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Abstract: This paper studies a cracked orthotropic solid under symmetric heat flow, and symmetric
mechanical loading is studied. A modified partially impermeable crack model is employed to simulate
thermal load transfer. With the application of the Fourier transform technique and superposition
theory, the related physical quantities and fracture parameters are obtained in explicit forms. The
advantage of this paper is that the obtained solutions are explicitly closed. As a result, the calculation
of the stress intensity factors of various cracks with different lengths becomes very convenient
and fast. Some simple examples are used to demonstrate the method provided in this paper. The
analysis results show the dimensionless thermal resistance (vc) between the upper and lower crack
regions and the proposed coefficient (ε) greatly influence the related physical quantities and fracture
parameters. In addition, the numerical analysis results also revealed that the calculated results of
fracture parameters at the crack tip will not be physically meaningful unless certain conditions
are met.

Keywords: modified partially impermeable crack; Fourier transform technique; physical quantity;
thermal conductivity; the proposed coefficient

1. Introduction

Piezoelectric ceramics, multi-component composite materials, etc., are common ma-
terials in modern industry. However, defects or cracks inevitably exist in these materials
due to factors in the production process, working environment, and material composi-
tions. These cracks will reduce the load-bearing capacity of structures and even cause
accidents/disasters. Therefore, due to the safety issue, it is necessary to use the theory of
thermal elasticity to perform fracture analysis for cracked materials.

There have been many investigations and explorations on the fracture behavior of
infinite bodies containing single or multiple cracks [1–4]. The singularity analysis of the
thermal stress at the crack tips for a cracked solid under temperature difference or heat flux
has been investigated [5,6]. Fracture parameters (i.e., mode-II stress intensity factors) of a
single crack subject to thermal loading were obtained explicitly by Tsai [7]. By using a least-
squares method, the expression of some fracture parameters with mix-mode was given by Ju
and Rowlands [8]. The thermo-elasticity problem for a cracked solid under constant loading
was taken into consideration by Chen and Zhang [9]. The stress analysis for cracked plates
has been considered by Noda [10]. Fracture parameters in a semi-infinite medium have
been studied by Rizk [11]. The mixed-mode fracture problem of functionally graded solids
subject to mechanical loading was discussed by Kim and Paulino [12]. Furthermore, the
thermoelectricity of orthotropic functionally graded solids has attracted extensive attention
in the past decade. For example, the thermo-elastic problem of a cracked solid subject
to plane temperature-step waves was investigated by Brock [13]. The fracture problem
of cracked functionally graded solids subject to tensile by using the equivalent domain
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integral is formulated by Dag [14]. The closed forms of relevant fracture parameters for two
collinear cracks subject to linear thermal flux have been obtained by Wu et al. [15]. Fracture
analysis of cracked solids subjected to thermal loads has been studied extensively [16–20].

To solve more practical problems, this paper intends to expand the previous approach
to solve the fracture problem of a cracked orthotropic material subjected to more complex
loading. First, the modified partially impermeable crack model is used to study the thermo-
elastic problem of cracked material subject to symmetric thermal flux and mechanical.
Second, Fourier transform is utilized to reduce the mixed boundary value problem to a set
of dual integral equations. Solving these integral equations, the explicit forms of thermo-
elastic fields are obtained. Numerical results show great effects from the dimensionless
thermal resistance (vc) between the upper and lower crack regions and the proposed
coefficient (ε) on related physical quantities and fracture parameters.

In addition, it should be stressed that the fatigue crack growth prediction of a cracked
component/structure is exceptionally difficult and computationally intensive, as calcula-
tions need to be made at each stage of the life of a component/structure. This is done to
compute the stress intensity factors (K) for each crack configuration to calculate the amount
of crack growth, update the crack geometry, and then re-compute the stress intensity factors
for this new geometry. As the stress intensity factors obtained in this paper are theoretical
solutions in explicit forms, it provides a quick, effective, and ideal analysis tool for the
fatigue life/crack growth prediction of a cracked orthotropic material or structure under
the combined action of mechanical and thermal loading.

2. Problem Statement

Let us consider the fracture problem of a single crack under thermal and mechanical
loading, as shown in Figure 1. It is assumed that a single crack is situated on the part (i.e.,
−a < x < a). In this study, the heat flux E(x) is only applied to one surface (such as the
bottom surface) of the crack.
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Figure 1. A single crack under symmetrical heat flow E(x) and symmetrical mechanical loading F(x).

For two-dimensional plane stress problems, the stresses for an orthotropic material [21]
can be expressed as follow:

σxx = c11
∂u
∂x

+ c12
∂v
∂y
− β1T (1)

σyy = c12
∂u
∂x

+ c22
∂v
∂y
− β2T (2)
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σxy = c66[
∂u
∂y

+
∂v
∂x

] (3)

where

c11 =
Exx

1− vxyvyx
, c22 =

Eyy

1− vxyvyx
(4)

c12 =
Exxvyx

1− vxyvyx
(5)

[
β1
β2

]
=

[
c11 c12
c12 c22

][
αxx
αyy

]
(6)

where, σxy, σyy, and σxy denote components of stress; u and v stand for components of
the elastic displacements; Exx and Eyy are the Young’s moduli; c66 = Gxy is the shear
modulus; vxx and vyy are Poisson’s ratios; T represents the temperature; αxx and αyy are
the coefficient of thermal expansion. Substituting all stress expressions (1)–(3) into the
following differential equations of equilibrium

