discontinuities and improving
the mechanical behavior of the lattice structure.

(a) (b)

Figure 11. (a) Lattice net without preserved features (b) Lattice net with preserved features.

To promote better continuity in the lattice structure, sharp features of the geometry
are extracted and added to the lattice net. This is done by collecting sharp edges of the
input triangulated surface and then organizing those edges into open and closed loops.
Loops are defined as edges connected to other edges based on a common node. A closed
loop is a sequence of nodes where the first and final nodes are identical while an open
loop has different nodes at each end. The nodes at intersections or junctions between the
open and closed loops are also identified and are added to the list of lattice nodes. Junction
points are found if a node is referenced more than twice from the extracted edges.

Figure 11. (a) Lattice net without preserved features (b) Lattice net with preserved features.

To promote better continuity in the lattice structure, sharp features of the geometry are
extracted and added to the lattice net. This is done by collecting sharp edges of the input
triangulated surface and then organizing those edges into open and closed loops. Loops
are defined as edges connected to other edges based on a common node. A closed loop is
a sequence of nodes where the first and final nodes are identical while an open loop has
different nodes at each end. The nodes at intersections or junctions between the open and
closed loops are also identified and are added to the list of lattice nodes. Junction points
are found if a node is referenced more than twice from the extracted edges.

The new struts are created by following the open and closed loops and collecting
any of the lattice net nodes or junction points that fall within the edges into an ordered
list or sequence. If each node in the ordered lists is given unique identification, then the
new struts can be created by connecting the nodes together from their positions in a list.
A pseudocode is for the process is found in Appendix A.8, labeled as “Appendix A.8.
Algorithm A8: Additional Connections Algorithm” to explain the entire process.

5.5. Clean Up Step

The last step for the wireframe development includes a clean-up stage. Line segment
connections are simplified by ensuring that all nodes are connected to at least three line
segments. This does not include nodes that are used to conserve important features or sharp
edges. After the net clean-up step, the interior trimmed lattice and lattice net are combined,
and any duplicate line segments are removed from the structure. In a structural sense, the

Appl. Mech. 2021, 2 95

clean-up step helps improve connectivity by removing non-load-bearing connections and
creates more efficient load paths.

6. Numerical Examples and Demonstrations

The importance of filtering the struts is shown in Figure 12a,b. The initial surface
contours create additional vertical cuts in Figure 12a on the front and top faces. Figure 12b
is the result of projection filtering to remove the unneeded contour lines. The effects of
scaling by different unit cell sizes are shown in Figure 12e,f. The cylinder in Figure 12e
contains small patterns where the unit cell is cut and produces nonuniform geometry
radially. Figure 12f shows for smaller unit cell sizes the effects nonuniformity is diminished.
Rotation of different sized unit cells is demonstrated in Figure 12c,d where the front
faces pattern is rotated 30 degrees and has a net pattern slightly smaller than the top and
side faces.

Appl. Mech. 2021, 2, FOR PEER REVIEW 15

Figure 12. FCC net (a), no filter (b) and with filter applied (c,d), cube with lattice rotated 30° with
unit cell sizes 12 and 9 (e,f), and cylinder with unit cell sizes 12 and 9.

Six crystallographic planes are observed in cubic Bravais lattices. FCC topology con-
tains six plane types and is a superposition of the Cubic planes and the BCC planes. For
some lattice configurations such as diamond (Figure 13a) and the octet truss (Figure 13d),
the side profiles of these topologies are equivalent to the BCC and FCC unit cell, respec-
tively. Figure 13b shows the front view of the diamond lattice is equivalent to that of the
BCC lattice and its skin is meshed using crystallographic planes (110), (101), and (011) in
Figure 13c.

(a) (b)

(c) (d)

(e) (f)
Figure 12. Cont.

Appl. Mech. 2021, 2 96

Appl. Mech. 2021, 2, FOR PEER REVIEW 15

Figure 12. FCC net (a), no filter (b) and with filter applied (c,d), cube with lattice rotated 30° with
unit cell sizes 12 and 9 (e,f), and cylinder with unit cell sizes 12 and 9.

Six crystallographic planes are observed in cubic Bravais lattices. FCC topology con-
tains six plane types and is a superposition of the Cubic planes and the BCC planes. For
some lattice configurations such as diamond (Figure 13a) and the octet truss (Figure 13d),
the side profiles of these topologies are equivalent to the BCC and FCC unit cell, respec-
tively. Figure 13b shows the front view of the diamond lattice is equivalent to that of the
BCC lattice and its skin is meshed using crystallographic planes (110), (101), and (011) in
Figure 13c.

(a) (b)

(c) (d)

(e) (f)

Figure 12. FCC net (a), no filter (b) and with filter applied (c,d), cube with lattice rotated 30◦ with unit cell sizes 12 and 9
(e,f), and cylinder with unit cell sizes 12 and 9.

Six crystallographic planes are observed in cubic Bravais lattices. FCC topology con-
tains six plane types and is a superposition of the Cubic planes and the BCC planes. For
some lattice configurations such as diamond (Figure 13a) and the octet truss (Figure 13d),
the side profiles of these topologies are equivalent to the BCC and FCC unit cell, respec-
tively. Figure 13b shows the front view of the diamond lattice is equivalent to that of the
BCC lattice and its skin is meshed using crystallographic planes (110), (101), and (011)
in Figure 13c.

Appl. Mech. 2021, 2, FOR PEER REVIEW 16

Figure 13. (a) Interior diamond lattice, (b) front view of diamond lattice, (c) diamond lattice net
using {110}, (d) bunny interior of octet truss, (e) octet truss lattice net with {111}, and (f) octet truss
lattice net with no filter and planes (ퟏퟏퟏ), (ퟏퟏퟏ), (ퟏퟏퟏ).

