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Abstract: The load-penetration curve in elastic nanoindentation of an elastic micropolar flat by a
diamond spherical punch is analyzed. The presented results are obtained by a specifically developed
numerical tool based on a judicious combination of the conventional boundary element method and
strong form local point interpolation method. The results show that the usual linear relationship
between the material depression and the square of the radius of the contact area is also valid in this
case of micropolar elastic material. It is also shown that the relation between the indentation stress
(applied load over the contact surface) and the indentation strain (ratio of contact radius by the punch
radius) is linear. The proportionality coefficient which is none other than the indentation stiffness
varies with the coupling factor of the micropolar elastic medium. A relation between the indentation
stiffness of a micropolar solid and that of a conventional solid with the same Young modulus and
Poisson ratio is derived.

Keywords: micropolar elasticity; spherical indentation; local point interpolation; boundary elements

1. Introduction

Depth sensing indentation is commonly adopted for the determination of local elastic
and plastic properties of small size samples. In the case of homogeneous and isotropic
classical elastic materials deformed at small strain, the determination of the resolved elastic
modulus follows a well established analytical solution of the normal compression of two
smooth solids (see, e.g., Sneddon [1], K.L Johnson [2], for example). One of the useful
results relates the applied load to the relative approach of the two solids or the material
depression (if one of the solids is rigid). The load and the penetration are the only quantities
recorded during the test. In the classical theory, the depression is also related to the radius
of the projected contact area and the radius of the spherical punch. It has been shown that,
in the small strain deformation regime, the useful relation between the material depression
and the radius of the contact area remains valid in the plastic regime [3].

It is more and more evident that a finer description of the mechanical behavior of
some material should take into account their microstructure. This can be done in the
framework of generalized continuum theories which extend the conventional continuum
mechanics for incorporating intrinsic microstructural effects in the mechanical behavior of
materials. Amongst the various approaches, there is the so-called micromorphic medium
of Eringen [4] which is widely accepted as the most successful phenomenological top-down
approach. In this theory, the impact of the microstructure of the medium is expressed at
the macroscopic scale through an incompatible microdeformation tensor. The latter can be
specialized depending on the prominent microscopic effect at the macro scale. Accordingly,
if the prominent microscopic effect is the individual rigid rotation of the material points, the
microdeformation tensor is specialized to represent this micro-rotation. The corresponding
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theory is that of micropolar materials also known as Cosserat materials [5]. The model
was applied to porous and granular media (e.g., [6] (Ehlers, 1997) [7,8]) and even to living
tissues such as bones (e.g., [9–13]). The identification of the material parameters of the
micropolar elastic model has also been the subject of a number of works (see e.g., [14,15].
Depth sensing indentation is, among others, a valuable experimental tool for the mechanical
characterization of some of this materials. The question arises as to whether the well-known
relationships for homogeneous and isotropic materials remain valid in the case of elastic
isotropic Cosserat materials.

The present numerical study intends to shed some light on this point. The numerical
studies consider a diamond punch indenting a micropolar medium. The analysis uses the
identified engineering parameters for micropolar elasticity, namely: E (the Young modulus),
G (the shear modulus), ν (the Poisson ratio), lt (the characteristic length in torsion), lb (the
characteristic length in bending), χ (the polar ratio), and N (the coupling number).

The specifically developed numerical tool combines the advantages of the boundary
elements method and a strong form point collocation method. The method called Local
point interpolation-boundary element method has been initiated by Kouitat [16] in the
context of anisotropic materials. It has since proved efficient for various fields including
micropolar materials (see [17–19]).

The governing equations of micropolar media are recalled in Section 2 below. The
main steps of the LPI-BEM and the global flowchart of the numerical tool are presented in
Section 3. The numerical results are shown and discussed in Section 4.