∂σxx

∂x
+

∂σxy

∂y
= 0,

∂σxy

∂x
+

∂σyy

∂y
= 0 (7)

We obtain

c11
∂2u
∂x2 + c66

∂2u
∂y2 + (c12 + c66)

∂2v
∂x∂y

= β1
∂T
∂x

(8)

c66
∂2v
∂x2 + c22

∂2v
∂y2 + (c12 + c66)

∂2u
∂x∂y

= β2
∂T
∂y

(9)

In order to simulate the relationship between heat flux and temperature difference
in cracked materials, a model called the ‘modified partially impermeable crack model’ is
usually used, see Equation (10) [22–24]:

Qc = −Rc∆T (10)

where, Qc, Rc, and ∆T stands for the heat flux per thickness of the crack surface, the
thermal conductivity inside the cracks, and the difference of temperature between the
crack faces, respectively. The value of Rc → 0 or Rc → ∞ denotes the perfectly thermally
impermeable or permeable state of the crack surface. However, there may be impurities or
thermal barriers in the cracks. To expand the function of Equation (10) to an improved new
model called a modified partially impermeable crack model can be proposed as follows:

Qc = −Rc∆T + εQ0 (11)

where Q0 and ε represent initial heat flux and a constant, which is considered to be arbitrary.
ε = 0 in Equation (11) degenerates to the crack–face boundary condition of Equation (10).

Furthermore, the constant εQ0 in Equation (11) is introduced for two main reasons.
The first is simple: it is very difficult to for Rc which is usually regarded as a fixed constant
to precisely address a crack full of thermal resistance through the crack area. Therefore,
the constant εQ0, which is marked as a self-adjusting factor, is used to model the actual
situation. The second reason is that whether the coefficient ε is positive or not depends on
the temperature field.

Utilizing the Fourier heat conduction, one obtains:

Qx = −λx
∂T
∂x

, Qy = −λy
∂T
∂y

(12)
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where Qx and Qy are the components of the heat flux. λx and λy denote the heat conduction
coefficient. Furthermore, based on the equilibrium equation, one obtains

∂Qx

∂x
+

∂Qy

∂y
= 0 (13)

With the aid of the thermal equilibrium equation, one has

λ2 ∂2T
∂x2 +

∂2T
∂y2 = 0 (14)

wherein

λ =

√
λx

λy
(15)

Making use of the boundary conditions causes

QI
y(x, 0)−QI I

y (x, 0) = E(x) −a < x < a (16)

σI I
yy(x, 0) = σI

yy(x, 0) = F(x) −a < x < a (17)

The superscript I or II denotes the part (i.e., y > 0 or y < 0). It is convenient to express
symmetrical E(x) by using their Taylor expansion.

E(x) = −∑M
i=0

Q0i

2ai+1 |x|
i, − a < x < a (18)

Similarly, the following symmetrical F(x) are given explicitly.

F(x) = ∑k
j=0

σj

aj |x|
j − a < x < a (19)

where Q0i and σj denote the prescribed constant. The thermal flux and mechanical loading
are symmetric on the x-axis, and the solution to this problem will be obtained explicitly.

3. The Solution to Symmetric Heat Flow and Mechanical Loading

Subject to symmetric thermal flux and mechanical loading, the closed form of the
solution to the problem will be given in this section. The crack–face boundary conditions
are written as

QI
y(x, 0)−QI I

y (x, 0) = −∑M
i=0

Q0i

2ai+1 |x|
i − a < x < a (20)

σI I
yy(x, 0) = σI

yy(x, 0) = ∑k
j=0

σj

aj |x|
j − a < x < a (21)

Based on the symmetry of the thermomechanical loading, the half part (i.e., x > 0
and −∞ < y < +∞) of the thermo-elastic field under thermomechanical loading
−∑M

i=0 Q0i|x|i/2ai+1 and ∑k
j=0 σj|x|j/aj is taken into account. The boundary conditions are

expressed based on the modified partially impermeable crack model.

σI
xy(x, 0) = σI I

xy(x, 0) = 0 −a < x < a (22)

QI
y(x, 0)−QI I

y (x, 0) = −∑M
i=0

Q0i −Qci

2ai+1 |x|i − a < x < a (23)

σI I
yy(x, 0) = σI

yy(x, 0) = ∑k
j=0

σj

aj |x|
j −a < x < a (24)

From Equations (23) and (24), the thermal flux and mechanical loading are made up of
multiple sections. Firstly, the solutions subject to thermal flux −Q0i|x|i/2ai+1 and mechani-
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cal loading σj|x|j/aj will be obtained in explicit form. Secondly, making use of the principle
of superposition, the related physical quantities under thermal flux −∑M

i=0 Q0i|x|i/2ai+1

and mechanical loading ∑k
j=0 σj|x|j/aj will be given explicitly. With the aid of the symmetry

of thermomechanical loading, the boundary conditions under thermal flux −Q0i|x|i/2ai+1

and mechanical loading σj|x|j/aj are obtained.