Figure 13f displays a lattice net around the Stanford bunny model using only three
crystallographic planes and no filter to connect an interior octet-truss lattice shown in Fig-
ure 13d. The resulting net is very similar to Figure 13e which had used all family planes
from {111} and the projection filter. This shows the possibility to omit the filter and select
a few planes of symmetry to connect all the cut struts together of a trimmed lattice.

7. Lattice Net Case Study Example for Engineering Applications
The purpose the lattice trimming algorithm is to generate a wireframe structure that

can be embedded into any complex geometry. This wire frame geometry is then directly
converted into a collection of beam elements in a finite element mesh for sizing optimiza-
tions. This section will demonstrate the performance of an optimized lattice structure
meshed with different lattice topologies when a lattice net is or is not applied to the out-
side geometry. A simple Messerschmitt–Bolkow–Blohm (MBB) Beam [33] is used to com-
pare the different lattice topologies and their performances when subjected to sizing op-
timizations.

7.1. Problem Formulation
The optimization problem is formulated such that design variables are the cross sec-

tion radii of the beam elements and are named 푟 , and 푟 , seen in Equation (15). Tapered
beams are used in the finite element mesh with the common joints as a unified design
variable for all connected tapered beams. The advantage of using tapered beam elements
is that the unified joints will reduce the number of design variables during the optimiza-
tion. The optimization problem will be referred to as a lattice beam optimization and is
described by Equation (15).

(a) (b) (c)

(d) (e) (f)

Figure 13. (a) Interior diamond lattice, (b) front view of diamond lattice, (c) diamond lattice net using {110}, (d) bunny interior
of octet truss, (e) octet truss lattice net with {111}, and (f) octet truss lattice net with no filter and planes

(
111
)
,
(
111
)
,
(
111
)
.

Appl. Mech. 2021, 2 97

Figure 13f displays a lattice net around the Stanford bunny model using only three
crystallographic planes and no filter to connect an interior octet-truss lattice shown in
Figure 13d. The resulting net is very similar to Figure 13e which had used all family planes
from {111} and the projection filter. This shows the possibility to omit the filter and select a
few planes of symmetry to connect all the cut struts together of a trimmed lattice.

7. Lattice Net Case Study Example for Engineering Applications

The purpose the lattice trimming algorithm is to generate a wireframe structure that can
be embedded into any complex geometry. This wire frame geometry is then directly converted
into a collection of beam elements in a finite element mesh for sizing optimizations. This
section will demonstrate the performance of an optimized lattice structure meshed with
different lattice topologies when a lattice net is or is not applied to the outside geometry.
A simple Messerschmitt–Bolkow–Blohm (MBB) Beam [33] is used to compare the different
lattice topologies and their performances when subjected to sizing optimizations.

7.1. Problem Formulation

The optimization problem is formulated such that design variables are the cross section
radii of the beam elements and are named ri,1 and ri,2 seen in Equation (15). Tapered beams
are used in the finite element mesh with the common joints as a unified design variable
for all connected tapered beams. The advantage of using tapered beam elements is that
the unified joints will reduce the number of design variables during the optimization. The
optimization problem will be referred to as a lattice beam optimization and is described
by Equation (15).

minimize : mlattice =
e
∑

i = 1

1
2 ρiπ

(
r2

i,1 + r2
i,2

)
Li

subject to :

K(r)U = F

σi(ri, Ui) ≤ σmax
rmin ≤ ri ≤ rmax

ρi, Li > 0

(15)

where ri is the cross-sectional radii of the ends of the tapered beams, KI is the global
stiffness matrix as a function of the design variables, F is a constant force vector for static
analysis, σmax is the maximum allowable stress (880 MPa), ρi is the density of the material,
Li is the length of the ith beam, and e is the number of tapered beam elements. The objective
mlattice measures the mass. The minimum radii distance for the optimization is 0.001 mm
and the maximum radius is 0.5 mm. Titanium was chosen as the material of choice and the
young’s modulus is rated at 11,400 MPa, Poisson ratio is 0.31, density is 4.506 g/cm3, and
has a yield strength of 880 MPa. As a note to the reader, buckling is traditionally considered
in beam sizing optimizations but is omitted due to limitations in the structural solver [34].
The effectiveness of the lattice net in this research will therefore demonstrate the benefits
for stress constraint mass minimization.

The MBB beam is meshed with different lattice topologies and includes Cubic, BCC,
FCC, and the octet truss. The MBB beam is a double supported beam with a vertical force
applied at the center. Figure 14 shows the MBB mesh where the yellow elements represent
the lattice domain to be replaced with a trimmed lattice structure and the brown elements
represent the solid domain to attach forces and boundary conditions.

Appl. Mech. 2021, 2 98

Appl. Mech. 2021, 2, FOR PEER REVIEW 17

minimize: 푚 =
1
2

휌 휋 푟 , + 푟 , 퐿

subject to:

퐾(푟)푈 = 퐹
휎 (푟 , 푈) ≤ 휎
푟 ≤ 푟 ≤ 푟

휌 , 퐿 > 0

(15)

where 푟 is the cross-sectional radii of the ends of the tapered beams, KI is the global
stiffness matrix as a function of the design variables, F is a constant force vector for static
analysis, 휎 is the maximum allowable stress (880 MPa), 휌 is the density of the mate-
rial, 퐿 is the length of the ith beam, and 푒 is the number of tapered beam elements. The
objective 푚 measures the mass. The minimum radii distance for the optimization is
0.001 mm and the maximum radius is 0.5 mm. Titanium was chosen as the material of
choice and the young`s modulus is rated at 11,400 MPa, Poisson ratio is 0.31, density is
4.506 g/cm3, and has a yield strength of 880 MPa. As a note to the reader, buckling is tra-
ditionally considered in beam sizing optimizations but is omitted due to limitations in the
structural solver [34]. The effectiveness of the lattice net in this research will therefore
demonstrate the benefits for stress constraint mass minimization.

