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Abstract: In this paper, hierarchical studies based on both analytical and computational approaches
have been employed to validate and improve current structural designs of mud holding tanks for
hydraulic fracturing in petroleum industries. Through detailed comparisons at different levels of
approximations for both real world complex structural design problem and a simplified stiffened
plate with extreme geometrical aspect ratios, proper design procedures have been reiterated and
validated. It is highly recommended that low-dimensional structures with emphasis on classical
mechanics principles should be considered before full-fledged three-dimensional computational
analyses. Both Castigliano’s Theorems and Galerkin methods are utilized along with simulation
packages such as ADINA and Solidworks. The hierarchical approximation procedures reemphasize
important subjects such as planes and shells, strength of materials, structural mechanics, asymptotic
and perturbation analysis no longer required in some engineering programs, yet often necessary for
the study of complex three-dimensional structural systems.

Keywords: finite element method; hierarchical; stiffener; buckling; multi-scale modeling

1. Introduction

In today’s engineering practice, analyses of very complex systems are frequently stud-
ied based on various finite element methods (FEM) and computational fluid dynamics
(CFD) tools. The sophistication of these simulation packages and their direct connections
with solid modeling and engineering graphics tools have inadvertently left false impres-
sions among design engineers that the fundamentals of solid and fluid mechanics are no
longer needed. In fact, some of the design engineers tend to utilize simulation packages
right at the beginning stage of the design process at which the entire system and its geome-
tries and configurations are still not finalized. As a consequence, the intricate design details
and specifics which are not finalized will be entangled with the complication of meshing
and multi-scale issues for both FEM and CFD analyses. In a way, this is very similar to
applying high resolution or magnification lenses during preliminary search within a fairly
large area, which is obviously very ineffective, inefficient, and wasteful with respect to both
time and financial resources.

Wichita Tank Manufacturing LTD presented the McCoy School of Engineering with
a design concern with respect to their 500 fluid barrel (BBL) holding tanks for hydraulic
fracturing, as shown in Figure 1. In the United States of America, most fluid barrel
apart from oil barrel has the following conversion ratio, namely, 1 BBL is equivalent to
119 liters (L) or 31.5 gallons. Initially, these tanks were designed to hold up to 15,750 gallons
of water. While it is empty, the tank will be transported through highway systems to and
from different locations. The problem is to determine whether or not it is safe to hold

Appl. Mech. 2022, 3, 464–480. https://doi.org/10.3390/applmech3020027 https://www.mdpi.com/journal/applmech

https://doi.org/10.3390/applmech3020027
https://doi.org/10.3390/applmech3020027
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applmech
https://www.mdpi.com
https://orcid.org/0000-0002-3772-004X
https://doi.org/10.3390/applmech3020027
https://www.mdpi.com/journal/applmech
https://www.mdpi.com/article/10.3390/applmech3020027?type=check_update&version=2


Appl. Mech. 2022, 3 465

the same volume of heavy liquid such as mud. To be more precise, whether the current
dimensions and design could withstand the pressure of mud with typical specific gravity
up to 1.7721 with 70% sand and 30% water by mass or weight. The typical density for
fresh water, denoted as ρw is 1000 kg/m3 or 62.3 lbm/ft3, or 8.327 lbm/gallon. The typical
density for sand, denoted as ρs is 2648.6 kg/m3 or 165 lbm/ft3. Notice that the reciprocal
of the density is the so-called specific volume v. For mud, namely, sand and water mixture,
denote the mass ratio of the sand as x, a similar concept to the quality factor of the steam
representing the mass ratio of the vapor within the steam, the specific volume for the mud
can be expressed as

v = (1− x)vs + xvw, (1)

where vs and vw stand for the specific volume of the sand and water, respectively.

(a) (b)

Figure 1. Typical holding tanks for hydraulic fracturing with lateral reinforcement and auxiliary systems.

Figure 1 shows the typical holding tanks with lateral reinforcement and auxiliary
systems. Since a large number of such holding tanks will be manufactured, the saving
for structural materials and manufacturing costs will be significant and should justify the
in-depth analysis of structural designs. Unlike the permanent foundations for the holding
tank which have been studied in Ref. [1], the holding tank of interest in this study is a stand
alone structure. Moreover, seismic impacts and ground motions on storage tanks have
been presented in Refs. [2,3]. In this paper, the static or quasi-static stress analysis is the
focus for holding tanks under the extreme hydrostatic loading. The complexity comes from
the extreme geometrical aspect ratios of three-dimensional plates and stiffeners. Currently,
all these tanks are made of low carbon steels which can be easily welded with channel
beams as stiffeners. Buckling analysis and homogenous properties of composites for lighter
and more adaptable designs of deployable structures have been discussed and presented
in Refs. [4–7]. Furthermore, contact stress and surface conditions are also ignored in this
study. For studies of mechanical behaviors of grinding and cutting as well as brakes and
clutches, silicon dioxide ceramic matrix composite and fiber reinforcements become key
features in multi-scale and multi-physics material modeling [7,8].