σI
xy(x, 0) = σI I

xy(x, 0) = 0 0 < x < a (25)

QI
y(x, 0)−QI I

y (x, 0) = −Q0i −Qci

2ai+1 |x|i 0 < x < a (26)

σI I
yy(x, 0) = σI

yy(x, 0) =
σj

aj |x|
j 0 < x < a (27)

where
Qci = Rc

(
T I(x, 0)− T I I(x, 0)

)
+ εQ0i (28)

Furthermore, the continuity of some physical quantities meets the following relations.

vI I(x, 0) = −vI(x, 0), uI I(x, 0) = −uI(x, 0), x< −a or x >a (29)

σI I
yy(x, 0) = σI

yy(x, 0), σI I
xy(x, 0) = σI

xy(x, 0), x< −a or x >a (30)

QI I
y (x, 0) = QI

y(x, 0), T I I(x, 0) = −T I(x, 0), x< −a or x >a (31)

3.1. Solution Procedure

Because Equation (14) is not directly connected to the elastic strain, the solvation of
the temperature field is obtained. The expression of the temperature field is given with the
help of Fourier transform.

T I,I I(x, y) =
∫ +∞

0
Ω±(ξ)e−ξδ±λy cos(ξx)dξ (32)

Ω±(ξ), which are unknown functions, will be given. δ+ = 1 or δ− = −1 stands for
the physical quantities of the upper or lower region of the x-axis. Utilizing Equation (12),
one arrives at

QI,I I
x (x, y) = λx

∫ +∞

0
ξΩ±(ξ)e−ξδ±λy sin(ξx)dξ (33)

QI,I I
y (x, y) = λyλ

∫ +∞

0
δ±ξΩ±(ξ)e−ξδ±λy cos(ξx)dξ (34)

Utilizing the first expression of Equation (31), one arrives at

Ω+(ξ) = −Ω−(ξ), (35)

Taking advantage of the second expressions of Equations (26) and (31) leads to

∫ +∞

0
Ω+(ξ)ξ cos(ξx)dξ = − (Q0i −Qci)|x|i

4ai+1λλy
0 < x < a (36)

∫ +∞

0
Ω+(ξ) cos(ξx)dξ = 0 x > a (37)

To obtain the explicit form of Equations (36) and (37), γ(x), which is called an auxiliary
function, can be introduced

γ(x) =
∂
[
T I(x, 0)− T I I(x, 0)

]
∂x

(38)
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We have the following the expression according to the inverse Fourier transform (IFT)

Ω+(ξ)ξ = −
∫ a

0

γ(s) sin(ξs)
π

ds (39)

Inserting Equation (39) into Equation (36), one obtains

2
π

∫ a

0
γ(s)ds

∫ +∞

0
sin(ξs) cos(ξs) =

(Q0i −Qci)|x|i

2ai+1λλy
(40)

Utilizing the known result [25],

2
∫ +∞

0
sin(ξs) cos(ξs) =

1
s− x

+
1

s + x
(41)

when i = 2n (n ≥ 0). Equation (32) can be given as

1
π

∫ a

−a
γ(s)

1
s− x

ds =
(Q02n −Qc2n)x2n

2a2n+1λλy
(42)

Utilizing standard singular integral theory containing the Cauchy kernel [26], the
explicit form of Equation (42) is obtained as

γ(x) =
1

π
√

a2 − x2

∫ a

−a

√
a2 − s2

x− s
(Q02n −Qc2n)s2n

2a2n+1λλy
ds +

C2n√
a2 − x2

(43)

Based on the following condition,∫ a

−a
γ(s)ds = 0 (44)

After some calculations, one has C2n = 0. Furthermore, γ(x) is given as

γ(x) =
(Q02n −Qc2n)x
2aλλy

√
a2 − x2

n= 0 (45)

γ(x) = −∑n
l=1

(Q02n −Qc2n)x2l−1

2a2n+1λλyπ
√

a2 − x2
Ml +

(Q02n −Qc2n)

2a2n+1λλy
√

a2 − x2
x2n+1 n ≥ 1 (46)

where
Ml =

∫ a

−a

√
a2 − s2s2n−2lds (1 ≤ l ≤ n) (47)

When i = 2n − 1 (n ≥ 1), Equation (40) can be rewritten as

1
π

∫ a

0
γ(s)

2s
s2 − x2 ds =

(Q02n−1 −Qc2n−1)x2n−1

2a2nλλy
(48)

Then, by the introduction of s2 = s, x2 = x, 2sds = ds,a2 = a and γ(s) = γ(s),
Equation (48) is expressed as

1
π

∫ a

0

γ(s)
s− x

ds =
(Q02n−1 −Qc2n−1)xn− 1

2

2a2nλλy
(49)

Based on a standard integral theory containing the Cauchy kernel [26], the closed form
of Equation (49) is obtained as

γ(x) =
1

π
√

x(a− x)

∫ a

0

√
s(a− s)
x− s

(Q02n−1 −Qc2n−1)sn− 1
2

2a2nλλy
ds (50)
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When i = 2n (n ≥ 0), the temperature difference on the crack is obtained based on
Equations (38), (45) and (46).