The MBB beam is meshed with different lattice topologies and includes Cubic, BCC,
FCC, and the octet truss. The MBB beam is a double supported beam with a vertical force
applied at the center. Figure 14 shows the MBB mesh where the yellow elements represent
the lattice domain to be replaced with a trimmed lattice structure and the brown elements
represent the solid domain to attach forces and boundary conditions.

The beams are then attached to the solid elements by tie contacts (contact surface),
where the lattice beam nodes are the slave set and the solid elements as the master set. For
test cases with a lattice net, any beam elements whose nodes are twice connected to the
master set are removed. The optimizations for the case study will be done in Altair Op-
tistruct using the “BIGOPT” optimization algorithm [34].

Figure 14. MBB Initial Problem, Yellow = Design Space, Brown = Non-design Space.

The dimensions of the MBB beam are 20 mm in the x direction, 10 mm in the y direc-
tion, and 120 mm in the z direction. The boundary conditions are applied such that the
side of the beam where the applied force is placed is free to move in the x-direction. The
constraints applied on the side of the beam without applied loads are free to move in the
z-direction. The applied force is 500 N in the x-direction and will cause a maximum de-
flection of 0.0215 mm in the x-direction with a maximum von Mises stress of approxi-
mately 21 MPa.

The models for the MBB beam meshed with lattices can be seen in Figure 15. The
crystallographic planes, unit cell sizes, and plane distances for the lattice net construction
in this case study are presented in Table 1. The projected planes for the filter were set to
the x, y, and z planes.

Figure 14. MBB Initial Problem, Yellow = Design Space, Brown = Non-design Space.

The beams are then attached to the solid elements by tie contacts (contact surface),
where the lattice beam nodes are the slave set and the solid elements as the master set.
For test cases with a lattice net, any beam elements whose nodes are twice connected to
the master set are removed. The optimizations for the case study will be done in Altair
Optistruct using the “BIGOPT” optimization algorithm [34].

The dimensions of the MBB beam are 20 mm in the x direction, 10 mm in the y direction,
and 120 mm in the z direction. The boundary conditions are applied such that the side of
the beam where the applied force is placed is free to move in the x-direction. The constraints
applied on the side of the beam without applied loads are free to move in the z-direction. The
applied force is 500 N in the x-direction and will cause a maximum deflection of 0.0215 mm
in the x-direction with a maximum von Mises stress of approximately 21 MPa.

The models for the MBB beam meshed with lattices can be seen in Figure 15. The
crystallographic planes, unit cell sizes, and plane distances for the lattice net construction
in this case study are presented in Table 1. The projected planes for the filter were set to the
x, y, and z planes.

Appl. Mech. 2021, 2 99
Appl. Mech. 2021, 2, FOR PEER REVIEW 18

Figure 15. Optimized results (yellow = trimmed interior lattice, green = lattice net, purple = single unit cell): (a) Cubic
without net. (b) Cubic with net. (c) BCC without net. (d) BCC with net. (e) FCC without net. (f) FCC with net. (g) Octet
truss without net. (h) Octet truss with net.

(a) (b)

(c) (d)

(e)

(g) (h)

(f)

Figure 15. Optimized results (yellow = trimmed interior lattice, green = lattice net, purple = single unit cell): (a) Cubic
without net. (b) Cubic with net. (c) BCC without net. (d) BCC with net. (e) FCC without net. (f) FCC with net. (g) Octet
truss without net. (h) Octet truss with net.

Appl. Mech. 2021, 2 100

Table 1. Lattice net settings for selected topologies.

Topology Unit Cell Size Crystallographic Plane Normal(s) Plane Distance

CUBIC 1.9
1 0 0 1.9
0 1 0 1.9
0 0 1 1.9

BCC 3

0 1/
√

2 −1/
√

2 2.1213
0 1/

√
2 1/

√
2 2.1213

1/
√

2 1/
√

2 0 2.1213
−1/
√

2 1/
√

2 0 2.1213
1/
√

2 0 −1/
√

2 2.1213
1/
√

2 0 1/
√

2 2.1213

FCC 3.8

0 1/
√

2 −1/
√

2 2.6870
0 1/

√
2 1/

√
2 2.6870

1/
√

2 1/
√

2 0 2.6870
−1/
√

2 1/
√

2 0 2.6870
1/
√

2 0 −1/
√

2 2.6870
1/
√

2 0 1/
√

2 2.6870
1 0 0 3.8
0 1 0 3.8
0 0 1 3.8

Octet Truss 3.8

−1/
√

3 1/
√

3 1/
√

3 2.1939
1/
√

3 −1/
√

3 1/
√

3 2.1939
−1/
√

3 −1/
√

3 1/
√

3 2.1939
−1/
√

3 1/
√

3 −1/
√

3 2.1939
−1/
√

3 −1/
√

3 −1/
√

3 2.1939
1/
√

3 1/
√

3 −1/
√

3 2.1939

7.2. Results

The results in Table 2 show that when a lattice net is added to the outside of a trimmed
lattice structure, the optimizations with the net had a significantly lower final mass. This
indicates that an added exterior lattice net is beneficial when creating lattice embedded
geometries for trimmed lattices. A lower mass will therefore reduce printing time and save
on material costs.

Table 2. Lattice net case study results.