Moreover,in this paper, the material failures due to corrosion and fatigue as elaborated
in comparison with structural failures in Ref. [9] will be considered. To be more specific,
typical simplification processes in structural mechanics are employed whereas stiffeners
and plates are modeled as I-beams whose geometric center is at a distance away from the
plate surface as shown in Figure 2. In one-dimensional beam model, the plate is considered
as the top flange in combination with the channel beam or the stiffener as the web and
bottom flange; likewise, in two-dimensional plate and beam model, the entire plate is
modelled with the stiffener rigidly linked without the plate as its top flange as depicted
in Figure 2.
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Figure 2. Low-dimensional hierarchical modeling procedures.

Through the hierarchical study presented in this paper, the current holding tank
design with a height of 9 ft, a width of 96 in, and a length of 33 ft along with 3′′ × 6′′ × 1

4
′′

ASTM A36 stiffeners spaced approximately 24 inches apart at centers made with a quarter
inch thick ASTM A36 steel is confirmed to withstand the heavy liquid with the density of
15 lbm/gallon. The detailed stress analyses also shed some light on the subject about the
manufacturing process as well as the validation and verification of the structural designs.
In the past, 96 in wide steel plates are employed with the gap between the corrugations as
13.5 in. Due to a price difference of sheet metals, 72 in wide sheets will be employed in the
future. Through the hierarchical modeling presented in this paper, engineers will be able to
determine whether or not it is possible to enlarge the gap to 16 or 24 in while maintaining
the same design limit of the liquid pressure with the threshold density of 15 lbm/gallon, or
112.2 lbm/ft3. Finally, with such a set of comprehensive structural analyses, more design
details and improvements will be proposed with respect to stiffeners and smooth transitions
for local structures as well as horizontal and vertical reinforcements.

2. Beam, Column, and Plate Models

In structural designs for the holding tank, the hydrostatic pressure occurs in a non-
uniform fashion which is dependent on the depth of the liquid as illustrated in Figure 3.
The reinforcements of the holding tank wall are very similar to ship hull and airplane
structures. Although full-fledged three-dimensional solid models can be implemented
with a finite resolution, considering the extreme geometrical aspect ratios as presented in
this paper, it is always desirable to have approximations with the consideration of these
non-uniform pressures distributions which can yield empirical formulas with physical
insights as illustrated in Ref. [10]. Before the elaboration of computational and analytical
approaches for the complex structural systems as illustrated in Figures 1, 3, and 4, one
and two-dimensional analyses as well as corresponding finite element models have been
employed and compared. In this slightly simpler, yet also challenging example as shown
in Figure 4, which can be viewed as a reinforced steel plate commonly used as a sluice or
slide gate with both ends completed fixed with the dam or the wall, the stiffener is made
of a channel beam with a width of 7.874 in, a depth of 3.937 in, and a uniform thickness
of 0.1969 in. The overall height of the sluice is 314.96 in and the total width of the sluice
is 157.48 in. From the smallest structural component with a thickness of merely 0.1969 in
to the overall dimensions around a few hundred inches, this seemly simple structural
example is also a complex structure with extreme geometrical aspect ratios. In this study,
the same hierarchical modeling techniques will be employed. In addition, both plate
and beam model and full-fledged three-dimensional solid model will be compared with
analytical approximations.
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Figure 3. A two-dimensional beam-column system model with the external pressure load.

Figure 4. An illustration of a simplified complex structure with a reinforced steel plate as a sluice.