T I(x, 0)− T I I(x, 0) = − (Q02n −Qc2n)

2aλλy

√
a2 − x2 n = 0 (51)

T I(x, 0)− T I I(x, 0) = −∑n
l=1

(Q02n−Qc2n)Ml
2a2n+1λλyπ

∫ x
−a

s2l−1
√

a2−s2 ds + (Q02n−Qc2n)
2a2n+1λλy

∫ x
−a

s2n+1
√

a2−s2 ds

= −∑n
l=1

(Q02n−Qc2n)Ml
2a2n+1λλyπ

V(x, l) + (Q02n−Qc2n)
2a2n+1λλy

L(x, n) n ≥ 1
(52)

where
V(x, l) =

√
a2 − x2l = 1 (53)

With the trigonometric substitution of variable s in Equation (52) and then with the
help of the integral handbook [25], the following two equations can be obtained:

V(x, l) = − a2l−2
√

a2 − x2

2l − 1

[
(

x
a
)

2l−2
+ ∑l−2

k=0
2k+1(l − 1)(l − 2) . . . (l − k− 1)
(2l − 3)(2l − 5) . . . (2l − 2k− 3)

(
x
a
)

2l−2k−4
]

l ≥ 2 (54)

L(x, n) = − a2n
√

a2 − x2

2n + 1

[
(

x
a
)

2n
+ ∑n−1

k=0
2k+1n(n− 1)(n− 2) . . . (n− k)

(2n− 1)(2n− 3)(2n− 5) . . . (2n− 2k− 1)
(

x
a
)

2n−2k−2
]

n ≥ 1 (55)

When i = 2n − 1 (n ≥ 1), the temperature difference on the crack is obtained, based on
Equations (38) and (50).

T I(x, 0)− T I I(x, 0) =
∫ x

0

γ(s)
2
√

s
ds (56)

3.2. Elastic Field

For the solvation of Equations (9) and (10), uI,I I(x, 0) and vI,I I(x, 0) are depicted based
on [26].

uI,I I(x, 0) = uI,I I
1 (x, 0) + uI,I I

2 (x, 0), vI,I I(x, 0) = vI,I I
1 (x, 0) + vI,I I

2 (x, 0) (57)

Herein, the terms of uI,I I
1 (x, 0) and vI,I I

1 (x, 0), respectively, correspond to the general
solution under a certain heat flow, and uI,I I

2 (x, 0) and vI,I I
2 (x, 0), respectively, correspond to

the special solution under a certain temperature field. We can see uI,I I
1 (x, 0) and vI,I I

1 (x, 0)
are expressed based on the Fourier transform.

uI,I I
1 (x, 0) = ∑2

j=1

∫ +∞

0
Ω±j (ξ) sin(ξx)dξ (58)

vI,I I
1 (x, 0) = ∑2

j=1

∫ +∞

0
ηjδ
±Ω±j (ξ) cos(ξx)dξ (59)

where Ω±j (ξ)(j = 1, 2) are unknown functions. γj(j = 1, 2) are given in the following
equations.

c22c66γ4 +
(

c2
12 + 2c12c66 − c12c22

)
γ2 + c11c66 = 0 (60)

where

ηj =
c11 − c66γ2

j

(c12 + c66)γj
(61)

Furthermore, uI,I I
2 (x, 0) and vI,I I

2 (x, 0) are selected as

uI,I I
2 (x, 0) = ∑2

j=1

∫ +∞

0
Ω ∗± (ξ) sin(ξx)dξ (62)
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vI,I I
2 (x, 0) = ∑2

j=1

∫ +∞

0
δ±L ∗± (ξ) cos(ξx)dξ (63)

Substituting Equations (62) and (63) for Equations (8) and (9), one has[
Ω ∗± (ξ)
L ∗± (ξ)

]
=

[
K1
K2

]
Ω+(ξ)

ξ
(64)

where [
K1
K2

]
=

[
c11 − c66λ2 −(c12 + c66)λ
(c12 + c66)λ c66 − c22λ2

]−1[
β1

β2λ

]
(65)

The components of stress are expressed in the following form with the application of
Equations (2)–(4), (51)–(59).

σI,I I
xx (x, 0) = ∑2

j=1
∫ +∞

0

(
c11 − c12γjηj

)
ξΩ±j (ξ) cos(ξx)dξ

+(c11K1 − c12λK2 − β1)
∫ +∞

0 Ω±(ξ) cos(ξx)dξ
(66)

σI,I I
yy (x, 0) = ∑2

j=1
∫ +∞

0

(
c12 − c22γjηj

)
ξΩ±j (ξ) cos(ξx)dξ

+(c12K1 − c22λK2 − β2)
∫ +∞

0 Ω±(ξ) cos(ξx)dξ
(67)

σI,I I
xy (x, 0) = −c66

[
∑2

j=1
∫ +∞

0 δ±
(
γj + ηj

)
ξΩ±j (ξ) sin(ξx)dξ

+
∫ +∞

0 δ±(K1λ + K2)Ω
±(ξ) sin(ξx)dξ

] (68)

To obtain the closed form of this problem, it is separated into two simple sections. One
is mechanical loading σj|x|j/aj, the other is thermal loading −Q0i|x|i/2ai+1. To begin with,
dual integral equations can be given, considering the mechanical loading.