Topology Final Mass (kg) Max Deflection Max Stress (MPa) Net? Design Variables Unit Cell Size

CUBIC 1.0821 × 10−5 0.98556 880.0763 No 2443 1.9
CUBIC 1.0061 × 10−5 1.11896 878.2104 Yes 2607 1.9

BCC 1.7263 × 10−5 1.31736 880.2637 No 2397 3
BCC 1.3831 × 10−5 0.701368 878.8573 Yes 3543 3
FCC 1.0247 × 10−5 0.875091 878.3241 No 1931 3.8
FCC 5.4147 × 10−6 0.805261 823.5212 Yes 3474 3.8

Octet Truss 8.7844 × 10−6 1.10066 870.5327 No 2703 3.8
Octet Truss 7.3769 × 10−6 0.724165 872.1389 Yes 3011 3.8

The topology with the lowest mass was the FCC topology. This could be a result
of it having more favorable strut directions and connections and a larger unit cell size
than the other topologies for this specific load case. The maximum stress in the FCC
final design was also much lower than the constraint maximum, meaning that the final
mass could potentially be much lower. Figure 15 displays the final optimized designs; the
beam size distribution was fairly homogenous among the test cases and the majority of
the beam’s radii fell between 0.24 and 0.26 mm. The specific stiffness for the net-based
optimization cases where much higher than those without the net. The octet truss, however,

Appl. Mech. 2021, 2 101

had decreased its specific stiffness as the results of adding the lattice net. However, specific
strength had improved significantly for all cases from the addition of the lattice net.

The optimization problem posed assumes that the maximum stress in the beams does
not exceed the yield strength of the material. Realistically, the maximum stress in the beams
is not the highest stress seen by the complex structure but at the nodes connecting the
struts together where stress concentrations are located. Current Euler beam theory cannot
capture this phenomenon and incorporate it into the optimization process. This in turn
resulted in lighter final designs than required for the desired loads. To avoid potential stress
concentrations with Euler beams, a stricter stress constraint would need to be imposed or
by applying a new beam formulation specifically for lattice struts. Some research has been
attempted to create a new element type to more accurately model lattice struts and could
take into consideration of the stress concentrations at the nodes [35,36]. As the methods
for representing lattice struts improve, so can the application of beam optimizations on
wireframe lattice structures.

8. Advantages and Disadvantages of the Current Lattice Net Algorithm

The main advantage of the lattice net algorithm is its ability to connect the struts of a
symmetric unit cell of any size while maintaining the overall geometry of the triangulated
surface. The ability to preserve important features is another advantage which helps
promote continuity and shape. The lattice net construction is also very fast, even for a
high number of surface nodes and plane intersections. Another crucial advantage is that
connectivity is guaranteed among all cut struts, even if the lattice net does not follow
the unit cell pattern very well. The final wireframe is also memory-efficient due to being
comprised of a list of nodal coordinates and can be easily converted into a finite element
mesh for optimization applications. Another key factor about the lattice net algorithm
is that its creation is independent of the interior trimmed lattice. This is because all of
the contour intersections between different crystallographic planes produce the same
intersection points from the lattice trimming section. The final advantage is that a BCC
combined with a CUBIC lattice net can be used for many lattice topologies that share cubic
symmetries such as the diamond lattice.

Disadvantages include the lack of support for non-symmetric lattices. Truncated
octahedron lattice structures cannot be used for the lattice net to accurately capture the
projected pattern of the lattice on a surface. However, a BCC and cubic lattice net can
connect all the cut struts of this topology because it contains Bravais crystallographic
planes. A final disadvantage is that it is not robust and depends on the tolerance level
of the projection filter. For complex surfaces, the projection filter may fail to filter out or
over filter connected struts. At sharp curvatures, the connected struts for the net may be
rejected more easily by the filter. There is also an issue of impossible strut connections at
highly curved cross sections. The issue of projection onto curved surfaces for lattice nets
has been noted by Aremu et al. [6] in their own implementation of conforming lattice skins.
Irregular strut connections arise from complex geometries such as saddle points which give
the algorithm the most problems. However, for flat surfaces, such as a cube or rectangle,
the algorithm works very well as seen Figure 11.

In conclusion, the lattice net algorithm, while not perfect, is quite flexible as only two
or three crystallographic planes are needed to connect all the cut struts together for most
symmetric topologies as seen in Figure 13f.

9. Conclusions

A method for creating a trimmed wireframe lattice was developed. This method
provides a list of surface nodes from the trimming operation to be used for constructing
the lattice net. In addition, a novel method for constructing a conformal lattice net as a
wireframe is presented. The generated lattice net is created by using the crystallographic
planes from symmetric unit cell topologies. The lattice net algorithm functions by using
contours from plane slicing at calculated intervals to connect surface nodes together which

Appl. Mech. 2021, 2 102

are then paired up and converted into struts. A projection filter is applied to remove
unneeded connections and produce an approximate projection of the unit cell onto a closed
triangulated surface. The proposed algorithm can produce a net for any complex geometry,
and construction of the net is independent of the interior trimmed structure.

An engineering comparison for microscale optimization of functionally graded mate-
rials with and without lattice nets was also done. For topologies such as cubic, BCC, and
FCC, the addition of a lattice net was beneficial during the micro-scale optimizations. The
FCC topology performed best with the net as it required the least mass for the optimization
load case. The performance improvement of the added net shows that the overall mass of
the lattice structure was lower and yielded higher specific strength and stiffness.

Author Contributions: Conceptualization, M.S.A.E.; methodology, E.T. and M.S.A.E.; software,
E.T.; validation, E.T. and M.S.A.E.; formal analysis, E.T.; investigation, E.T. and M.S.A.E.; resources,
M.S.A.E.; data curation, E.T.; writing—original draft preparation, E.T.; writing—review and edit-
ing, M.S.A.E.; visualization, E.T.; supervision, M.S.A.E.; project administration, M.S.A.E.; funding
acquisition, M.S.A.E. Both authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by BOMBARDIER INC., in collaboration with CARIC National
Forum, grant number MDO-1601 TRL4+ and MITACS Canada, grant number IT07461.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors would like to thank the financial support from BOMBARDIER INC.
Montreal, in collaboration with CARIC National Forum and MITACS Canada.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appendix A.1. Algorithm A1: Trimmed Lattice Case Sorting

Algorithm A1: Trimmed Lattice Case Sorting
{case_select, in_t, surf_t} = AlgortithmA1(in, surf, nodal_ids, int_crd)

Input: in: A logical array that classifies nodes as inside the volume
surf_t: A logical array classifying nodes as on the surface

int_crd: A list of intersection points
nodal_ids: A line segment as a pair of nodal ids