In the so-called zeroth order approximation as illustrated in Figure 2, the middle
portion of the plate centered around the stiffener with a width b as a half of the total width,
namely, 78.74 in, is taken as the approximation of the complex structural system. Thus,
the largest hydrostatic pressure can be expressed as ρgh, where h stands for the largest
depth of the water, ρ is the water density and g is the gravitational constant. In some texts,
the hydrostatic pressure is also denoted as γh, where γ is the so-called specific weight.
Again, as shown in Figure 2, in the zeroth approximation, the plate with a width of 78.74 in
is attached to the stiffener with the dimension 7.874× 3.937× 0.1969 in. Thus, a beam is
essentially made with a cross-sectional area made of one 78.74× 0.3937 in area A1, two
3.937× 0.1969 in areas A2, and one 0.19× 0.1969 in area A3. If the origin is placed at the
top center of the stiffener as illustrated in Figure 2, the center of the area of the cross section
x1 can be easily calculated, given the local geometrical center and the local second moment
of area for these three regions as x̄1, x̄2, and x̄3, respectively,

x1 =
x̄1 A1 + 2x̄2 A2 + x̄3 A3

A1 + 2A2 + A3
= 3.8606 in. (2)

Furthermore, given the local second moment of area about y axis passing through its
geometrical center for these three regions as Ī1, Ī2, and Ī3, respectively, the total second
moment of area for the entire cross section can be written as

I = Ī1 + (x̄1 − x1)
2 + 2

[
Ī2 + (x̄1 − x1)

2
]
+ Ī3 + (x̄3 − x1)

2 = 31.1125 in4, (3)



Appl. Mech. 2022, 3 468

which by converting the cross section into an square yields an equivalent side a as 4.3957 in.
Assume a tip concentrated load P, at the depth z, with the tapered pressure distribution

from 0 to ρgz, the bending moment M(z) can be expressed as

M(z) = Pz +
ρgbz3

6
, (4)

where b is the width of the total hydrostatic pressure acting on the sluice or the gate.
Therefore, the internal strain energy can be summarized as

U =
∫ h

0

M2

2EI
dz, (5)

and with the Castigliano’s Theorems the tip displacement δ can be expressed

δ =
∂U
∂P

∣∣∣∣
P=0

=
∫ h

0

ρgbz3

6
zdz
EI

=
ρgbh5

30EI
. (6)

Therefore, based on Equation (6), substituting the typical Young’s modulus for low
carbon steel E as 30,000 ksi, the density of the water ρ as 62.3 lbm/ft3, the gravitational
acceleration g as 32.147 ft/s2, and the equivalent square cross section second moment of

area as
1

12
a4 with the equivalent edge size a as 4.3957 in, the zeroth order approximation of

this complex structure example as illustrated in Figure 4, is evaluated as 325.4213 in.
In the so-called first-order approximation, the effect of the plate can also be substituted with

an equivalent distributed stiffness k as shown in Figure 2. Consider a slice of the plane strain
plate with a unit width and the same thickness t which are fixed on both ends, a displacement
(in x direction) distribution with the peak value δ in the middle can be expressed as

u(y) =
δ

2
(1− cos

2πy
L

), (7)

where the length L of this slice of the plate spans the full width of the sluice or the slide
gate which is 157.48 in.

The total strain energy for the unit width can be expressed as

U =
∫ L

0

D
2
(u′′)2dy, (8)

where D is the so-called bending rigidity for the plane strain plate with a thickness t and
denoted as

D =
Et3

12(1− ν2)
, (9)

with the Young’s modulus E.
The equivalent strain energy for the unit width can be depicted as

U =
k
2

δ2, (10)

where with the Poisson’s ratio ν as 0.3, the distributed stiffness k can be derived as

k =
2π4D

L3 ==
π4Et3

6L3(1− ν2)
= 8.0664 lbf/in2. (11)

Notice that in this first-order approximation, the entire plate is taken into consideration
as the distributed stiffness therefore, the beam cross section only consists of the stiffener
with two area A2 and one area A3 as shown in Figures 2 and 4. Thus, given the local
geometrical center and the local second moment of area for the region A2 and A3 as x̄2 and
x̄2, respectively, the geometrical center of the entire cross section is expressed as
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x2 =
2x̄2 A2 + x̄3 A3

2A2 + A3
= 1.0575 in. (12)

Furthermore, given the local second moment of area about y axis passing through its
geometrical center for these two regions as Ī2 and Ī3, respectively, the total second moment
of area for the entire cross section can be written as

I = 2
[

Ī2 + (x̄1 − x2)
2
]
+ Ī3 + (x̄3 − x2)

2 = 4.6477 in4, (13)

which by converting the cross section into an square with an equivalent side a as 2.7328 in.
In the first-order approximation with the distributed stiffness in lieu of the effects of

the plate, in order to calculated the tip displacement, a pseudo tip force P as illustrated in
Figure 2 is introduced. Thus the bending moment at the depth z, with z ∈ (0, h), can be
expressed as

M(z) = Pz +
ρgz3

6
. (14)

along with the following, assuming small displacement and deformation, with M = EIx′′,

EIx′ =
Pz2

2
+

ρgz4

24
+ C1,

EIx =
Pz3

6
+

ρgz5

120
+ C1z + C2.

