
Citation: Chaudhuri, R.A.

Employment of Fracture Mechanics

Criteria for Accurate Assessment of

the Full Set of Elastic Constants of

Orthorhombic/Tetragonal

Mono-Crystalline YBCO. Appl. Mech.

2023, 4, 585–643. https://doi.org/

10.3390/applmech4020032

Received: 20 February 2023

Revised: 12 April 2023

Accepted: 24 April 2023

Published: 8 May 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Employment of Fracture Mechanics Criteria for Accurate
Assessment of the Full Set of Elastic Constants of
Orthorhombic/Tetragonal Mono-Crystalline YBCO
Reaz A. Chaudhuri

Department of Materials Science and Engineering, 122 S, Central Campus Dr., Room 304, University of Utah,
Salt Lake City, UT 84112-0560, USA; r.chaudhuri@utah.edu; Tel.: +1-(801)-550-0661

Abstract: The effect of elastic constants, cij, on the nature (easy or difficult) of a cleavage system in
mono-crystalline YBa2Cu3O7−δ is investigated by employing a novel three-dimensional eigenfunc-
tion expansion technique, based in part on the separation of the thickness variable and partly on a
modified Frobenius-type series expansion technique in conjunction with Eshelby–Stroh formalism.
Out of the three available, complete sets of elastic constants, only the experimental measurements
using resonant ultrasound spectroscopy merit serious attention, despite reported values of c12 and, to
a lesser extent, c66 being excessively high. The present investigation considers six through-thickness
crack systems weakening orthorhombic mono-crystalline Yttrium barium copper oxide (YBCO)
plates. More importantly, the present investigation establishes sufficient conditions for crack path
stability/instability, which entail a cleavage system being easy or difficult, i.e., whether a crack would
propagate in its original plane/direction or deflect to a different one. This criterion of fracture mechan-
ics is then employed for accurate determination of the full set of elastic constants of superconducting
mono-crystalline YBCO. Finally, heretofore unavailable results pertaining to the through-thickness
variations of stress intensity factors and energy release rates for a crack corresponding to symmetric
and skew-symmetric hyperbolic cosine loads, which also satisfy the boundary conditions on the plate
surfaces, bridge a longstanding gap.

Keywords: three-dimensional stress singularity; fracture mechanics criterion; sufficient condi-
tion for fracture; easy cleavage system; orthorhombic single crystal; elastic constants of mono-
crystalline YBCO

1. Introduction

The elastic constants of engineering materials are crucial for understanding the defor-
mation and failure behaviors of structural components. From a microscopic perspective,
their importance arises from their intimate relationships to such solid-state phenomena as
specific heat, Debye temperature (ΘD), and the Grünelsen parameter [1].

Modern applications of mono-crystalline high-Tc (critical temperature) superconduc-
tors (HTS), discovered by Bednorz and Muller [2], include Josephson junctions, which can
act as a switch for magnetic fields, or alternatively, perform the function of a magnetic
device, such as superconducting quantum interference devices (SQUID) [3]. The ΘD of a
superconductor such as mono-crystalline YBCO (YBa2Cu3O7−δ) can be determined from
the knowledge of the elastic constants, cij, in a manner described by Equations (2) and (3)
of Lei et al. [1], which, in combination with the electron–phonon coupling parameter, λ*

can be used to compute the superconducting transition temperature, Tc [4,5].
The poor fracture toughness of these HTS restricts their practical utility to a cryogenic

temperature range [6–14]. A review of the Literature reveals that studies of singular stress
fields at the tips of cracks and notches are mostly limited to two-dimensionality [15–20], and
primarily employ the Lekhnitskii [15] (and also occasionally “Stroh” [16]) -based methodol-
ogy; see Nejati et al. [21] for an extensive survey of the Literature. Three-dimensional (3D)
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fracture toughness studies have been, until recently [22], marked by their near-complete
absence, because of being fraught with an extraordinary level of analytical difficulties.
Furthermore, there is no three-dimensional analog of the complex variable theory, the next
one in line being the four-dimensional space-based quaternion theory [23]. This aspect of
the development of mathematical theories calls for an innovative approach as investigated
in what follows.

Stenger et al. [24] have discussed the lack of accuracy of popular numerical methods,
such as finite difference, finite elements, and boundary elements in the immediate vicinity of
a crack or wedge front. Various categories of three-dimensional stress singularities include:
(i) through-thickness crack/anti-crack [25,26], as well as their bi- and tri-material interface
counterparts [27–29]; (ii) corresponding wedges/notches [30–34]; (iii) bi-material free/fixed
straight edge-face [35–37]; (iv) tri-material junction [38]; (v) penny-shaped crack/anti-
crack [39,40] and their bi-material interface counterparts [41,42]; (vi) through/part-through
hole/rigid inclusion [43,44] and their bi-material counterparts [45,46], as well as elastic
inclusion [47,48]; (vii) fiber-matrix interfacial debond [49–51]; (viii) fiber breaks and matrix
cracking in composites [52]; (ix) interfacial bond line of a tapered jointed plate [53]; and
(x) circumferential junction corner line of an island/substrate [54]; among others. A
review of the Literature regarding three-dimensional fracture mechanics reveals successful
attempts at analyses of the penny-shaped crack/anti-crack [39] (and their bi-material
counterparts [41]), and the hole [43], bi-material hole [45], and inclusion problems [47].
This success notwithstanding, the solution of the corresponding through-thickness crack
problem was engulfed in controversies [25,55].