Output: a logical array to select the case case_select, in_t and surf_t
1. Index in and surf using the nodal ids to create in_t and surf_t
2. Get logical: int_occur is true if int_crd contains intersection points
3. Get logical: C1A = surf_t[1] ∧ in_t[2]
4. Get logical: C1B = surf_t[2] ∧ in_t[1]
5. Get logical: C1C = surf_t[1] ∧ ¬in_t[2]
6. Get logical: C1D = surf_t[2] ∧ ¬in_t[1]
7. Get logical: dual_surf = surf_t[1] ∧ surf_t[2]
8. Get logical: single_surf = (surf_t[1] ∧ ¬surf_t[2]) ∨ (¬surf_t[1] ∧ surf_t[2])
9. Get logical: no_surf = ¬surf_t[1] ∧ ¬surf_t[2]
10. Get logical: both_interior = in_t[1] ∧ in_t[2]
11. Get logical: both_exterior = ¬in_t[1] ∧ ¬in_t[2]
12. Case1.1: case_select[1] = dual_surf ∧ ¬int_occur
13. Case1.2: case_select[2] = dual_surf ∧ int_occur
14. Case1.3: case_select[3] = single_surf ∧ (C1C ∨ C1D) ∧ ¬int_occur
15. Case1.4: case_select[4] = single_surf ∧ (C1A ∨ C1B) ∧ ¬int_occur
16. Case1.5: case_select[5] = single_surf ∧ (C1C ∨ C1D) ∧ int_occur
17. Case1.6: case_select[6] = single_surf ∧ (C1A ∨ C1B) ∧ int_occur
18. Case2.1: case_select[7] = no_surf ∧ both_exterior ∧ ¬int_occur

Appl. Mech. 2021, 2 103

19. Case2.2: case_select[8] = no_surf ∧ both_exterior ∧ int_occur
20. Case2.3: case_select[9] = no_surf ∧ both_interior ∧ ¬int_occur
21. Case2.4: case_select[10] = no_surf ∧ both_interior ∧ int_occur
22. Case2.5: case_select[11] = no_surf ∧ single_surf ∧ int_occur

∨ = Or, ∧ = And, ¬ = not.

Appendix A.2. Algorithm A2: Trimmed Lattice Sub Algorithm

Algorithm A2: Trimmed Lattice Sub-Algorithm
{tmp_mat_sort, surf_nodes} = AlgorithmA2(case_select, in_t, surf_t, nodal_ids, int_crd)

Input:case_select: A logical array to select the case (or string)
nodal_ids: A line segment as a pair of nodal ids and coordinates

int_crd: list of nodes from intersection between surface FV and a line segment
in_t, surf_t

Output: An organized list tmp_mat_sort, a list of nodes at the surface surf_nodes
1. Organize all intersection points and nodes into a list starting from the closest to the first

node referenced by the line segment (index = 1)
2. switch (case_select)
3. Case 1.3 ∨ Case 2.1
4. Reject the Line, set tmp_mat_sort as empty
5. Case 1.1 ∨ Case 1.4 ∨ Case 2.3
6. Accept the Line and save both nodes to surf_nodes
7. Case 1.2
8. Save both nodes to surf_nodes
9. Case 1.5
10. If surf_t[2] then
11. Flip tmp_mat_sort
12. Save node 2 to surf_nodes
13. else
14. Save node 1 to surf_nodes
15. end if statement
16. Remove the last row of tmp_mat_sort
17. Case 1.6
18. If surf_t[2] then
19. Flip tmp_mat_sort
20. Save node 2 to surf_nodes
21. else
22. Save node 1 to surf_nodes
23. end if statement
24. if (tmp_mat_sort has an odd number of points) then
25. Remove the surface node from the list
26. end if statement
27. Case 2.2
28. Remove the first and last rows from tmp_mat_sort
29. Save the intersection nodes to surf_nodes
30. Case 2.4
31. Pair up new beams using tmp_mat_sort.
32. Save the intersection nodes to surf_nodes
33. Case 2.5
34. If in_t[2] then
35. Flip tmp_mat_sort
36. end if statement
37. Save the intersection nodes to surf_nodes
38. Remove the last row from tmp_mat_sort
39. End case statement
40. Pair up new beams using tmp_mat_sort

Appl. Mech. 2021, 2 104

Appendix A.3. Algorithm A3: Trimmed Lattice Algorithm

Algorithm A3: Trimmed Lattice Algorithm
{ lattice_nodes, interior_lattice, surf_nodes_total } = AlgorithmA3(unit_cell, FV)

Input: unit_cell: type and size
A closed triangulated surface FV

Output: trimmed lattice nodes lattice_nodes, connectivity table interior_lattice and surf_nodes_total
1. Voxelate the closed Surface FV with lattice unit cells
2. Select the boundary voxels (unit cells) and save the interior as a separate object
3. Classify nodes as inside the volume (in) or as a surface node (surf).
4. Initialize a surf_nodes_total, interior_lattice and lattice_nodes bin
5. For each (line segment in the boundary voxels) then
6. Compute intersections between FV and the current line segment as int_crd
7. {case_select, in_t, surf_t} = AlgortithmA2(in, surf, nodal_ids, int_crd)
8. {tmp_mat_sort, surf_nodes} = AlgorithmA3(case_select, in_t, surf_t, nodal_ids, int_crd)
9. Add surf_nodes to surf_nodes_total and lattice_nodes
10. Add tmp_mat_sort to interior_lattice
11. End For loop
12. Combine interior_lattice with the interior voxel unit cells

Appendix A.4. Algorithm A4: Contour Collection

Algorithm A4: Contour Collection
{contour_bin, edge_nodes} = AlgorithmA4(seeding_point, FV, unit_cell)

Input: unit_cell: crystallographic planes and planar distances
A closed triangulated surface FV and center of rotation c
The minimum coordinates from voxel centroids seeding_point