(15)

Employ the boundary condition at the bottom with z = h, namely, x(h) = 0 and
x′(h) = 0, the two coefficients C1 and C2 can be derived as

C1 = −Ph2

2EI
− ρgh4

24EI
,

C2 =
Ph3

3EI
+

ρgh5

30EI
.

(16)

By introducing the elastic foundation or distributed stiffness k, the governing equation
for the beam can be expressed as

EIxIV + kx(z) = q(z), (17)

where the distributed load is denoted as q(z) as depicted in Figure 2.
The homogenous part of the governing Equation (17) yields the characteristic values

αe
jπ
4 +

j2nπ
4 , with n = 0, 1, 2, and 3 and α =

4

√
k

EI
. In practice, by utilizing the Euler form

e
jπ
4 +

j2nπ
4 =

1√
2
(±1± j), define β =

4

√
k

4EI
, the characteristic solutions for the correspond-

ing homogenous solution can be expressed as

x(z) = eβz(D1 cos βz + D2 sin βz) + e−βz(D3 cos βz + D4 sin βz). (18)

Naturally, using the Wronskian technique as depicted in Ref. [11], the analytical
solutions for general distributed load q(z) can be established. However, for simplicity, the
Galerkin method can also be employed, and the approximation can be established as

x(z) = Bφ(z) = B(1− sin
π

2h
z), (19)

which yields the tip displacement B along with x′′(0) = 0, x′′′(0) 6= 0, x(h) = 0, and
x′(h) = 0.

Notice that three out of four boundary conditions of the cantilever beam are satisfied
which suggests that a fairly accurate numerical solution of the tip displacement B. Thus,
instead of satisfying the governing equation, the following weak form holds
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∫ h

0
φ(z)

[
EIxIV + kx(z)

]
dz =

∫ h

0
φ(z)q(z)dz, (20)

or rather with the implementation of boundary conditions,∫ h

0
φ′′(z)BEIφ′′(z)dz +

∫ h

0
φ(z)Bkφ(z)dz =

∫ h

0
φ(z)ρgbzdz, (21)

with the full width b as 157.48 inches in this case.
Utilizing the following definite integrals∫ h

0
sin

π

2h
zdz =

2h
π

,∫ h

0
(sin

π

2h
z)2dz =

h
2

,∫ h

0
z sin

π

2h
zdz =

4h2

π2 ,

(22)

the first-order approximation of the tip displacement B is derived as

B =

ρgbh2

2
(1− 8

π2 )

EI
π4

32h3 + kh(1− 2
π
)

. (23)

As an extreme case by ignoring the distributed stiffness k, the tip displacement B can
be expressed

B =

ρgbh2

2
(1− 8

π2 )

EI
π4

32h3

=
ρgbh5

EI
(

16
π4 −

128
π6 ) ' ρgbh5

30EI
, (24)

which is consistent with the zero-order approximation established in Equation (6).
Moreover, the strain energy U can be expressed as

U =
∫ h

0

M2

2EI
dz +

∫ h

0

kx2(z)
2

dz, (25)

in which the first term represents the bending strain energy and the second term stands for
the strain energy in the distributed stiffness.

Introducing a scaling factor γ to gauge the influence of the plate in the form of the
distributed stiffness with respect to that of the stiffener,

γ =
kh(1− 2

π
)

EI
π4

32h3

=
64t3h4

L3(1− ν2)a4 (1−
2
π
) = 70.456. (26)

Finally, the first-order approximation of the tip displacement δ can be expressed as

δ =
ρgbh5

30EI(1 + γ)
= 60.9724 in, (27)

with the width b as 157.48 in instead of 78.74 in for the zero-order approximation.
It is clear that the first-order approximation is much more accurate than the zero-

order approximation. The comparison between the two approaches has also established a
relative important of the plate in the who structural system. In fact, the plate contributes
an overwhelming portion of the stiffness in comparison of that of the stiffener expressed
in Equation (26), namely, nearly 70 to 1 ratio. To validate these approximations, two finite
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element modeling strategies are adopted, namely, a two-dimensional plate model rigidly
linked to stiffeners simplified as beams with the same displacements and rotations via
the so-called master node and slave node options in ADINA; and a full-fledged three-
dimensional finite element model implemented in ADINA.