More recently, cracked/anti-cracked transversely isotropic (smeared-out compos-
ite) [56] as well as cubic/orthorhombic/diamond cubic mono-crystalline plates subjected
to mode I/II far-field loadings [22,57,58] and cubic/orthorhombic/monoclinic/diamond
cubic mono/tri-crystalline plates under mode III loading [22,58–61] have been solved
by a novel three-dimensional eigenfunction expansion technique, based in part on the
separation of the thickness variable and partly on a modified Frobenius type series expan-
sion technique in conjunction with Eshelby [62]–Stroh [16] formalism. Three-dimensional
asymptotic stress fields in the vicinity of the front of the kinked carbon fiber-matrix junc-
tion [63] have also been derived by employment of the same approach (see also Ref. [64]
for its 2D counterpart with isotropic glass fibers).

The above-mentioned importance notwithstanding, relatively fewer attempts at exper-
imental determination of elastic constants of mono-crystalline YBCO have been reported
in the Literature about solid-state physics [1,65–73]; these are summarized in Table 1 of
Lei et al. [1]. Golding et al. [66] and Saint-Paul and co-workers [70,71] have reported
experimental results on c11 and c33, and c33, c44, c66, and c12, respectively, by employing the
ultrasound technique, while Baumgart et al. [68,69] and Zouboulis et al. [72] have resorted
to Brillouin spectroscopy/scattering to determine c11, c33 and c44, and c44, c55, and c66,
respectively. Only two experimental investigations [1,67] report complete sets of elastic
constants accessible to the present author. Worse still, those reported by Reichard et al. [67]
assume tetragonal symmetry; see Table 1. Only the experimental measurements due to
Lei et al. [1], marked * in Table 1, correctly assume orthorhombic symmetry, and were de-
termined by resonant ultrasound spectroscopy, described in detail by Migliori et al. [74,75].
However, their measured magnitude of c12 was deemed to be unacceptably out of the range.
The reasoning given by the authors [1] is that “No wave speed in the crystal depends only
upon c12, it is no way to estimate it directly.” It was previously experimentally determined
by the present author and his co-workers [76–78] that c12 and c66 are always coupled in
vibrations-based measurements [77,78], although these elastic stiffnesses can be measured
independently by static tests. Finally, those reported by Ledbetter and Lei [79] are just
estimates (marked ** in Table 1).
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Table 1. Elastic stiffness constants of YBCO single crystals.

Material
(Technique)

c11
(GPa)

c12
(GPa)

c13
(GPa)

c22
(GPa)

c23
(GPa)

c33
(GPa)

c44
(GPa)

c55
(GPa)

c66
(GPa)

YBCO * [1]
(Resonant Ultrasound) 231.0 132.0 71.0 268.0 95.0 186.0 49.0 37.0 95.0

YBCO ** [79]
(Estimate) 223.0 37.0 89.0 244.0 93.0 138.0 61.0 47.0 97.0

YBCO ***
(Inference) 231.0 66.0 71.0 268.0 95.0 186.0 49.0 37.0 82.0

YBCOT [67]
(Neutron Scattering)

230.0 100.0 100.0 230.0 100.0 150.0 50.0 50.0 85.0

* All values measured by resonant ultrasound spectroscopy (except c12) by Lei et al. [1]. ** Estimated by Ledbetter
and Lei [79]. *** Same as *, except c12 and c66 measured by ultrasound by Saint-Paul and Henry [71].

The above review of the literature reveals an absence of reliable and accurate experi-
mentally measured complete sets of the nine elastic constants needed for characterization
of the deformation/fracture, as well as other solid-state (e.g., ΘD, Tc, etc.) behaviors of
superconducting (orthorhombic) YBCO single crystals. This calls for a reliable criterion
for assessment of the measured data that would allow us to come up with a reasonably
accurate complete set of nine elastic constants. This is the primary objective of the present
investigation. One effective way to address this important issue is to analytically examine
the effects of elastic constants on crack path stability/instability in mono-crystalline YBCO
and compare them with the experimental results for easy cleavage planes, reported by
Cook et al. [6], Raynes [9], and Granozio and di Uccio [14], among others. In what follows,
the above-mentioned modified eigenfunction expansion technique, based in part on the
separation of the thickness variable and partly on the Eshelby–Stroh type affine transfor-
mation, is developed to derive a three-dimensional asymptotic stress field in the vicinity of
the front of a semi-infinite through-thickness crack weakening an infinite orthorhombic
mono-crystalline plate of finite thickness and subjected to far-field mode I/II loadings.
Crack-face boundary conditions and those that are prescribed on the top and bottom (free
or fixed) surfaces of the plate are exactly satisfied. The present investigation considers
six through-crack systems—(010)[001] with the [100] length direction, (010)[100] with the
[001] length direction, (100)[001] with the [010] length direction, (100)[010] with the [001]
length direction, (001)[010] with the [100] length direction, and (001)[100] with the [010]
length direction—weakening orthorhombic mono-crystalline plates. Explicit expressions
for the singular stresses in the vicinity of the front of a through-thickness crack weakening
an orthorhombic mono-crystalline plate, subjected to far-field mode I/II loadings, are
presented. In addition, through-thickness distribution of the stress intensity factors, and
energy release rates are also presented.
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Next, the important issue of easy or difficult cleavage plane and the related question
of crack deflection criterion is discussed. The latter is based on the relative fracture energy
(or the energy release rate) available for possible “fracture paths” [18]. This said, it is note-
worthy that the Griffith energy balance-based criterion cannot be regarded as a sufficient
condition [80]. This is because Griffith’s criterion is “Not really a fracture criterion but only
a necessary condition for fracture” [80]. This calls for establishment of a sufficient condition
for determination of an easy or difficult cleavage plane, and the related question of the
crack path stability/instability criterion. This is the second and somewhat more important
objective of the present study.