Output: contours bin called contour_bin and a set of nodes called edge_nodes
1. Initialize contour_bin to store results for each crystallographic plane
2. For each (crystallographic plane) then
3. j = j + 1
4. Rotate FV and seeding_point around c so the current plane normal points in

the z-axis.
5. Beginning from the seed point elevation, calculate elevations (distance between

elevation points are the inter-planar spacing).
6. Calculate the number of elevations num_elev
7. Create a sub bin surface_intersection for each elevation
8. For i = 1 to num_elev then
9. Perform surface intersection calculation at the given elevation and

save the result into surface_intersection[i]
10. Rotate the intersection nodes back to the original orientation and

add them to edge_nodes
11. Process edges or triangles on the cutting plane separately then add

the contour edges into surface_intersection[i]
12. Organize surface_intersection[i] into closed loops
13. End For Loop
14. Add surface_intersection to contour_bin[j]
15. End For Loop

Appl. Mech. 2021, 2 105

Appendix A.5. Algorithm A5: Additional Surface Nodes

Algorithm A5: Additional Surface Nodes
{new_surface_nodes} = AlgorithmA5(feature_edges, feature_nodes, contour_bin, edge_nodes,
seeding_point, rot,unit_cell)

Input: Feature edges feature_edges and the associated nodes feature_nodes
unit_cell: crystallographic planes and inter-planar distances
contour_bin, edge_nodes, seeding_point, rot

Output: a list of new surface nodes new_surface_nodes
1. Initialize new_surface_nodes
2. For each (crystallographic plane) then
3. j = j + 1
4. Rotate FV, seeding_point, feature_nodes and edge_nodes around rot so the current

plane normal points in the z-axis.
5. Create list of edges from contour_bin[j] and feature_edges
6. Omit all edges in plane with the current crystallographic plane
7. Beginning from the seed point elevation, calculate elevations (distance between

elevation points are the inter-planar spacing).
8. Create parameterized line equations for the edges (Equation (1))
9. Given the elevations as planes, apply Equation (2) to calculate the

intersection points
10. Rotate the intersection points back by applying the inverse rotation
11. Add the new points to new_surface_nodes
12. End For Loop

Appendix A.6. Algorithm A6: Projection Filter

Algorithm A6: Projection Filter
{lattice_net_new} = AlgorithmA6(lattice_net_in, surface_nodes, Proj_norms, Cryst_plane,
filter_type, tolerance)

Input: list of lattice struts lattice_net_in and surface_nodes for a crystallographic plane
Proj_norms: A set of projection plane normals (ex: xy, xz, zy)
A filter_type {1 or 2} and tolerance setting tolerance
Cryst_plane: crystallographic plane

Output: an filtered list of lattice struts lattice_net_new
1. Initialize lattice_net_new
2. For each (projection plane) then
3. Project normal of Cryst_plane onto the projection plane to make p_proj
4. Project lattice_net_in onto the projection plane to make lattice_net_proj
5. switch (filter_type)
6. case 1
7. Compute ratios between the projected lengths of

lattice_net_proj to p_proj
8. Add line segments where the ratio is within tolerance to

lattice_net_new
9. case 2
10. If (crystallographic plane is in the xy,xz or yz plane) then
11. Add all line segments into lattice_net_new
12. Else
13. Compute and calculate ratios of the directions

between lattice_net_proj to p_proj
14. Add line segments where the ratios are within

tolerance to lattice_net_new
15. End If Statement
16. end switch statement
17. End For Loop

Appl. Mech. 2021, 2 106

Appendix A.7. Algorithm A7: Lattice Net

Algorithm A7: Lattice Net
{lattice_net, lattice_net_nodes} = AlgorithmA7(unit_cell, c, FV, surf_nodes_total)

Input: unit_cell: crystallographic planes and inter-planar distances
c, FV, surf_nodes_total, filter_type, tolerance

Output: list of lattice struts for the lattice net lattice_netand nodes lattice_net_nodes
1. Initialize lattice_net
2. { contour_bin, edge_nodes } = Algorithm5(seeding_point, FV, unit_cell)
3. { new_surface_nodes } = Algorithm6(feature_edges, feature_nodes, contour_bin, edge_nodes,

seeding_point, rot,unit_cell)
4. Add new_surface_nodes to surf_nodes_total
5. For each (crystallographic plane in Cryst_plane) then
6. j = j +1
7. Initialize lattice_net_in
8. For each (loop in contour_bin[j]) then
9. Follow the contour and collect nodes from surf_nodes_total and

store into a list
10. Convert the list into line segments and add to lattice_net_in
11. End for loop
12. { lattice_net_new } = AlgorithmA7(lattice_net_in, surface_nodes, Proj_norms,

Cryst_plane[j], filter_type, tolerance)
13. Add lattice_net_tmp to lattice_net
14. End for loop
15. Remove Duplicate Line segments from lattice_net
16. Find nodes in lattice_net and add to lattice_net_nodes

Appendix A.8. Algorithm A8: Additional Connections Algorithm

Algorithm A8: Additional Connections Algorithm
{lattice_net, lattice_net_nodes} = AlgorithmA8(Feature_edges, lattice_net, feature_nodes,
lattice_net_nodes)

Input: Feature_edges, lattice_net, feature_nodes, lattice_net_nodes
Output: Updated lattice_net and lattice_net_nodes with integrated feature edges

1. Sort the edge list from Feature_edges into closed or open loops called loop
2. Organize the loops in loop to be in order (edges connected)
3. Add nodes from feature_nodes referenced more than twice into lattice_net_nodes
4. Initialize new_line_segment as an empty bin
5. for each (loop) do
6. Collect nodes from lattice_net_nodes along the current loop to form a list
7. Turn the list into line segments
8. Add the new line segments into new_line_segment
9. End For Loop
10. Add new_line_segment into lattice_net