2. Governing Equations

In the theory of micropolar medium occupying the domain Ω with boundary Γ,
the material point x is attached to a triad of directors that can rotate and stretch. The
material point possesses six degrees of freedom: the three components of the traditional
displacement vector u and the three components of a microrotation vector ϕ. The field
equations governing this type of medium when under quasi-static evolution without
external body loads are ([20,21]):

σji,j(x) = 0 (1)

mji,j(x) + εijk σjk(x) = 0 (2)

In these equations, σ represents the force stress tensor and m the couple stress tensor.
Next, the case of a quasi-homogeneous and isotropic solid is considered, producing the
following corresponding constitutive relations:

σij(x) = λ εrrδij + 2µ εij + κ uj,i − κ εijk ϕk (3)

mij = α ωrrδij + (β + γ)ωij + (β− γ) ωij (4)

εij =
(
ui,j + uj,i

)
/2

ωij =
(

ϕi,j + ϕj,i
)
/2

ωij =
(

ϕi,j − ϕj,i
)
/2

λ and µ are the Lamé constants; α, β, γ, and κ the micropolar constants. More precisely,
α, β, and γ are rotation gradient moduli. α, (γ + β)/2 and (γ− β)/2 are also called
Cosserat twist coefficients. κ is the rotation modulus is also known as the Cosserat couple
modulus. The main symbols used in the paper are grouped together in the Appendix A.

With nj as the outward normal vector on the boundary, the tractions acting at a regular
point of the boundary are given by:

ti = σjinj and mi = mjinj (5)
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The material parameters must fulfill the following constraints:

(3λ + 2µ + κ) ≥ 0; 2µ + κ ≥ 0; κ ≥ 0; 3α + β + γ ≥ 0; β + γ ≥ 0;
γ− β ≥ 0

(6)

3. Solution Method

The boundary element method has already proven highly efficient for the solution of
linear problems with well-established analytical fundamental solution. The boundary inte-
gral equation method in micropolar elasticity has been proposed by Sladek and Sladek [22].
An extension of the study to microstretch media is intended, thus this formulation will
not be adopted. On application of the conventional BEM in this study, with Somigliana
fundamental solution, the boundary element method (BEM) loses its principal appeal,
namely the reduction of the problem dimension by one, due to traditional volume cells
being needed in the so-called “field boundary element method” or “domain boundary
element method”. This obstacle can be overcome by a number of strategies such as the dual
reciprocity method [23] or radial integration method [24], which enable the conversion of
volume integrals into surface ones.

In recent years, a large number of researchers have invested in the development of
so-called meshless or meshfree methods. Among the various meshless approaches, the
local point interpolation method is highly appealing because it is simple to implement.
This approach falls in accuracy in the presence of Neumann boundary conditions, which
are almost an inevitability when solving solid mechanic problems. Liu et al. have sug-
gested a way to circumvent this difficulty by adopting the “weak-strong-form local point
interpolation” method [25]. Recently, Kouitat [16] proposed a novel strategy that combines
the best elements of both the conventional BEM and local point interpolation methods.
This LPI-BEM approach has proved efficient in a number of contexts including micropolar
elasticity [17,19]. This method is adopted in the present study and the main steps of the
approach in the context of a micropolar elasticity are recalled below.

Let νu = λ−κ
2(λ+µ)

, µu = µ + κ, then one could write the force stress tensor in the form:

σij =
2 µu νu

1− 2νu
εrrδij + 2µu εij − κ ui,j − κ εijk ϕk

Similarly, set µw = (β + γ)/2 and νw = α
2α+β+γ ; then, the couple stress tensor reads:

mij =
2µwυw

1− 2νw
ϕr,rδij + 2µwωij + (β− γ)

(
ϕi,j − ϕj,i

)
/2

The calculations were based on the assumption that the kinematical primary variables
are the sum of a complementary part and a particular term, namely: ui = uH

i + uP
i and

ϕi = ϕH
i + ϕP

i .
The complementary fields satisfied the following homogeneous equations:

µu

1− 2νu
uH

r,rj + µu uH
j,ii = 0

µw

1− 2νw
ϕH

r,rj + µw ϕH
j,ii = 0

These equations which are of the Navier type were solved by the conventional bound-
ary element method, thus producing the following systems of equations:

[Hu]
{

uH
}
= [Gu]

{
tH
}

and
[
Hϕ

] {
ϕH
}
=
[
Gϕ

] {
mH
}

(7)

where
{

uH},
{

ϕH} are vectors of nodal kinematical fields and
{

tH},
{

mH} are the vectors
of nodal traction.
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The particular fields solve:

µu

1− 2νu
uP

r,ri + µuuP
i,jj − κ uj,ij − κ εjik ϕk,j = 0 (8)

µw

1− 2νw
ϕP

r,ri + µw ϕP
i,jj +

(β− γ)
(

ϕj,ji − ϕi,jj
)

2
− 2κ ϕi + κ εijkuk,j = 0 (9)

The tractions at a regular point on the boundary are written as:

ti = tH
i + tP

i + δti with tA
i =

(
2 µu νu
1−2νu

εA
rrδij + 2µuεA

ij

)
nj (A = H or P)

and δti =
(

κ ui,j − κ εjik ϕk

)
nj

(10)

mi = mH
i + mP

i + δmi with tA
i =

(
2µwυw
1−2νw

ωA
rrδij + 2µwωA

ij

)
nj (A = H or P)

and δmi = (β− γ)
(

ϕj,i − ϕi,j
)
nj/2

(11)

Following this, the solution of Equations (7) and (8) were considered, using a local
radial point collocation method. In this method [5], a field ω(x) is approximated as:

ω(x) =
N

∑
i=1

Ri(r)ai +
M

∑
j=1

pj(x)bj

with the following constraints: ∑N
i=1 pj(x)ai = 0, j = 1−M and i = 1− N.

Here, Ri(r) is the selected radial basis functions, N the number of nodes in the
neighborhood (support domain) of point x, and M the number of monomial terms in the
selected polynomial basis Pj(x).

Coefficients ai and bj can be determined by enforcing the approximation to be satisfied
at the N centers. Following some algebraic manipulations, coefficients ai and bj are ex-
pressed in terms of the field nodal values, and the interpolation is written in the following
compact form:

ωh(x) = [Φ(x)]{ω/L} (12)

When adopting interpolation (12) for all kinematical fields, at a given collocation
center, the following were obtained:

[B(∇)]T [Cu][B(∇)]
[
Φ̃
]{

uP
/L

}
+ κ
[
Φ̃1

]
{u/L}+ κ

[
Φ̃2

]
{ϕ/L} = {0}

[B(∇)]T
[
Cϕ

]
[B(∇)]

[
Φ̃
]{

ϕP
/L

}
+ κ

[
Φ̂0
]
{ϕ/L}+ (β− γ)

[
Φ̂1
]
{ϕ/L}+ κ

[
Φ̂3
]
{u/L} = {0}

In the above,

{∇} =
(

∂/∂x ∂/∂y ∂/∂z
)T , {z} =

(
z1 z2 z3

)T , [B(z)] =

 z1 0 0
0 z2 0
0 0 z3

z2 z3 0
z1 0 z3
0 z1 z2

T

Matrix B was given in terms of vector z = (z1, z2, z3)
T and matrix C was the Voigt

representation of the elasticity tensor.
On collection of the above equations for all the internal collocation centers, taking the

assumption that the particular integrals are identically zero at all boundary points, the
following forms of systems of equations were obtained:{

uP
}
= [Buu]{u}+

[
Buϕ

]
{ϕ} (13){

ϕP
}
=
[
Aϕϕ

]
{ϕ}+

[
Bϕu

]
{u} (14)
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Following a similar strategy, the tractions at the boundary points could be written in
the following forms:

{t} =
{

tH}+ [AKuu]{u}+
[
AKuϕ

]
{ϕ}

{m} =
{

mH}+ [AKϕu
]
{u}+

[
AKϕϕ

]
{ϕ}

After conducting some algebraic manipulations, the final coupled systems of equations
were of the following forms:[

Hu
]
{u}+

[
Huϕ

]
{ϕ} = [Gu] {t} (15)[

Hϕ

]
{ϕ}+

[
Hϕu

]
{u} =

[
Gϕ

]
{m} (16)

It is particularly worthy of mention that the final equations contained similar bound-
ary primary variables and internal kinematic unknowns to those of a traditional BEM.
Boundary conditions can be taken into account as in standard practice.