σI
xy(x, 0) = σI I

xy(x, 0) = 0 x > 0 (69)

vI(x, 0) = −vI I(x, 0)= 0 x > a (70)

Making use of Equations (69) and (70), one has

Ω+
j (ξ) = Ω−j (ξ), Ω+

2 (ξ) = −
γ1 + η1

γ2 + η2
Ω+

1 (ξ) (71)

With application of Equations (18) and (54), one attains

∫ +∞

0
ξΩ+

1 (ξ) cos(ξx)dξ =
σj|x|j

ω1aj 0 < x < a (72)

∫ +∞

0
ξΩ+

1 (ξ) cos(ξx)dξ = 0 x > a (73)

where
ω1 = (c12 − c22γ1η1)−

γ1 + η1

γ2 + η2
(c12 − c22γ2η2) (74)

To achieve the closed form of Equations (72) and (73), the called auxiliary function φ(x)
is introduced as

φ(x) =
∂vI(x, 0)

∂x
(75)

Making use of inverse Fourier transform (IFT) leads to

Ω+
1 (ξ)ξ = − 2(γ2 + η2)

(η1γ2 − η2γ1)π

∫ a

0
φ(s) sin(ξs)ds (76)
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Taking advantage of Equation (41) and substituting Equation (76) into (73), one has

1
π

∫ a

−a

φ(s)
s− x

ds = −
σj(η1γ2 − η2γ1)

ω1(γ2 + η2)aj |x|
j (77)

When j = 2n (n ≥ 0), the solution of Equation (77) can be obtained with the application
of the standard singular integral containing the Cauchy kernel [26].

φ(x) = − 1

π
√

a2 − x2

∫ a

−a

√
a2 − s2

x− s
σ2n(η1γ2 − η2γ1)

ω1(γ2 + η2)a2n s2nds +
D2n√

a2 − x2
(78)

After some calculations, D2n = 0. Utilizing Equations (75) and (78), the elastic dis-
placement is obtained as

vI(x, 0) =
σ2n(η1γ2 − η2γ1)

√
a2 − x2

ω1(γ2 + η2)
n = 0 (79)

vI(x, 0) = ∑n
l=1

σ2n(η1γ2−η2γ1)Ml
ω1(γ2+η2)πa2n

∫ x
−a

s2l−1
√

a2−s2 ds− σ2n(η1γ2−η2γ1)
ω1(γ2+η2)a2n

∫ x
−a

s2n+1
√

a2−s2 ds

= ∑n
l=1

σ2n(η1γ2−η2γ1)Ml
ω1(γ2+η2)πa2n V(x, l)− σ2n(η1γ2−η2γ1)

ω1(γ2+η2)a2n L(x, n) n ≥ 1
(80)

Inserting Equation (78) into (67), the stress field is given as

σI,I I
yy (x, 0) = −

(
1− x√

x2 − a2

)
σ2n n = 0 (81)

σI,I I
yy (x, 0) = ∑n

l=1
σ2n

a2nπ2

∫ a
−a

s2l−1

(s−x)
√

a2−s2 ds− σ2n
a2nπ

∫ a
−a

s2n+1

(s−x)
√

a2−s2 ds

= ∑n
l=1[M(l, x)Ml − x2l−1π√

x2−a2 Ml ]
σ2n

a2nπ2−[N(n, x)− x2n+1π√
x2−a2 ]

σ2n
a2nπ

n ≥ 1
(82)

where
M(l, x) = ∑l−1

m=0 Zmx2m,N(n, x)= ∑n
m=0 Wmx2m (83)

Zm =
∫ a

−a

s2l−2m−2
√

a2 − s2
ds(0 ≤ m ≤ l−1), Wm =

∫ a

−a

s2n−2m
√

a2 − s2
ds (0 ≤ m ≤ n) (84)

When j = 2n − 1 (n ≥ 1), Equation (77) can be rewritten as

1
π

∫ a

0
φ(s)

2s
s2 − x2 ds = −σ2n−1(η1γ2 − η2γ1)

ω1(γ2 + η2)a2n−1 x2n−1 (85)

Then, utilizing the introduction of s2 = s, x2 = x, 2sds = ds, a2 = a, Equation (85) is
also expressed as

1
π

∫ a

0

φ(s)
s− x

ds = −σ2n−1(η1γ2 − η2γ1)

ω1(γ2 + η2)a2n−1 xn− 1
2 (86)

Utilizing standard singular integral theory containing the Cauchy kernel [26], the
explicit form of Equation (86) is obtained as

φ(x) = − 1
π
√

x(a− x)

∫ a

0

√
s(a− s)
x− s

σ2n−1(η1γ2 − η2γ1)

ω1(γ2 + η2)a2n−1 sn− 1
2 ds (87)

Based on the following constraint condition, one has

1
2

∫ a

0

φ(s)√
s

ds = 0 (88)
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Based on Equations (75) and (87), the elastic displacement is obtained as

vI(x, 0) =
1
2

∫ x

0

φ(s)√
s

ds (89)

After some computations, one has

vI(x, 0) =
σ2n−1(η1γ2 − η2γ1)x

√
a2 − x2

2πaω1(γ2 + η2)
+ O(1) n = 1 (90)

vI(x, 0) = ∑n
l=1

σ2n−1(η1γ2 − η2γ1)M′ l
2ω1(γ2 + η2)πa2n−1

∫ x

0

sl−1√
s(a− s)

ds− σ2n−1(η1γ2 − η2γ1)