For the two-dimensional plate and beam ADINA model, with 1722 nodes, 1600 plate
elements, and 40 Hermitian beam elements, as illustrated in Figure 5, the plate location
is placed on the mid-span and consider the neutral axis of the stiffener passing through
the center of the geometry without the plate, namely x2 = 1.0575 in from the outer edge
of the stiffener, the beam linked to the two-dimensional plate through the constraints
of both the displacement and the rotation with slave and master nodes is situated at a
distance 3.0764 in away from the plate which is situated at its own plane. Based on this
two-dimensional plate and beam finite element model in ADINA as shown in Figure 5, the
mid span displacement is calculated as 29.9331 in.

(a) (b)

Figure 5. A typical two-dimensional plate and beam ADINA model with master and slave nodes.
(a) Plate and beam model, (b) Results.

Instead of co-dimension one plates and co-dimension two beams finite element models
as shown in Figure 5, Figure 6 on the other hand depicts a full-fledged three-dimensional
solid ADINA model with 177,192 nodes and 14,720 3D solid elements. In this three-
dimensional model, a significant amount of nodes are required even with a fairly coarse
structural mesh with one element layer over the thickness direction due to the excessive
geometrical aspect ratios of this complex structure. As shown in Figure 6, the mid node
displacement 33.0673 in is comparable to the displacement 29.9331 in predicted by the
two-dimensional plate and beam ADINA model as shown in Figure 5. In comparison
with the relatively stiffer two-dimensional plate and beam ADINA model, the full-fledge
three-dimensional ADINA model is more flexible and yields a slightly larger displacement.
Furthermore, the first-order approximation result as expressed in Equation (27) is also com-
parable to those from three-dimensional finite element models. It is important to notice that
low-dimensional approximation models do over simplify the three-dimensional structure
and yield larger mid span deflections. Nevertheless, the physical insights presented in
expressions (6) and (27) are extremely valuable with respect to key geometrical dimensions
and design variations.
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(a) (b)

Figure 6. A typical three-dimensional solid ADINA model. (a) Solid model, (b) Results.

3. Low-Dimensional System Validation

In the previous section, the accuracy and validity of the low-dimensional approxima-
tions are addressed in comparison with analytical results. In the process of establishing the
zero-order and first-order approximations, the hierarchical modeling procedures for the
complex structure similar to that of holding tanks yet very much simplified also include
two-dimensional plate and beam models. In particular, an equivalent two-dimensional
beam-column structural system as shown in Figures 2 and 3 must first be derived. A
portion of the plate is attached as the top flange of an equivalent beam with the stiffener
as its web and bottom flange. Moreover, the width of the plate is normally equal to the
space between the stiffeners, denoted in this paper as b. In this section, we are to further
verify and validate the analytical approaches with the computational simulation for a set
of more idealized two-dimensional structure models. Using the symmetry, a simplified
beam-column is obtained as shown in Figure 7, in which H is used to denote the height of
the tank and W stands for the cross-sectional width.

(a) (b)

Figure 7. A simplified one and two-dimensional beam-column system model with the external
pressure load along with internal forces and moments in the mid span as well as the typical vertical
location with the coordinate x. (a) 2D column-beam model, (b) Moment and shear force.

As illustrated in Figure 7, if the mid section of the equivalent beam across the equiv-
alent columns is cut open, the internal forces, namely, shear force Qo and tension force
To along with the bending moment Mo must be introduced. Due to the symmetry, it is
clear that the shear force Qo must be zero. In addition, the rotation and the horizontal dis-
placement at the mid section must also be zero. In order to derive the internal moment Mo
and the tension force To, the energy principle, often called the first Castigliano’s Theorem
must also be utilized [12,13]. Assuming the internal strain energy for the left half of the
beam-column system as U, and using the symmetry, the following can be established
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∂U
∂To

= 0,

∂U
∂Mo

= 0.
(28)

For the plate stripe assigned to the stiffener, the distributed line load at the vertical
location marked by the coordinate x can be expressed as q(x) = ρgbx, assuming the liquid
density ρ is 112.2 lbm/ft3, and the side-wall corrugated pattern repeats on 13.5 in intervals,
i.e., b = 13.5 in. Of course, this is the first-order approximation necessary for preliminary
design. The width of the side-wall plate will carry the liquid pressure and consequently
the equivalent beam-column for the stiffener will be subjected to a line load with a linear
distribution also illustrated in Figures 3 and 7. For the cut section as illustrated in Figure 7,
with the distributed load q(s) = ρgbs for s ∈ [0, x], the bending moment can be expressed as

M = Mo − xTo +
∫ x

0
(x− s)q(s)ds = Mo − xTo +

ρgbx3

6
. (29)

Consequently, the analytical expression of the internal strain energy for the left half of
the beam-column system is expressed as

U =
∫ W/2

0

M2
o

2EI
dy +

∫ W/2

0

T2
o

2EA
dy +

∫ H

0

M2

2EI
dx, (30)

where y represents the position in the horizontal direction, x is the vertical coordinate, I
stands for the bending rigidity of the equivalent stiffener, and E is the Young’s modulus.