When the problem at hand is concerned with more than one medium, then the above
equations are valid for each sub-domain. Let ΓI denote a perfectly bonded interface
between body A and body B. Then, for point XA of body A and point XB of body B sharing
the same geometrical location in ΓI , the following conditions must be fulfilled:

tA
i + tB

i = 0(i = 1, 2, 3), uA
i − uB

i = 0 (i = 1, 2, 3) (17)

mA
i + mB

i = 0(i = 1, 2, 3), ϕA
i − ϕB

i = 0 (i = 1, 2, 3) (18)

In the case of a non-conforming contact problem, the equations must be supplemented
by the unilateral contact conditions between the contacting bodies. Focusing on the case
of an elastic punch, these conditions are written only for the macro displacement and
macro traction. Indeed, it is believed that it is not possible to apply micro torque at the
specimen boundary. The micro torque is assumed to take zero value on all boundaries. On
the boundary of the contacting body A (resp. B), a potential contact area ΓA (resp. ΓB) is
defined a priori. For a node XA of ΓA and a target node XB on ΓB, the following relations
apply:

tA
i + tB

i = 0 (i = 1, 2, 3) (19)

dn = uB
n − uA

n ≤ g0, tB
n ≤ 0 and tB

t = 0 (20)

In the above relations, g0 denotes the initial normal gap between XA of ΓA and XB

on ΓB. uA
n and uB

n stand for the normal displacements of points A and B in the direction of
the common normal, which is usually taken as that of the flat specimen. tB

n is the normal
traction at point B and tB

t is the tangential traction. It assumed here that the contact is
frictionless.

Indentation by a spherical punch is a non-conforming contact problem in the sense
that, for a given load, the contact surface is not known in advance. It is then advised to
solve the above coupled systems of equations incrementally. Let ∆ f be the increment of
the field f from the previously converged solution to the actually sought solution. Then,
the incremental forms of systems (15) and (16) are:[

Hu
]
{∆u}+

[
Huϕ

]
{∆ϕ} = [Gu] {∆t} (21)[

Hϕ

]
{∆ϕ}+

[
Hϕu

]
{∆u} =

[
Gϕ

]
{∆m} (22)

Applying the boundary conditions as usual, accounting eventually for Equation 16,
global systems of the following forms are obtained:

[Auu]{Yu}+
[
Auϕ

]
{∆ϕ} = {Fu} (23)[

Aϕϕ

]{
Yϕ

}
+
[
Aϕu

]
{∆u} =

{
Fϕ

}
(24)
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In the case of a non-conforming contact problem, Equation (23) must be supplemented
with relations (19) and (20). The resulting system of equations is nonlinear and non-
differentiable. The algorithm introduced par Christensen [26] has been adopted. The
pseudo code implemented for the solution of the problem is as follows:

For the actual load increment:

1. Set k = 0,
{

Yk
u

}
= 0,

{
∆ϕk

}
= 0;

2. Solve [Auu]
{

Yk+1
u

}
+
[
Auϕ

]{
∆ϕk

}
= {Fu};;

3. Solve
[
Aϕϕ

]{
Yk+1

ϕ

}
+
[
Aϕu

]{
∆uk+1

}
=
{

Fϕ

}
;

4. If the Yk+1
u −Yk

u/Yk+1
u > ε (a given tolerance) go to 2.

4. Numerical Results

In this work, the multi-quadrics radial basis functions are applied as follows: Ri(r) =(
r2

i + c2)q, where ri = x− xi and c and q were known as shape parameters. Shape parame-
ter c was taken proportionally to minimum distance d0, defined as the maximum value
among the minimum distances in the x, y, and z directions between collocation points.