References
1. Gibson, L.J.; Ashby, M.F. Cellular Solids: Structure and Properties; Cambridge university press: Cambridge, UK, 1999.
2. Ashby, M.F.; Cebon, D. Materials selection in mechanical design. J. Phys. IV 1993, 3, C7-1. [CrossRef]
3. Hooreweder, B.V.; Kruth, J.-P. Advanced fatigue analysis of metal lattice structures produced by Selective Laser Melting. CIRP

Ann. Manuf. Technol. 2017.
4. Kazuhisa, M. Structures and Mechanical Properties of Natural and Synthetic Diamonds. Diam. Film. Technol. 1999, 8, 153–172.
5. Callister, W.J.D.; Rethwiseh, D.G. Materials Science and Engineering: An Introduction, 8th ed.; John Wiley & Sons, Inc.: New York,

NY, USA, 2010.
6. Aremu, A.; Brennan-Craddock, J.; Panesar, A.; Ashcroft, I.; Hague, R.; Wildman, R.; Tuck, C. A voxel-based method of constructing

and skinning conformal and functionally graded lattice structures suitable for additive manufacturing. Addit. Manuf. 2017,
13, 1–13. [CrossRef]

7. Feng, J.; Fu, J.; Lin, Z.; Shang, C.; Li, B. A review of the design methods of complex topology structures for 3D printing. Vis.
Comput. Ind. Biomed. Art 2018, 1, 1–16. [CrossRef] [PubMed]

http://doi.org/10.1051/jp4:1993701
http://doi.org/10.1016/j.addma.2016.10.006
http://doi.org/10.1186/s42492-018-0004-3
http://www.ncbi.nlm.nih.gov/pubmed/32240403

Appl. Mech. 2021, 2 107

8. Tang, Y.; Kurtz, A.; Zhao, Y.F. Bidirectional Evolutionary Structural Optimization (BESO) based design method for lattice structure
to be fabricated by additive manufacturing. Comput. Des. 2015, 69, 91–101. [CrossRef]

9. Chen, X.; Zheng, W.; Liu, S. Finite-Element-Mesh Based Method for Modelinga nd Optimization of Lattice Structures for Additive
Manufacturing. Materials 2018, 11, 2073. [CrossRef] [PubMed]

10. CAMdivision. NX January 2019—New Connect Lattice Structures. Youtube. 21 December 2018. Available online: https://www.
youtube.com/watch?v=4atkW8imoT8 (accessed on 19 February 2021).

11. Design: Connect Lattice Structures Command. Siemens. 29 August 2019. Available online: https://community.sw.siemens.com/
s/article/design-connect-lattice-structures-command (accessed on 19 February 2021).

12. NX for Design Streamlines and Accelerates the Product Development Process. Siemens. 2021. Available online: https://www.
plm.automation.siemens.com/global/en/products/nx/nx-for-design.html (accessed on 19 February 2021).

13. nTopology. Available online: https://ntopology.com/ (accessed on 19 February 2021).
14. Kurtz, A. INTRALATTICE Generative Lattice Design with Grasshopper ADML. 2021. [Online]. Available online: http://www.

intralattice.com/ (accessed on 19 February 2021).
15. Robert McNeel & Associates Rhinoceros. Available online: https://www.rhino3d.com/ (accessed on 24 January 2020).
16. Moerman, K.M. GIBBON: The Geometry and Image-Based Bioengineering Add-On. J. Open Source Softw. 2018, 3, 506. [CrossRef]
17. Van Sosin, B.; Rodin, D.; Sliusarenko, H.; Bartoň, M.; Elber, G. The Construction of Conforming-to-Shape Truss Lattice Structures

via 3D Sphere Packing. Comput. Des. 2021, 132, 102962. [CrossRef]
18. Wu, J.; Wang, W.; Gao, X. Design and Optimization of Conforming Lattice Structures. IEEE Trans. Vis. Comput. Graph. 2021,

27, 43–56. [CrossRef] [PubMed]
19. Liang, Y.; Zhao, F.; Yoo, D.-J.; Zheng, B. Design of conformal lattice structures using the volumetric distance field based on

parametric solid models. Rapid Prototyp. J. 2020, 26, 1005–1017. [CrossRef]
20. Zhang, C.; Chen, F.; Huang, Z.; Jia, M.; Chen, G.; Ye, Y.; Lin, Y.; Liu, W.; Chen, B.; Shen, Q.; et al. Additive manufacturing of

functionally graded materials: A review. Mater. Sci. Eng. A 2019, 764, 138209. [CrossRef]
21. Pasini, D.; Moussa, A.; Rahimizadeh, A. Stress-Constrained Topology Optimization for Lattice Materials. Encycl. Contin. Mech. 2018.
22. Burns, M. Automated Fabrication: Improving Productivity in Manufacturing, 1st ed.; Prentice Hall: Upper Saddle River, NJ, USA,

1993; ISBN1 10: 0131194623, ISBN2 13: 9780131194625.
23. Tuszynski, J. MATLAB Central File Exchange. 20 August 2018. [Online]. Available online: https://www.mathworks.com/

matlabcentral/fileexchange/48041-in_polyhedron (accessed on 15 December 2019).
24. Sven, inpolyhedron—Are Points Inside a Triangulated Volume? MATLAB CENTRAL File Exchange. 12 November 2015. Avail-

able online: https://www.mathworks.com/matlabcentral/fileexchange/37856-inpolyhedron-are-points-inside-a-triangulated-
volume (accessed on 12 January 2020).

25. Frisch, D. Distance between Point and Triangulated Surface. MATLAB Central File Exchange. 25 September 2016. [Online].
Available online: https://www.mathworks.com/matlabcentral/fileexchange/52882-point2trimesh-distance-between-point-
and-triangulated-surface (accessed on 25 January 2020).

26. Jones, M. 3D Distance from a Point to a Triangle. In Technical Report CSR-5-95; Department of Computer Science, University of
Wales Swansea: Swansea, UK, 1995.