For simplicity, in this comparison of analytical solutions with computational re-
sults, geometrical constraint W = H holds. Moreover, ignore the shear strain energy
in Equation (30) and employ the first Castigliano’s Theorem, Equation (28) can be rewritten
and be expressed as

∂U
∂To

=
∫ H/2

0

To

EA
dy +

∫ H

0

M
EI

(−x)dx =
To H
2EA

− Mo H2

2EI
+

To H3

3EI
− ρgbH5

30EI
,

∂U
∂Mo

=
∫ H/2

0

Mo

EI
dy +

∫ H

0

M
EI

(1)dx +
Mo

EI
W
2

=
3Mo H

2EI
− To H2

2EI
+

ρgbH4

24EI
.

(31)

Assume the structural dimension H is much larger than the radius of gyration of the

cross sectional area A, namely, H �
√

I
A

, or H2 A � I, the contribution from the axial

deformation can be ignored and Equation (31) can be rewritten as,

∂U
∂To

= −Mo H2

2EI
+

To H3

3EI
− ρgbH5

30EI
,

∂U
∂Mo

=
3Mo H

2EI
− To H2

2EI
+

ρgbH4

24EI
.

(32)

Substitute Equation (28) into Equation (31), the following system equation is derived

Ax = b, (33)

where the state variables are x =< Mo, To > and the right hand side vector b = −ρgbH3 <
1

30
,

1
24

>, and the coefficient matrix is depicted as

A =


1
2
−H

3
3
2
−H

2

. (34)
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Finally, the following solutions for the internal tension and the bending moment can
be established at the mid span

To =
7

60
ρgbH2,

Mo =
1

90
ρgbH3.

(35)

Furthermore, the same simplified two-dimensional beam-column system model is
introduced with an addition of a virtual vertical load Fo at the mid span or rather the right
side the same location where both the bending moment Mo and the tension Fo are placed.
Ignore the axial tension strain energy and the shear force strain energy, the total strain
energy can be expressed as

U =
∫ H/2

0

(Mo − Foy)2

2EI
dy +

∫ H

0

(Mo − Tox +
ρgbx3

6 − Fo
H
2 )

2

2EI
dx, (36)

and from the first Castigliano’s Theorem, employ Equation (35) for Mo and To, the mid
span vertical deflection in the same direction as the virtual force Fo can be calculated as

δ =
∂U
∂Fo

∣∣∣∣
Fo=0

= −
∫ H/2

0

Moy
EI

dy +
∫ H

0

(Mo − Tox +
ρgbx3

6
)(−H)

2EI
dx =

ρgbH5

720EI
. (37)

Before the actual dimensions for this holding tank structural system are implemented,
low-dimensional approximations with the same approaches must first be validated with
the two-dimensional ADINA simulation as illustrated in Figure 7. In this simulation, the
dimension H is 96 in with a 1× 1 in cross section with ρgbH = 100 lbf/in and the Young’s
modulus E as 30,000 ksi. Therefore, the second moment of the cross sectional area I
can be calculated as 1/12 in4. Using the analytical result of the deflection as expressed in
Equation (37), the mid span deflection is calculated as

δ =
100× 12× 964

720× 3× 107 × 14 = 4.7186 in. (38)

The mid span deflection predicted in the two-dimensional ADINA model with 60 iso-
beam elements and 121 nodes, as shown in Figure 8, is 4.7192 in which is nearly the same
as the analytical solution. Moreover, the mid span tension and bending moment predicted
in the same ADINA simulation are 1120 lbf and 10,238 lbf · in, respectively, which again
are nearly the same as the theoretical results.

(a) (b)

Figure 8. ADINA finite element model of this two-dimensional beam-column structural system.
(a) 2D model, (b) Deformation.
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With this confirmation and validation, the simulation is expanded to include more
specific design details. For example, the design recommendation with the guidance of the
two-dimensional finite element models yields a typical cross section of holding tanks as
depicted in Figure 9, in which a simple curve around the corner is reinforced by relevant
stiffeners. This simple design modification will certainly alleviate the stress concentration,
yet this simple curve will render the elegant analytical procedure untenable. Therefore,
full-fledged finite element simulations are becoming a necessity. In fact, contrary to the
analytical procedure, such a design modification can be simply handled with similar two-
dimensional finite element models as shown in Figure 10. Note that the overall structural
system becomes more flexible with the corner modification which can be simply rectified
with straight side walls directly welded to the tank bottom as shown in Figure 11. Finally,
these two sets of structural examples and available analytical solutions have validated
and verified the same hierarchical modeling procedures to be implemented along with
computational tools such as ADINA and Solidworks for the systematic study of these hold
tanks with extreme geometrical aspect ratios.