One Holy Grail issue in fracture mechanics of anisotropic solids is to find a dimen-
sionless parameter akin to Reynold’s number in fluid flow problems, crossing a critical
value which signifies transition from one regime to another, such as the critical value of
Reynold’s number, above which the flow is turbulent and below which it is laminar. It is
an attendant issue relating to crack deflection that remains heretofore unaddressed, which
is the third objective of the present investigation. In a similar vein, just as the introduc-
tion of Reynold’s number facilitated the design and setting up of experiments in addition
to experimental verification of analytical and computational solutions in fluid dynam-
ics, a similar expectation-cum-need exists in the important field of fracture mechanics of
anisotropic solids, which is the final objective of the present study. Here, the accuracy
and efficacy of the available experimental results on the elastic constants of YBCO single
crystals, measured by modern experimental techniques with resolutions at the atomic scale
(or nearly so), such as X-ray diffraction [65], the ultrasound technique [66,70,71], neutron
diffraction [73]/scattering [67], Brillouin spectroscopy [68,69] /scattering [72], resonant
ultrasound spectroscopy [1,74,75], and the like, is assessed with a powerful theoretical
analysis on crack path stability/instability, in part based on a dimensionless parameter,
such as the planar anisotropic ratio.

The present study, although to a smaller extent a review of earlier work on this topic,
is largely based on original research on this subject. The topic, which covers mathematics
(e.g., branch point/branch cut, asymptotic, solution to 3D mixed boundary-value prob-
lem, and necessary and sufficient condition for fracture), solid-state physics/chemistry
(e.g., stoichiometry, superconductivity, crystal structures, and single crystal cleavage) and
engineering (e.g., 3D fracture mechanics), has, so far, remained largely unexplored in
the Literature.

2. Formulation of the Problem

One of the most important cleavage systems for mono-crystalline orthorhombic YBCO
is (001) [100] × [010] ({crack plane}<crack front>x<initial propagation direction>). In
what follows, the deformation behavior in the vicinity of the front of a semi-infinite
through-thickness crack, weakening an infinite orthorhombic YBCO plate of thickness, 2 h
(Figures 1 and 2) is analyzed in detail. Here, the z̃-axis is placed along the straight crack
front, [100], while the coordinates x̃ [010], ỹ [001] are used to define the directions along the
length of the crack (propagation direction) and the direction transverse to it, respectively,
in the middle plane of the single crystal plate. ũ, ṽ and w̃ represent the components of the
displacements in x̃ [010], ỹ [001] and z̃ [100] directions, respectively. The corresponding
stress-strain relations are given as follows:



Appl. Mech. 2023, 4 589



σ̃x̃
σ̃ỹ
σ̃z̃
τ̃ỹz̃
τ̃x̃z̃
τ̃x̃ỹ


=



c22 c23 c12 0 0 0
c23 c33 c13 0 0 0
c12 c13 c11 0 0 0
0 0 0 c55 0 0
0 0 0 0 c66 0
0 0 0 0 0 c44





ε̃ x̃
ε̃ ỹ
ε̃ z̃

γ̃ỹz̃
γ̃x̃z̃
γ̃x̃ỹ


, (1)

where cij, i, j = 1,...,6, denotes the elastic stiffness constants of an orthorhombic mono-
crystalline plate. σ̃x̃, σ̃ỹ, σ̃z̃ represent the normal stresses, and τ̃x̃ỹ, τ̃x̃z̃, τ̃ỹz̃ denote the shear
stresses, while ε̃ x̃, ε̃ ỹ, ε̃ z̃ denote normal strains, and γ̃x̃ỹ γ̃x̃z̃, γ̃ỹz̃ represent the shear strains.
For the special case of a tetragonal single crystal,

c11 = c22, c13 = c23, c44 = c55. (2)
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The three equilibrium equations can now be expressed in terms of the displacement
components, ũ, ṽ, and w̃, as follows:

c22
∂2ũ
∂x̃2 + c44

∂2ũ
∂ỹ2 + c66

∂2ũ
∂z̃2 + (c23 + c44)

∂2 ṽ
∂x̃∂ỹ + (c12 + c66)

∂2w̃
∂x̃∂z̃ = 0, (3)

(c23 + c44)
∂2ũ

∂x̃∂ỹ + c44
∂2 ṽ
∂x̃2 + c33

∂2 ṽ
∂ỹ2 + c55

∂2 ṽ
∂z̃2 + (c13 + c55)

∂2w̃
∂ỹ∂z̃ = 0, (4)