Let us focus on the elastic indentation problem. For conventional materials, a famous
relation of the Hertzian theory of contact states that: δ = a2

R , with (δ) the indenter depres-
sion, (a) the radius of the projected contact disc, and (R) the radius of the spherical punch.
Another famous relationship of the Hertzian theory of contact is the relation between the
applied load (P), the punch radius, and the contact radius, P = K0

a3

R with K0 = 4
3

E
1−ν2 .

Knowing the value of K0 and postulating the value of the Poisson ratio, the Young modulus
can be calculated.

A part of a diamond ball with radius 100 µm is considered. The boundary of the ball
piece was subdivided into 100 elements with 402 boundary nodes including 153 nodes of
the potential contact area. The considered micropolar solid is a cuboid with depth 5 mm
and squared cross section with size 600 µm. Its boundary was subdivided into 236 elements
with 1022 boundary nodes. These latter were supplemented with 1069 internal collocation
centers.

The material constants of micropolar elasticity (see Equations (3) and (4)) are related
to technical material parameters that have been identified individually via experiments [6].
These material parameters are:

The Young modulus E = (2µ+κ)(3λ+2µ+κ)
2λ+2µ+κ ;

The shear modulus G = µ + κ/2;
The Poisson ratio ν = λ

2λ+2µ+κ ;

The characteristic length in torsion lt =
√

β+γ
2µ+κ ;

The characteristic length in bending lb =
√

γ
2(2µ+κ)

;

The polar ratio χ = β+γ
α+β+γ ;

The coupling number N =
√

κ
2(µ+κ)

.

Let us remind the reader that the values of E, G, and ν are those that can be assessed
by a simple tension test.

4.1. Influence of the Coupling Number

In a first set of simulation, five set of material constants were selected (see Table 1
below) leading to the following values of material parameters: E = 25, 789.47 MPa,
G = 8750 MPa, ν = 0.474, lt = 0.1095 mm, lb = 0.0775 mm, and χ = 1. It should be noted
that, E, G and ν have the same values for all considered cases.
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Table 1. Micropolar material constants adopted for the study of the influence of the coupling number.

λ (MPa) µ (MPa) κ (MPa) α (N) β (N) γ (N) N2

157,500 8166.67 1166.67 0 0 210 1/16

157,500 7000 3500 0 0 210 1/6

157,500 5833.33 5833.33 0 0 210 1/4

157,500 3141.026 11,217.95 0 0 210 25/64

157,500 −2500 22,500 0 0 210 9/16

As can be observed, the square of the coupling number varies from 1/16 to 9/16.
A load of 50 mN was applied on the punch in five load steps. The indenter depression

(δ), the contact pressure distribution (pn), and the interval containing the contact radius (a)
were calculated. Let R denote the radius of the spherical punch. It is found that the famous
Hertzian relation δ = a2

R is still valid for the tested cases of micropolar solids. It is then possible to
say that, having measured the punch depression and knowing its radius of curvature, the
contact radius can be reached.

In Figure 1 below, the plots of P versus a3

R are shown for the considered material
parameters. It can be observed that all the curves are linear. A simple linear fit then allowed
to determine the parameters of the fitting lines. The results are collected in Table 2 below.
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Figure 1. Plots of load (P) versus (a3/R) for different values of the coupling number N2.

Table 2. Parameters of the line fit of the load (P) versus (a3/R).

N2 Equation

1/16 P = 46, 374 a3

R + 10−4

1/6 P = 52, 286 a3

R + 8 10−6

1/4 P = 57, 780 a3

R + 10−4

25/64 P = 71, 325 a3

R + 6 10−5

9/16 P = 99, 582 a3

R + 2 10−4

It should be noted that, according to Hertzian theory of contact, for the given values of
Young modulus and Poisson ratio, the slope of the fitting line should be K0 = 44, 333.33 MPa.
It is clear from data in Table 2 that a relation of the form P = KN

a3

R is still valid (index N is
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introduced to represent the coupling number). However, the value of the parameter KN
varies with the coupling number.