Figure 9. A typical cross section of holding tank designs. The dimensional unit is inch.

(a) (b)

Figure 10. ADINA Simulation of the full-fledged beam-column model with curved design features at
the bottom. (a) 2D model with curved corner, (b) Deformation.
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(a) (b)

Figure 11. ADINA simulation of the full-fledged beam-column model with curve corners as well as
straight side walls welded to the tank bottom. (a) 2D model with stiffened curved corner, (b) Deformation.

All stiffeners in holding tanks are made of 3′′ × 6′′ × 1
4
′′

ASTM A36 steel channel
construction as illustrated in Figure 12 along with the density of 485.92 lbm/ft3 and the
Young’s modulus of 30,000 ksi. The geometrical center is in the mid section of the equivalent
stiffener with a distance ȳ away from the edge of the channel stiffener. Assuming the
spacing between the stiffeners is 16 in, namely, b = 16 in, geometric center ȳ is calculated
as 2.1705 in and I = 11.2247 in4. If the spacing is increased, for instance, b = 24 in, the
geometrical properties are calculated as ȳ = 2.3856 in and I = 12.6468 in4.

Figure 12. The cross section of an equivalent stiffener or column.

Note that for metals, the estimated elastic stress limit is about 0.2% of the Young’s
Modulus, roughly, 30,000 ksi, i.e., 60 ksi. The documented yield strength is around 36 ksi.
This means under no circumstance, in a proper engineering design, operational stress
should approach 30 ksi with a reasonable safety factor. In fact, all these calculations are
based on static force and moment equilibrium. If consider the dynamic loading and safety
factors, the actual operation stress should be much lower than this level.

Using Equation (36), the following distribution of the bending moment is established as

M
ρgbH3 =

1
90
− 7s

60
+

s3

6
, (39)

with the dummy variable s =
x
H

.
As depicted in Figure 13 with the solid line, the maximum bending moment is triggered

at the bottom of the tank, namely, at x = H or s = 1, Mmax ' 0.06111ρgbH3 can be es-
tablished. In addition, the local minimum also occurs at s = 0.4830 or x = 0.4830H with
Mmin ' −0.02646ρgbH3. For water density ρ = 1000 kg/m3 = 62.3 lbm/ft3, if the spacing b
between the stiffeners is 16 in, with 3′′ × 6′′ × 1

4
′′

ASTM A36 steel channel construction, the

geometrical effects ȳ = 2.1705 in and I = 12.2247 in4 yield σmax =
Mmax ȳ

I
= 6.0305 ksi. The

corresponding local minimum σmin = 2.6112 ksi. For mud with ρ = 112.2 lbm/ft3, the same
maximum stress yields 10.8612 ksi along with the local minimum σmin = 4.7029 ksi. If the
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spacing is increased to b = 24 in with ȳ = 2.3856 in and I = 12.6468 in4, σmax = 8.8243 ksi
and σmin = 3.8208 ksi can be established for water as well as σmax = 15.8929 ksi and
σmin = 6.8815 ksi for mud. The trend is very clear that, in general, if the spacing between
the stiffener increases, the maximum stress due to bending increases as well, in addition, the
deeper the holding tank, the higher the maximum stress due to bending. Considering the
stress concentration factor, thermal stress, residual stress due to welding, these current designs
of holding tanks are very close to the material design limit.

Figure 13. Bending Moment distribution over the depth of the equivalent stiffener. The dot-dash line
represents the zero bending moment.