(c12 + c66)
∂2ũ
∂x̃∂z̃ + (c13 + c55)

∂2 ṽ
∂ỹ∂z̃ + c66

∂2w̃
∂x̃2 + c55

∂2w̃
∂ỹ2 + c11

∂2w̃
∂z̃2 = 0, (5)

The boundary conditions include those at the plate faces and crack-side surfaces. The
boundary conditions on the plate faces, z̃ = ±h, are given by [22,25]

σ̃z̃ = τ̃x̃z̃ = τ̃ỹz̃ = 0, (6)

while those at the crack-side surfaces are more conveniently expressed in local cylindrical
polar coordinates (Figure 1), which are given as follows:

σ̃
θ̃
= τ̃̃rθ̃

= τ̃
θ̃z̃ = 0, (7)

θ̃ = ±π (8)

where σ̃̃r, σ̃
θ̃
, σ̃̃r represent the normal stresses, and τ̃̃rθ̃

, τ̃̃rz̃, τ̃
θ̃z̃ are the shear stresses, while

ε̃ r̃, ε̃
θ̃
, ε̃ z̃ denote the normal strains, and γ̃r̃θ̃

, γ̃r̃z̃, γ̃
θ̃z̃ are the shear strains in the cylindrical

polar coordinate system (r̃, θ̃, z̃). ũr̃ and ũ
θ̃

represent the components of the displacement
in r̃ and θ̃ directions, respectively.
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3. Singular Stress Fields in the Vicinity of a Crack Front Weakening an
Orthotropic/Orthorhombic Lamina/Single Crystal under General Loading

The assumed displacement functions for the three-dimensional crack problem under
consideration are selected on the basis of the separation of z̃ variables. These are as given
below [22,56–58,64]:

ũ(x̃, ỹ, z̃) = eik̃z̃Ũ(x̃, ỹ), (9)

ṽ(x̃, ỹ, z̃) = eik̃z̃ Ṽ(x̃, ỹ), (10)

w̃(x̃, ỹ, z̃) = eik̃z̃W̃(x̃, ỹ). (11)

It may be noted that since the z̃-dependent term and its first partial derivative can
either be bounded and integrable at most admitting ordinary discontinuities, or the first
partial derivative at worst be square integrable (in the sense of Lebesgue integration) in its
interval z̃∈ [−h, h], i.e., admitting singularities weaker than square root (i.e., z̃(−1/2+ε), ε),
it can be best represented by a Fourier series [22,25,58]. The latter case is justified by Parse-
val’s theorem [81], and its physical implication is that of satisfying the criterion of finite-
ness of local strain energy and path independence [82]. Substitution of Equations (9)–(11)
into Equations (2)–(5) yields the following system of coupled partial differential equa-
tions (PDE’s):

c22
∂2Ũ
∂x̃1

2 + c44
∂2Ũ
∂ỹ1

2 + c66Ũ + (c23 + c44)
∂2Ṽ

∂x̃1∂ỹ1
+ (c12 + c66)

∂W̃
∂x̃1

= 0, (12)

(c23 + c44)
∂2Ũ

∂x̃1∂ỹ1
+ c44

∂2Ṽ
∂x̃1

2 + c33
∂2Ṽ
∂ỹ1

2 + c55Ṽ + (c13 + c55)
∂W̃
∂ỹ1

= 0, (13)

(c12 + c66)
∂Ũ
∂x̃1

+ (c13 + c55)
∂Ṽ
∂ỹ1

+ c66
∂2W̃
∂x̃1

2 + c55
∂2W̃
∂ỹ1

2 + c11W̃ = 0, (14)

where

x̃1 = ik̃x̃, (15)

ỹ1 = ik̃ỹ. (16)
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The solution to the system of coupled partial differential Equations (12)–(14) subjected
to the most general loading can now be sought in the form of the following modified
Frobenius type series in terms of the variable x̃1 + p̃ỹ1 as follows:

Ũ(x̃1, ỹ1) =
∞
∑

n=0
ã′s̃+n (x̃1 + p̃ỹ1)

s̃+2n+1 +
∞
∑

n=0
ãs̃+n (x̃1 + p̃ỹ1)

s̃+2n, (17)

Ṽ(x̃1, ỹ1) =
∞
∑

n=0
b̃′s̃+n (x̃1 + p̃ỹ1)

s̃+2n+1 +
∞
∑

n=0
b̃s̃+n (x̃1 + p̃ỹ1)

s̃+2n, (18)

W̃(x̃1, ỹ1) =
∞
∑

n=0
c̃′s̃+n (x̃1 + p̃ỹ1)

s̃+2n +
∞
∑

n=0
c̃s̃+n (x̃1 + p̃ỹ1)

s̃+2n+1. (19)

Out of the various combinations, such as (a′, b′, c′), (a, b, c), (a′, b, c), (a, b′, c), (a, b,
c′), (a′, b′, c), (a′, b, c′), and (a, b′, c′), only the first two groupings can produce meaningful
solutions, for the mode I/II and mode III loading cases, respectively. This step permits the
separation of mode III from modes I/II. The first grouping is described below, while the
second one has already been employed for the anti-plane shear case [59–61].