The ratios of the calculated KN over K0 are collected in Table 3 below.

Table 3. Comparison of the ratios KN/K0 and 1/
(
1− N2) for different values of N.

N2 1/16 1/6 1/4 25/64 9/16

KN/K0 1.046 1.179 1.303 1.609 2.246

1/
(
1− N2) 1.07 1.2 1.33 1.64 2.285

The results in this table show that: KN ≈ K0
1−N2 .

4.2. Influence of the Characteristic Length in Torsion and the Polar Ratio

Other sets of material constants were adopted (see Table 4). They led to the same
coupling numbers as in the former case. Now, lt = 0.1342 and χ = 1.5.

Table 4. Micropolar material constants adopted for the case lt = 0.1342 and χ = 1.5.

λ (MPa) µ (MPa) κ (MPa) α (N) β (N) γ (N) N2

157,500 8166.67 1166.67 −105 105 210 1/16

157,500 7000 3500 −105 105 210 1/6

157,500 5833.33 5833.33 −105 105 210 1/4

157,500 3141.026 11,217.95 −105 105 210 25/64

157,500 −2500 22,500 −105 105 210 9/16

The values obtained for KN were those of Table 2. This means that the results are not
disturbed by parameters lt and χ.

4.3. Influence of the Characteristic Length in Bending

Let us now consider the potential effect of the characteristic length in bending. For
this purpose, the material parameters in Table 5 are adopted.

Table 5. Micropolar material constants adopted for the case lb = 0.1095 and χ = 0.75.

λ (MPa) µ (MPa) κ (MPa) α (N) β (N) γ (N) N2

157,500 8166.67 1166.67 105 −105 420 1/16

157,500 7000 3500 105 −105 420 1/6

157,500 5833.33 5833.33 105 −105 420 1/4

157,500 3141.026 11,217.95 105 −105 420 25/64

157,500 −2500 22,500 105 −105 420 9/16

The characteristic length in torsion is that of the preceding case. Now, lb = 0.1095 and
χ = 0.75.

Once more, the results of the calculation show that values of KN are still those in the
table.

5. Conclusions

This paper concerns the numerical simulation of elastic indentation of a sphere into a
flat micropolar elastic specimen. First, details of specifically developed numerical tool are
given. Then, it is shown that the relation δ = a2

R , extremely useful for direct computation
of the real contact area as a function on the depression δ is equally valid for a micropolar
elastic medium. It was then possible to plot the load (P) as a function of a3

R . It then appears
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that a relation of the Hertzian type P = KN
a3

R remains valid. The coefficient KN increases
with the value of the coupling number N and is unaltered by other micropolar parameters,
namely the characteristic lengths and the polar ratio. It is also found that KN ≈ K0

1−N2 where
K0 is the corresponding value as given by the Hertzian theory of contact. In conclusion, the
only technical parameter affecting the indentation response of a micropolar medium is the
coupling number.

Suppose that the values of parameters E, G, and ν have been obtained by a simple
tension test. Then, the value of K0 can be calculated. Knowing K0, one can determine the
coupling number N and hence the Cosserat couple modulus κ.

Further studies are needed to allow identification of the other parameters of the model.
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Appendix A

List of notations
σji Non symmetric macro stress tensor
mji Couple stress tensor
ui Macro displacement vector
ϕi Micro rotation vector
ui,j Displacement gradient tensor
εij Small strain tensor
ϕi,j Micro rotation gradient tensor
ωij Symmetric part of ϕi,j
ωij Anti-symmetric part of ϕi,j
ti Traction vector
mi Micro torque vector
λ Lamé coefficient
µ Lamé coefficient
κ Cosserat couple modulus
α, β, γ Rotation gradient moduli
δ Material depression
a Radius of the projected contact area
R Radius of the indenter
P Applied load
E Young modulus
G Shear modulus
ν Poisson ratio
lt Characteristic length in torsion
lb Characteristic length in bending
χ Polar ratio
N Coupling number
KN Contact stiffness
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