With the confirmations of both analytical and computational hierarchical procedures,
it is now possible to add design details to the full-fledged finite element models. We will
adopt both Solidworks and ADINA for the handling of the full-fledged three-dimensional
complex structures. In ADINA model, instead of using the three-dimensional solid mod-
eling, co-dimension one plate models are employed along with co-dimension two beam
models. Furthermore, to avoid the extreme geometrical aspect ratios, stiffeners can mod-
eled as co-dimension two beams positioned at its own geometric center. For the stiffeners
constructed with 3′′× 6′′× 1

4
′′

ASTM A36 steel channel, without the attachment of the plate,
the second moment of area is 2.4885 in4 with the center of geometry from the baseline ȳ is
0.8424 in. Thus, in ADINA simulation, the equivalent beam with a square cross section has
the side dimension of 2.3376 in. Notice that rigid links are introduced to connect the beams
which represent the stiffeners and are positioned at a distance equivalent to the distance
from the stiffener baseline to the center of the geometry, i.e., 0.8424 in. Of course, the hydro-
static pressure is based on the mud density ρ is 112.2 lbm/ft3 and the tank depth H is 96 in.
Moreover, in this quasi-static problem, the static pressure due to the mud specific weight
will be assigned over thirty time steps in order to avoid the complication due to excessive
deformations. The average Young’s modulus E for low carbon steels is 30,000 ksi, the
Poisson’s ratio ν is 0.3. In this full-fledged three-dimensional ADINA model, 10,642 nodes
and 19,520 plate elements coupled with 840 3D iso-beams are employed to represent the
three-dimensional solid plate and stiffeners. As illustrated in Figures 14 and 15, the peak
deformation is around 0.8668 in, a fairly visible deformation which indicates the design is
approaching the material limit as suggested in the simplified analytical models presented
earlier in this paper.



Appl. Mech. 2022, 3 478

(a) (b)

Figure 14. ADINA simulation of the full-fledged three-dimensional plate and beam model with
stiffeners. (a) 3D plate and beam model, (b) Deformation.

(a) (b)

Figure 15. ADINA simulation of the full-fledged three-dimensional plate and beam model with
stiffeners. (a) Stiffeners and rigid links, (b) Linear pressure distribution.

As shown in the three-dimensional model using a software package called Solidworks,
it seems that individual stiffeners can be fully expressed as the three-dimensional solid as
shown in Figures 2, 4, and 12. Nevertheless, it is very difficult to provide an adequate mesh
resolution for stiffeners made of 3′′ × 6′′ × 1

4
′′

ASTM A36 steel. Therefore, following the
discussions in the previous sections, the stiffeners are simplified by beams with equivalent
bending rigidity and rigidly linked to the plate. In Figures 14 and 15, co-dimension one
plate model stiffened by co-dimension two beam model is represented by finite elements
in ADINA. Moreover, in the full-fledged three-dimensional Solidworks model as shown
in Figure 16, additional reinforcements are introduced at the end of the tank structure in
comparison with the ADINA model as shown in Figure 15. It is clear that the finite element
Solidworks model using three-dimensional solid elements provides a close yet slightly
lower displacement result in comparison with the idealized three-dimensional plate and
beam ADINA model. For this stand alone structure, similar fixed boundary conditions as
shown in Figure 17 are introduced on the bottom of both Solidworks and ADINA models.
Moreover, also shown in Figures 15 and 17 the rigid constraints are utilized to link stiffeners
represented by the beams elements with the plate for the three-dimensional ADINA model.
With these established models and their respective verifications, engineers can now comfort-
ably engage in necessary design modifications which will further optimize the structural
design with the consideration of specific manufacturing requirements and constraints.
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(a) (b)

Figure 16. Solidworks simulation of the full-fledged three-dimensional solid model with
end reinforcements.

(a) (b)

Figure 17. (a) Boundary conditions and rigid links for ADINA three-dimensional plate and beam
models. (b) Boundary conditions for Solidworks three-dimensional solid models.

4. Conclusions

In this paper, analytical solutions are coupled and confirmed with two-dimensional
and three-dimensional structural models. Overall, it is discovered that current holding tank
designs are still safe yet very close to low carbon steel’s yield limit, in particular, if the liquid
is mud, which often is the case in many hydraulic fracturing practices. Analytical solutions
are compared with finite element formulations with both Solidworks and ADINA packages.
The benefits of classical analytical approaches with low-dimensional approximations are
obvious in simplifying the complicated three-dimensional structural models and deriving
much needed design insights. Regrettably, much of the analytical tools and related training
are no longer available in some engineering programs. The popularity and easy access of
commercial finite element packages have left among many engineering students and com-
munities false impressions that full-fledged simulations with three-dimensional structural
models for complex structural systems can be easily accomplished without hierarchical
and systematic simplification processes and the corresponding in-depth understanding
of the relevant applied mechanics issues. It is anticipated that through the elaboration of
this practical structural design project and the detailed comparisons with both analytical
approximations and full-fledged finite element simulations, educators in Mechanical, Civil,
and Aerospace Engineering will continue to emphasize the much needed applied mechan-
ics concepts and their irreplaceable roles in providing physical insights and proper setups
for computational modelings of complex structural systems.
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