4. Singular Stress Fields in the Vicinity of a (001)[100] Through-Crack Front
Propagating under Mode I (Extension/Bending) and Mode II (Sliding Shear/Twisting)
in [010] Direction

While the separability of the x̃1 and ỹ1 variables is the hallmark of the derivation of
the singular stress fields weakening an isotropic plate [25–49,55] subjected to the far-field
mode I/II loading, the same cannot be true for its orthorhombic counterpart, wherein
the solution to the system of coupled partial differential Equation (5) must be sought in
the form of a modified Frobenius type series in terms of a combined variable x̃1 + p̃ỹ1,
which is a mathematical representation of an affine transformation employed earlier by
Eshelby et al. [62], Stroh [16], and Shih et al. [17], as shown below [22,53,54,60]. It may
be remarked here that the solution methodology offered by these authors, especially
Refs. [17,62], are entirely different from what follows.

Ũ(x̃1, ỹ1) =
∞
∑

n=0
ãs̃+n (x̃1 + p̃ỹ1)

s̃+2n, (20)

Ṽ(x̃1, ỹ1) =
∞
∑

n=0
b̃s̃+n (x̃1 + p̃ỹ1)

s̃+2n, (21)

W̃(x̃1, ỹ1) =
∞
∑

n=0
c̃s̃+n (x̃1 + p̃ỹ1)

s̃+2n+1. (22)
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On substitution of Equations (20)–(22) into Equations (12)–(14), and equating the
coefficients of (x̃1 + p̃ỹ1)

s̃+2n−2, a set of recurrent relationships can be derived, which, for
n = 0, results in the following:[

c22 + c44 p̃2 (c23 + c44) p̃
(c23 + c44) p̃ c33 p̃2 + c44

]{
ãs̃
b̃s̃

}
=

{
0
0

}
, valid for s̃ 6= 0, 1, (23)

which, in turn, yields, for the non-trivial case, the characteristic equation for the coupled
partial differential Equations (3)–(5) or (12)–(14) as given below:

p̃4 + 2χ̃ p̃2 +
c22

c33
= 0, (24)

where the normalized elastic parameter, κ̃ = 1/χ̃, is given by

κ̃ = 1
χ̃ = 2c33c44

(c22c33−c2
23−2c23c44)

= 2G23(1−ν13ν31)
[E3−2G23(ν32+ν12ν13)]

, (25)

in which E3 is z-direction Young’s modulus, G23 is the shear modulus in the y-z plane,
while ν12 is the major Poisson’s ratio in the x-y plane. ν32 denotes the minor Poisson’s
ratio in the y-z plane, while ν13 and ν31 represent the major and minor Poisson’s ratios,
respectively, in the x-z plane. It also is sometimes convenient to relate κ̃ = 1/χ̃, as will
be seen later, to Ã = 1/λ̃, with Ã being the planar anisotropic ratio (in the x̃ [010]-ỹ [001]
plane), as shown below.

κ̃ = 1
χ̃ = Ãc33√

c22c33+c23(1−Ã)
, (26)

in which

Ã = 2c44√
c22c33−c23

. (27)

It can easily be seen from Equation (27) that Ã is higher when the shear stiffness
(modulus) and major Poisson’s ratio in the x̃ [010], ỹ [001] plane assume larger magnitudes.
This simple fact assumes great importance as this investigation aims to solve one Holy Grail
issue in the fracture mechanics of anisotropic media, of coming up with a dimensionless
parameter akin to Reynold’s number in fluid flow problems, crossing a critical value which
signifies transition from one regime to another, such as the critical value of Reynold’s
number above which the flow is turbulent and below which it is laminar. It is an attendant
issue relating to crack deflection in mono-crystalline orthorhombic YBCO.

Equation (24) has either (a) four complex or (b) four imaginary roots, depending
on whether

(a) Ã > 1 or, equivalently, κ̃ >

√
c33

c22
=

√
E3(1− ν12ν21)

E2(1− ν13ν31)
, (28)

(b) Ã < 1 or, equivalently, κ̃ <

√
c33

c22
=

√
E3(1− ν12ν21)

E2(1− ν13ν31)
. (29)
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Chaudhuri and Xie [25], and Chaudhuri [55] have earlier solved the degenerate
isotropic material case, for which Ã = 1 and κ̃ = 1.

4.1. Case (a): Complex Roots

p̃1,2 = ξ̃ ± iη̃, (30)

p̃3,4 = −ξ̃ ± iη̃, (31)

where

ξ̃ =
1√
2

[(
c22

c33

)1/2
− χ̃

]1/2

, (32)

η̃ =
1√
2

[(
c22

c33

)1/2
+ χ̃

]1/2

, (33)

valid for Ã > 1 or, equivalently, κ̃ >
√

c33/c22.
It may be noted here that a crack front and the corresponding semi-infinite crack

represent a branch point and a branch cut, respectively. Therefore, the general asymptotic
form for the displacement and stress fields in the vicinity of the crack front can most
conveniently be obtained by employing a set of two polar coordinate systems, (ρ̃, ψ̃) and
(ρ̃′, ψ̃′), derived from the aforementioned affine transformation and expressed in terms of
the cylindrical polar coordinate system (r̃, θ̃, z̃), as follows:

ρ̃ cos (ψ̃) = r̃
(

cos(θ̃) + ξ̃ sin(θ̃)
)