27. Tuszynski, J. Triangle/Ray Intersection. MATLAB Central File Exchange. 18 May 2018. Available online: https://www.mathworks.
com/matlabcentral/fileexchange/33073-triangle-ray-intersection (accessed on 15 December 2019).

28. Van den Berg, J. Calculate Rotation Matrix to align Vector A to Vector B in 3d? URL (version: 2016-09-01) StackExchange.
26 August 2013. Available online: https://math.stackexchange.com/questions/180418/calculate-rotation-matrix-to-align-vector-
a-to-vector-b-in-3d/897677#897677 (accessed on 18 May 2020).

29. Kuipers, J.B. Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace and Virtual Reality; Princeton
University Press: Princeton, NJ, USA, 2002.

30. Moller, T.; Trumbore, B. Fast, Minimum Storage Ray-Triangle Intersection. J. Graph. Tools 1997, 2, 21–28. [CrossRef]
31. Tuszynski, J. Surface Intersection. MATLAB Central File Exchange. 1 December 2014. [Online]. Available online: https://www.

mathworks.com/matlabcentral/fileexchange/48613-surface-intersection. (accessed on 15 December 2019).
32. MATLAB. Available online: https://www.mathworks.com/help/matlab/ref/triangulation.featureedges.html (accessed on

12 January 2020).
33. Bendsoe, M.P.; Sigmund, O. Topology Optimization: Theory, Methods and Applications; Springer: New York, NY, USA, 1999.
34. Altair University. Practical Aspects of Structural Optimization with Altair OptiStruct a Study Guide, 3rd ed.; Altair Engineering Inc.:

Troy, MI, USA, 2018.
35. Hatami-Marbini, H.; Rohanifar, M. Mechanical Behavior of Hybrid Lattices Composed of Elastic and Elastoplastic Struts. J. Eng.

Mech. 2020, 146, 04019122. [CrossRef]
36. Guo, H.; Takezawa, A.; Honda, M.; Kawamura, C.; Kitamura, M. Finite element simulation of the compressive response of

additively manufactured lattice structures with large diameters. Comput. Mater. Sci. 2020, 175, 109610. [CrossRef]

http://doi.org/10.1016/j.cad.2015.06.001
http://doi.org/10.3390/ma11112073
http://www.ncbi.nlm.nih.gov/pubmed/30360562
https://www.youtube.com/watch?v=4atkW8imoT8
https://www.youtube.com/watch?v=4atkW8imoT8
https://community.sw.siemens.com/s/article/design-connect-lattice-structures-command
https://community.sw.siemens.com/s/article/design-connect-lattice-structures-command
https://www.plm.automation.siemens.com/global/en/products/nx/nx-for-design.html
https://www.plm.automation.siemens.com/global/en/products/nx/nx-for-design.html
https://ntopology.com/
http://www.intralattice.com/
http://www.intralattice.com/
https://www.rhino3d.com/
http://doi.org/10.21105/joss.00506
http://doi.org/10.1016/j.cad.2020.102962
http://doi.org/10.1109/TVCG.2019.2938946
http://www.ncbi.nlm.nih.gov/pubmed/31494549
http://doi.org/10.1108/RPJ-04-2019-0114
http://doi.org/10.1016/j.msea.2019.138209
https://www.mathworks.com/matlabcentral/fileexchange/48041-in_polyhedron
https://www.mathworks.com/matlabcentral/fileexchange/48041-in_polyhedron
https://www.mathworks.com/matlabcentral/fileexchange/37856-inpolyhedron-are-points-inside-a-triangulated-volume
https://www.mathworks.com/matlabcentral/fileexchange/37856-inpolyhedron-are-points-inside-a-triangulated-volume
https://www.mathworks.com/matlabcentral/fileexchange/52882-point2trimesh-distance-between-point-and-triangulated-surface
https://www.mathworks.com/matlabcentral/fileexchange/52882-point2trimesh-distance-between-point-and-triangulated-surface
https://www.mathworks.com/matlabcentral/fileexchange/33073-triangle-ray-intersection
https://www.mathworks.com/matlabcentral/fileexchange/33073-triangle-ray-intersection
https://math.stackexchange.com/questions/180418/calculate-rotation-matrix-to-align-vector-a-to-vector-b-in-3d/897677#897677
https://math.stackexchange.com/questions/180418/calculate-rotation-matrix-to-align-vector-a-to-vector-b-in-3d/897677#897677
http://doi.org/10.1080/10867651.1997.10487468
https://www.mathworks.com/matlabcentral/fileexchange/48613-surface-intersection.
https://www.mathworks.com/matlabcentral/fileexchange/48613-surface-intersection.
https://www.mathworks.com/help/matlab/ref/triangulation.featureedges.html
http://doi.org/10.1061/(ASCE)EM.1943-7889.0001689
http://doi.org/10.1016/j.commatsci.2020.109610

	Introduction
	Symmetrical Unit Cells
	Trimmed Lattice with Conforming Net Algorithm Workflow
	Algorithm for an Interior Trimmed Lattice
	Algorithm for a Conformal Lattice Net for a Trimmed Symmetric Lattice
	Initial Contour Collection
	Additional Surface Nodes Calculations
	Connecting the Lattice Net
	Additional Connections for the Conformal Lattice Net
	Clean Up Step

	Numerical Examples and Demonstrations
	Lattice Net Case Study Example for Engineering Applications
	Problem Formulation
	Results

	Advantages and Disadvantages of the Current Lattice Net Algorithm
	Conclusions
	
	Algorithm A1: Trimmed Lattice Case Sorting
	Algorithm A2: Trimmed Lattice Sub Algorithm
	Algorithm A3: Trimmed Lattice Algorithm
	Algorithm A4: Contour Collection
	Algorithm A5: Additional Surface Nodes
	Algorithm A6: Projection Filter
	Algorithm A7: Lattice Net
	Algorithm A8: Additional Connections Algorithm

	References