ω1(γ2 + η2)πa2n−2

∫ x

0

sn−1√
s(a− s)

ds + O(1),n ≥ 2 (91)

where

M′ l =
∫ a

0

√
a− ssn−lds (1 ≤ l ≤ n) (92)

Substituting Equation (87) into (67), the stress field is given

σI,I I
yy (x, 0) =

2x
πa
√

x2 − a2
σ2n−1 + O(1) n = 1 (93)

σI,I I
yy (x, 0) = ∑n

l=1
σ2n−1M′ l
π2a2n−1

∫ a

0

sl−1

(s− x)
√

s(a− s)
ds− σ2n−1

π2a2n−2

∫ a

0

sn−1

(s− x)
√

s(a− s)
ds + O(1), n ≥ 2 (94)

Next, an elastic field with thermal flux
(
−Q0i|x|i/2ai+1

)
will be solved. Using thermal

flux, one has the relation

σI
yy(x, 0) = σI I

yy(x, 0) = 0 0 < x < a (95)

Taking advantage of Equations (67) and (95), one obtains

Ω+
j (ξ) = −Ω−j (ξ) (96)

∑2
j=1

(
c12 − c22γjηj

)
Ω+

j (ξ) = (c22λK2 + β2 − c12K1)
Ω+(ξ)

ξ
(97)

Applying Equation (25) and the second expression in Equation (29), one has dual
integral equations∫ +∞

0
∑2

j=1

(
γj + ηj

)
ξΩ+

j (ξ) sin(ξx)dξ +
∫ +∞

0
(K1λ + K2)Ω

+(ξ) sin(ξx)dξ = 0, 0 < x < a (98)

∫ +∞

0

[
∑2

j=1 Ω+
j (ξ) sin(ξx) +

K1Ω+(ξ)

ξ
sin(ξx)

]
dξ = 0, x > a (99)

To get the explicit form of Equations (98) and (99), the called auxiliary function is also
introduced as

Θ(x) =
∂uI(x, 0)

∂x
(100)

Making use of Equation (98) and inverse Fourier transform, we have

∑2
j=1 Ω+

j (ξ)ξ + K1Ω+(ξ) =
2
π

∫ a

0
Θ(s) cos(ξs)ds (101)

With the application of Equations (97) and (101), one arrives at

Ω+
1 (ξ)ξ =

c22λK2 + β2 − c22γ2η2K1

c22(γ2η2 − γ1η1)
Ω+(ξ) +

c22γ2η2 − c12

c22(γ2η2 − γ1η1)

2
π

∫ a

0
Θ(s) cos(ξs)ds (102)
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Ω+
2 (ξ)ξ =

c22γ1η1K1 − c22λK2 − β2

c22(γ2η2 − γ1η1)
Ω+(ξ) +

c12 − c22γ1η1

c22(γ2η2 − γ1η1)

2
π

∫ a

0
Θ(s) cos(ξs)ds (103)

With the application of Equations (99), (102), and (103), one has

2
∫ a

0
Θ(s)ds

∫ +∞

0
sin(ξx) cos(ξs)dξ = πω2

∫ +∞

0
Ω+(ξ) sin(ξx)dξ, 0 < x < a (104)

where
ω2 =

H1

H2
(105)

with
H1 = (γ1 + η1)(c22γ2η2K1 − c22λK2 − β2) + (γ2 + η2)

×(c22λK2 + β2 − c22γ1η1K1) + c22(K1λ + K2)(γ1η1 − γ2η2)
(106)

H2 = (γ1 + η1)(c22γ2η2 − c12) + (γ2 + η2)(c12 − c22γ1η1) (107)

When i = 2n (n ≥ 0), applying Equation (41), Equation (104) is given

1
π

∫ a

−a

Θ(s)
x− s

ds = ω2

∫ +∞

0
Ω+(ξ) sin(ξx)dξ (108)

Utilizing the inverse Fourier transform of Equation (32) and the known result of
Equation (41), one has

∫ +∞

0
Ω+(ξ) sin(ξx)dξ =

1
π

∫ a

−a

T+(s)− T−(s)
x− s

ds (109)

Based on Equations (51) and (52), Equation (109) is given as∫ +∞

0
Ω+(ξ) sin(ξx)dξ = −Q02n −Qc2n

aλλy
x, (110)

∫ +∞

0
Ω+(ξ) sin(ξx)dξ = −∑n

l=1
(Q02n −Qc2n)Ml
2aλλy(2l − 1)π2 T(x, l) +

Q02n −Qc2n

2a2n+1(2n + 1)λλyπ
(x, n), n ≥ 1 (111)

where
T(x, l) = xπ, l = 1 (112)

T(x, l) = [
(
∑l

p=1 x2p−1 Ip + x2l−1π
)
+ a2k+2 ∑l−2

k=0
2k+1(l − 1)(l − 2) . . . (l − k−1)
(2l − 3)(2l − 5) . . . (2l − 2k− 3)

×
[(

A1x + . . . + x2l−2k−3π
)]

, l ≥ 2 (113)

(x, n) =
[
∑i

p=1(x2p−1 Jp + x2n+1π
)
+ a2k+2 ∑n−1

k=0
2k+1n(n− 1)(n− 2) . . . (n− k)

(2n− 1)(2n− 3)(2n− 5) . . . (2n− 2k− 1)
×
(

B1x + .. + x2n−2k−1π
)
], n ≥ 1 (114)