, ρ̃ sin (ψ̃) = r̃
(

η̃ sin(θ̃)
)

, (34)

ρ̃′ cos (ψ̃′) = r̃
(

cos(θ̃)− ξ̃ sin(θ̃)
)

, ρ̃′ sin (ψ̃′) = r̃
(
−η̃ sin(θ̃)

)
, (35)

where

ρ̃ = r̃
{(

cos(θ̃) + ξ̃ sin(θ̃)
)2

+ η̃2 sin2(θ̃)

}1/2
, (36)

ρ̃′ = r̃
{(

cos(θ̃)− ξ sin(θ̃)
)2

+ η̃2 sin2(θ̃)

}1/2
, (37)

and

cos
(

ψ̃(θ̃)
)
= cos(θ̃)+ξ̃ sin(θ̃){

(cos(θ̃)+ξ̃ sin(θ̃))
2
+ η̃2 sin2(θ̃)

}1/2 , (38)
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sin
(

ψ̃(θ̃)
)
= η̃ sin(θ̃){

(cos(θ̃)+ξ̃ sin(θ̃))
2
+ η̃2 sin2(θ̃)

}1/2 , (39)

cos
(

ψ̃′(θ̃)
)
= cos(

_
θ )−ξ̃ sin(θ̃){

(cos(θ̃)−ξ̃ sin(θ̃))
2
+ η̃2 sin2(θ̃)

}1/2 , (40)

sin
(

ψ̃′(θ̃)
)
= −η̃ sin(θ̃){

(cos(θ̃)−ξ̃ sin(θ̃))
2
+ η̃2 sin2(θ̃)

}1/2 , (41)

The components of the displacement vector and the stress tensor in the immediate
neighborhood of the crack from can now be written as shown below:

ũ(r̃, θ̃, z̃) = r̃s̃D̃b(z̃)
(

ik̃
)s̃
[{(

cos(θ̃) + ξ̃ sin(θ̃)
)2

+ η̃2 sin2(θ̃)

}s/2{
Ã1 cos

(
s̃ψ̃
)
+ Ã2 sin

(
s̃ψ̃
)}

+

{(
cos(θ̃)− ξ̃ sin(θ̃)

)2
+ η̃2 sin2(θ̃)

}s̃/2{
Ã3 cos

(
s̃ψ̃′
)
+ Ã4 sin

(
s̃ψ̃′
)}]

+ O
(

r̃s̃+2
)

,

(42)

ṽ(r̃, θ̃, z̃) = r̃s̃D̃b(z̃)
(

ik̃
)s̃
[{(

cos(θ̃) + ξ̃ sin(θ̃)
)2

+ η̃2 sin2(θ̃)

}s̃/2{(
H̃1 Ã1

+H̃2 Ã2

)
cos
(
s̃ψ̃
)
+
(

H̃1 Ã2 − H̃2 Ã1

)
sin
(
s̃ψ̃
)}

+

{(
cos(θ̃)− ξ̃ sin(θ̃)

)2

+η̃2 sin2(θ̃)
}s̃/2{

−
(

H̃1 Ã3 + H̃2 Ã4

)
cos
(
s̃ψ̃′
)
−
(

H̃1 Ã4 − H̃2 Ã3

)
sin
(
s̃ψ̃′
)}

+O
(

r̃s̃+2
)

,

(43)

w̃(r̃, θ̃, z̃) = O
(

r̃s̃+1
)

, (44)

and

σ̃x̃

(
r̃, θ̃, z̃

)
= rs̃−1D̃b(z̃)

(
ik̃
)s̃

s̃

〈{(
cos(θ̃) + ξ̃ sin(θ̃)

)2
+ η̃2 sin2(θ̃)

}(s̃−1)/2[(
Ã1 {c22

+
(

ξ̃H̃1 − η̃H̃2

)
c23

}
+ Ã2

{(
η̃H̃1 + ξ̃H̃2

)
c23

})
cos
(
(s̃− 1)ψ̃

)
+ (− Ã1

{(
η̃H̃1 + ξ̃H̃2

)
c23

}
+Ã2 {c22 +

(
ξ̃H̃1 − η̃H̃2

)
c23

})
sin
(
(s̃− 1)ψ̃

)]
+

{(
cos(θ̃)− ξ̃ sin(θ̃)

)2

+η̃2 sin2(θ̃)
}(s̃−1)/2[(

Ã3 {c22 +
(

ξ̃H̃1 − η̃H̃2

)
c23

}
+ Ã4

{(
η̃H̃1 + ξ̃H̃2

)
c23

})
cos
((

_
s − 1

)
ψ̃′
)

+(− Ã3

{(
η̃H̃1 + ξ̃H̃2

)
c23

}
+Ã4 {c22 +

(
ξ̃H̃1 − η̃H̃2

)
c23

})
sin
(
(s̃− 1)ψ̃′

)]〉
+O

(
r̃s̃+1

)
,

(45)
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σ̃ỹ

(
r̃, θ̃, z̃

)
= r̃s̃−1D̃b(z̃)

(
ik̃
)s̃

s̃

〈{(
cos(θ̃) + ξ̃ sin(θ̃)

)2
+ η̃2 sin2(θ̃)

}(s̃−1)/2[(
Ã1 {c23

+
(

ξ̃H̃1 − η̃H̃2

)
c̃33

}
+ Ã2

{(
η̃H̃1 + ξ̃H̃2

)
c33

})
cos
(
(s̃− 1)ψ̃

)
+ (− Ã1

{(
η̃H̃1 + ξ̃H̃2

)
c33

}
+Ã2 {c23 +

(
ξ̃H̃1 − η̃H̃2

)
c33

})
sin
(
(s̃− 1)ψ̃

)]
+

{(
cos(θ̃)− ξ̃ sin(θ̃)

)2

+η̃2 sin2(θ̃)
}(s̃−1)/2[(

Ã3 {c23 +
(

ξ̃H̃1 − η̃H̃2

)
c33

}
+ Ã4

{(
η̃H̃1 + ξ̃H̃2

)
c33

})
cos
(
(s̃− 1)ψ̃′

)
+(− Ã3

{(
η̃H̃1 + ξ̃H̃2

)
c33

}
+Ã4 {c23 +

(
ξ̃H̃1 − η̃H̃2

)
c33

})
sin
(
(s̃− 1)ψ̃′

)]〉
+O

(
r̃s̃+1

)
,

(46)

τ̃x̃ỹ

(
r̃, θ̃, z̃

)
= r̃s̃−1D̃b(z̃)

(
ik̃
)s̃

s̃c44

〈{(
cos(θ̃) + ξ̃ sin(θ̃)

)2
+ η̃2 sin2(θ̃)

}(s̃−1)/2[{
Ã1

(
ξ̃ + H̃1

)
+Ã2

(
η̃ + H̃2

)}
cos
(
(s̃− 1)ψ̃

)
+
{
−Ã1

(
η̃ + H̃2

)
+ Ã2

(
ξ̃ + H̃1

)}
sin
(
(s̃− 1)ψ̃

)]
+

{(
cos(θ̃)− ξ̃ sin(θ̃)

)2
+ η̃2 sin2(θ̃)

}(s̃−1)/2[{
−Ã3

(
ξ̃ + H̃1

)
− Ã4

(
η̃ + H̃2

)}
cos
(
(s̃− 1)ψ̃′

)
+
{

Ã3

(
η̃ + H̃2

)
− Ã4

(
ξ̃ + H̃1

)}
sin
(
(s̃− 1)ψ̃′

)]〉
+ O

(
r̃s̃+1

)
,

(47)

σ̃z̃

(
r̃, θ̃, z̃

)
= r̃s̃−1D̃b(z̃)

(
ik̃
)s̃

s̃

〈{(
cos(θ̃) + ξ̃ sin(θ̃)

)2
+ η̃2 sin2(θ̃)

}(s̃−1)/2[(
Ã1 {c12

+
(

ξ̃H̃1 − η̃H̃2

)
c13

}
+ Ã2

{(
η̃H̃1 + ξ̃H̃2

)
c13

})
cos
(
(s̃− 1)ψ̃

)
+ (− Ã1

{(
η̃H̃1 + ξ̃H̃2

)
c13

}
+Ã2 {c12 +

(
ξ̃H̃1 − η̃H̃2

)
c13

})
sin
(
(s̃− 1)ψ̃

)]
+

{(
cos(θ̃)− ξ̃ sin(θ̃)

)2

+η̃2 sin2(θ̃)
}(s̃−1)/2[(

Ã3 {c12 +
(

ξ̃H̃1 − η̃H̃2

)
c13

}
+ Ã4

{(
η̃H̃1 + ξ̃H̃2

)
c13

})
cos
(
(s̃− 1)ψ̃′

)
+(−A3{(ηH1 + ξH2)c13}+A4 {c12 +(ξH1 − ηH2)c13}) sin((s− 1)ψ′)]

〉
+O

(
r̃s̃+1

)
,

(48)

τ̃x̃z̃

(
r̃, θ̃, z̃

)
= O

(
r̃s̃
)

, (49)

τ̃ỹz̃

(
r̃, θ̃, z̃

)
= O

(
r̃s̃
)

, (50)

where

H̃1 = −
ξ̃(
√

c22 c33 + c44)

(c23 + c44)
, (51)
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H̃2 =
η̃(
√

c22 c33 − c44)

(c23 + c44)
. (52)

and

D̃b(z̃) = D̃1 sin
(

k̃
_
z
)
+ D̃2 cos

(
k̃z̃
)

. (53)

It may be noted that since s̃ or Re s̃ (when s̃ is complex) is positive, all the higher
order terms in Equations (45)–(48) vanish as r̃ → 0. The non-vanishing components of
asymptotic displacement vector and stress tensor in the cylindrical polar coordinate system
(r̃, θ̃, z̃) can now be obtained by using the standard vector and the second-rank tensor
transformation rule: {

ũr̃
ũ

θ̃

}
=

[
cos θ̃ sin θ̃

− sin θ̃ cos θ̃

]{
ũx̃
ũỹ

}
, (54)


σ̃̃r
σ̃

θ̃
τ̃̃rθ̃

 =


cos2 θ̃ sin2 θ̃ sin

(
2θ̃
)

sin2 θ̃ cos2 θ̃ − sin 2θ̃

− 1
2 sin

(
2θ̃
)

1
2 sin

(
2θ̃
)

cos
(

2θ̃
)



σ̃x̃
σ̃ỹ
τ̃x̃ỹ

. (55)

The stress component, σ̃z̃, is as given in Equation (48).
The substitution of Equation (55), in conjunction with Equations (45)–(48), into the

stress-free condition on the crack-side surfaces, given by Equation (7), gives rise to four
homogeneous equations, which finally yields:

Either

cos(s̃− 1)π = 0, (56)

or

sin(s̃− 1)π = 0. (57)

Equation (56) yields the lowest nonvanishing eigenvalue, s̃ = 1/2, 0 < s̃ < 1, thus
meeting the criterion of locally finite energy. Equation (57) gives rise to s̃ = 0, 1, which
can take care of rigid body translation and rotation, respectively. Interestingly, s̃ = 1 also
accounts for the T-stress; see e.g., Nejati et al. [21].