Ip = −
∫ a

−a

√
a2 − s2s2l−2p−2ds , (1 ≤ p ≤ l − 1) (115)

Aj = −
∫ a

−a

√
a2 − s2s2l−2k−4−2jds, (1 ≤ j ≤ l − k− 2) (116)

Jp = −
∫ a

−a

√
a2 − s2s2n−2pds, (1 ≤ p ≤ l) (117)

Bj = −
∫ a

−a

√
a2 − s2s2n−2k−2−2jds, (1 ≤ j ≤ n− k− 1) (118)

Utilizing the singular integral containing the Cauchy kernel [26], the closed form of
the solution can be given as
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Θ(x) =
ω2

π2
√

a2 − x2

∫ a

−a

√
a2 − s2

x− s
[∑n

l=1
(Q02n −Qc2n)Ml
2aλλy(2l − 1)π

T(l, s)− (Q02n −Qc2n)

2a2n+1(2n + 1)λλy
(s, n)]ds (119)

With the knowledge of Equation (100), one has

uI(x, 0) =
∫ x

−a
Θ(s)ds (120)

Based on Equations (68), (102), (103), and (119), the shearing stresses are obtained as

σI,I I
xy (x, 0) =

c66
πc22(γ2η2 − γ1η1)

{H2

∫ a

−a

Θ(s)
x− s

ds− H1[∑n
l=1

(Q02n −Qc2n)Ml
2aλλy(2l − 1)π2 T(x, l)− (Q02n −Qc2n)

2a2n+1(2n + 1)λλyπ
(x, n)]} (121)

When i = 2n − 1 (n ≥ 1), one gets from Equation (39)∫ +∞
0 Ω+(ξ) sin(ξx)dξ = − 2

π

∫ +∞
0 γ(s)dξ

∫ +∞
0

sin(ξs) sin(ξx)
ξ ds

= − 1
π

∫ +∞
0 γ(s) ln

∣∣ s+x
s−x

∣∣ds
(122)

Based on the following result [25]:

∫ +∞

0

sin(ξs) sin(ξx)
ξ

dξ =
1
4

ln
(

s + x
s− x

)2
(123)

Utilizing Equation (122), Equation (104) can be calculated as

1
π

∫ a

0

Θ(s)
(s− x)

√
s

ds = ω2

∫ +∞

0
Ω+(ξ) sin(ξx)dξ, 0 < x < a (124)

Utilizing the standard singular integral containing the Cauchy kernel [26], the explicit
form of the solution is obtained as

Θ(x)√
x

=
ω2(Q02n−1 −Qc2n−1)

πλλy
√

x(a− x)

∫ a

0

√
s(a− s)
x− s

ds
∫ +∞

0
Ω+(ξ) sin(ξx)dξ (125)

Based on Equation (100), one has

u(x, 0) =
1
2

∫ x

0

Θ(s)√
s

ds (126)

According to Equations (68), (102), (103), and (125), one obtains

σI,I I
xy (x, 0) =

c66

πc22(γ2η2 − γ1η1)

∫ a

0

[
2H2xΘ(s)

s2 − x2 − H1γ(s) ln
∣∣∣∣ s + x
s− x

∣∣∣∣]ds (127)

Utilizing superposition theory, a physical quantity under symmetrical thermal flux
−∑M

i=0 Q0i|x|i/2ai+1 and mechanical loading ∑k
j=0 σj|x|j/aj can be obtained in closed

forms.

4. Fracture Parameters

It is of great significance for the stress intensity factor (SIF) to characterize the stress
field of the crack tip, and the corresponding mode-I and mode II stress intensity factors are
defined [27].

KI = lim
x→ a+

√
2π(x− a)σI,I I

yy (x, 0) (128)
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KI I = lim
x→ a+

√
2π(x− a)σI, I I

xy (x, 0) (129)

Next, the corresponding intensity factors for the characterization of a single crack
displacement are given as

KCOD
v = lim

x→ a+

√
π

2(a− x)
vI(x, 0) (130)

KCOD
u = lim

x→ a+

√
π

2(a− x)
uI(x, 0) (131)

The energy release rate G, which is of much significance on the characterization of
crack growth, is defined as [28].

G = lim
δ→ 0

1
δ

∫ δ

0
σI

yy(x + a, 0)vI(a− x, 0) + σI
xy(x + a, 0)uI(a− x, 0)dx (132)

The energy density dW/dV, which is of much importance on the characterization of
mechanics, is expressed as follows for a non-iso-thermal problem [2,3].

dW
dV

=
S
r
=

1
2

σmnεmn −
1
2

αkkTσkk (133)

where S and r denote the strain energy density factor and the reach to the crack tip,
respectively. About the solid, which is regarded to be orthotropic, the strain energy can
also be given by utilizing the previous equation.

S
r
=

c22(σ
I
xx)

2
+ c11(σ

I
yy)

2 − 2c12σI
xxσI

yy

2c11c22 − c2
12

+
(σI

xy)
2

2c66
(134)

5. Numerical Results

Some numerical examples are selected to address the effect of vc and ε on the physical
quantity, and fracture parameters. Yet the general, the thermal flux, and mechanical loading
are selected as quadratic thermo-mechanical flux (−(Q02 −Qc2)x2/2a3 and σ2x2/a2). KII2,
G2, and S2 stand for the fracture parameters, respectively, under thermo-mechanical flux
−(Q02 −Qc2)x2/2a3 and σ2x2/a2. The dimensionless thermal conductivity vc = Rc/λy
is defined for the sake of simplicity. The orthotropic material is selected as shown in [29]
(Table 1).

Table 1. Tyrannohex.

Exx
(MPa)

Eyy
(MPa)

Gxy
(MPa) vxy vyx

αxx
(10−6/

◦
C)

αyy

(10−6/
◦
C)

λx
(w/m

◦
C)

λy

(w/m
◦
C)

135,000 87,000 50,000 0.15 0.09667 3.2 3.2 3.08 2.81

Figure 2 shows Qc2/Q02 versus vc with ε = 0.01 and x/a =0, 0.25, 0.5, 0.75. It is
easily found that Qc2/Q02 increases as vc increases for ε = 0.01. When vc = 0 and ε = 0,
one has Qc2 = 0, which corresponds to a fully impermeable case. When vc →∞, one
has Qc2 = Q02, which means a fully permeable case. In addition to the case of epsilon = 0.01
shown in Figure 2, two cases of epsilon = 0.005 and 0.02 are also calculated, and the results
show that they have little difference from the case of epsilon = 0.01. It reveals that the
change of epsilon only has a small effect on Qc2/Q02.
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Figure 2. Qc2/Q02 versus vc with ε = 0.01 and x/a = 0, 0.25, 0.5, 0.75.

Figure 3 shows Qc2/Q02 versus ε with vc=1 and x/a =0, 0.25, 0.5, 0.75. Qc2/Q02 is
increasing as ε is rising. Based on Figures 2 and 3, the case of vc = 0 and ε = 0 or vc→∞
corresponds to a fully impermeable or permeable crack.
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Figure 4 displays KI I2/KI I20 versus vc with ε = 0.01, where KI I20 represents KI I2
when Qc2 = 0 and ε = 0. KI I2/KI I20 is decreasing with an increase of vc for a fixed x/a.
Figure 5 displays KI I2/KI I20 versus ε with vc = 1. KI I2/KI I20 is decreasing as ε is rising. It
is revealed that changing the properties of the materials of the crack inside (i.e., thermal
conductivity) can increase or decrease the values of some physical quantities.
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Figure 5. KI I2/KI I20 versus ε with vc = 1 and x/a = 0, 0.25, 0.5, 0.75.

Figures 6–8 show G2 is increasing as remote tensile stress is rising for the case of
vc = 0 and ε = 0.01. When the relative proportion of thermal loading is especially dominant
over remote tensile stress, G2 is not positive, implying the crack is partly enclosed. The
positive energy release rate will not be physically meaningful.
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Figure 6. G2 versus tension stress with Q02 = 10, 20, 30, 40 J/
(
m2·s

)
for vc = 0 and ε = 0.01.

(2a = 1 mm).

Figures 9–11 show S2/(σ2
2πa) for the case of vc = 0 and ε = 0.01 with a series of r/a.

It is easily seen that S2/(σ2
2πa) is increasing as thermal flux is rising. In any circumstance,

the value of the strain energy density is not negative.
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Figure 9. S2/(σ2
2πa) versus Q02 with r/a = 0.01, 0.001, 0.0001, 0.00001 for vc = 0 and ε = 0.01.

(2a = 2 mm, σ2= 0.5 MPa).

Based on the mentioned results, when vc = 0 and ε = 0 or vc →∞, it implies a fully
impermeable or permeable case. Filling some material into the internal crack can reduce
or increase the values of some physical quantities and fracture parameters. Therefore, the
properties of the crack inside should be emphasized in the fracture behavior of bodies
containing cracks. Furthermore, enough consideration should be given to crack closure as
the energy release rate is applied to analyze a cracked solid.
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Figure 11. S2/(σ2
2πa) versus Q02 with r/a = 0.01, 0.001, 0.0001, 0.00001 for vc and ε = 0.01.

(2a = 2 mm, σ2= 2 MPa).

6. Conclusions

The thermo-elastic problem of a cracked orthotropic solid is considered under sym-
metrical heat flow and symmetrical mechanical loading in this paper. The raised modified
partially impermeable crack model, Fourier transforms technique (FTT), and superposition
theory are used to give the closed form of the correlative physical quantity. Some simple
examples show that the dimensionless thermal resistance (vc) between the upper and
lower crack regions and the proposed coefficient (ε) play an essential influence on the related
physical quantities and fracture parameters and that the value of the energy release rate may
be positive or negative under thermoelastic loading. Therefore, the properties of the internal
crack and the energy release rate should be emphasized to assess the growth of the crack.

As the solutions obtained from this paper are explicitly closed, the calculation of the
stress intensity factors of various cracks with different lengths becomes very convenient
and fast. It is worth mentioning that the method provided in this paper cannot solve
the fracture problems of a cracked structure with a complex shape. In addition, when
using the method mentioned in this paper to solve the finite boundary crack problem, it
is difficult to obtain accurate results. If you need to solve the above problem, you can use
other numerical methods, such as the finite element [30], semi-analytical solutions [31], the
‘Galerkin method’ [32,33], and the ’Bezier method’ [34,35] etc.
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