4.1.1. Symmetric (Mode I) Loading (Extension/Bending)

For the case of far-field symmetric (Mode I) loading, the following boundary conditions
can be applied:

θ̃ = 0 : τ̃̃rθ̃
= τ

θ̃ z̃ = 0, (58)

θ̃ = π : σ̃
θ̃
= τ̃̃rθ̃

= τ̃
θ̃z̃ = 0. (59)

when s̃ = 1/2, substitution of Equation (55) in conjunction with Equations (45)–(47) into
Equations (58) and (59), yields the following:

Ã1= Ã3, (60)
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Ã2= Ã4. (61)

Ã2

Ã1
= − η̃

ξ̃

(
√

c22c33 + c23)

(
√

c22c33 − c23)
. (62)

Finally, on substitution of Equations (60)–(62) into Equations (42), (43) and (45)–(48),
the relevant components of the displacement vector and the stress tensor in the immediate
neighborhood of a semi-infinite crack front, under Mode I loading, can be written as
given below:

ũ(r̃, θ̃, z̃) = K̃I(z̃)
(c22c33−c2

23)

√
r̃

2π

[{(
cos θ̃ + ξ̃ sin θ̃

)2
+ η̃ sin2 θ̃

} 1/4{
(
√

c22c33 − c23) cos
(
ψ̃/2

)
− (
√

c22c33 + c23)
η̃

ξ̃
sin
(
ψ̃/2

)}
+

{(
cos θ̃ − ξ̃ sin θ̃

)2
+ η̃ sin2 θ̃

}1/4{
(
√

c22c33 − c23) cos
(
ψ̃′/2

)
+(
√

c22c33 + c23)
η̃

ξ̃
sin
(
ψ̃′/2

)}]
,

(63)

ṽ(r̃, θ̃, z̃) = K̃I(z̃)
(c22c33−c2

23)

√
r̃

2π

[{(
cos θ̃ + ξ̃ sin θ̃

)2
+ η̃ sin2 θ̃

} 1/4{
− (c22c33−c2

23)
2c44ξ cos

(
ψ̃/2

)
+2
√

c22c33η̃ sin
(
ψ̃/2

)}
+

{(
cos θ̃ − ξ̃ sin θ̃

)2
+ η̃ sin2 θ̃

}1/4{
(c22c33−c2

23)
2c44ξ cos

(
ψ̃′/2

)
+2
√

c22c33η̃ sin
(
ψ̃′/2

)}]
,

(64)

σ̃x̃(r̃, θ̃, z̃) = K̃I(z̃)
2
√

2πr̃

[{(
cos θ̃ + ξ̃ sin θ̃

)2
+ η̃ sin2 θ̃

} 1/4{
cos
(
ψ̃/2

)
− η̃

ξ̃
sin
(
ψ̃/2

)}
+

{(
cos θ̃ − ξ̃ sin θ̃

)2
+ η̃ sin2 θ̃

}1/4{
cos
(
ψ̃′/2

)
+ η̃

ξ̃
sin
(
ψ̃′/2

)}]
,

(65)

σ̃ỹ(r̃, θ̃, z̃) = K̃I(z̃)
2
√

2πr̃

[{(
cos θ̃ + ξ̃ sin θ̃

)2
+ η̃ sin2 θ̃

} 1/4{
cos
(
ψ̃/2

)
+ η̃

ξ̃
sin
(
ψ̃/2

)}
+

{(
cos θ̃ − ξ̃ sin θ̃

)2
+ η̃ sin2 θ̃

}1/4{
cos
(
ψ̃′/2

)
− η̃

ξ̃
sin
(
ψ̃′/2

)}]
,

(66)

τ̃x̃ỹ(r̃, θ̃, z̃) = − K̃I(z̃)
2
√

2πr̃ ξ̃

[{(
cos θ̃ + ξ̃ sin θ̃

)2
+ η̃ sin2 θ̃

} 1/4
cos
(
ψ̃/2

)
−
{(

cos θ̃ − ξ̃ sin θ̃
)2

+ η̃ sin2 θ̃

}1/4
cos
(
ψ̃′/2

)]
,

(67)

where the mode I stress intensity factor, K̃I(z̃), is defined as follows:

K̃I(z̃) =
√

2π D̃b(z̃)(ik̃)
1/2

(
√

c22c33 + c23) Ã1. (68)
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σ̃z̃(r̃, θ̃, z̃) =
(c12c33 − c13c23)σ̃x̃(r̃, θ̃, z̃) + (c13c22 − c12c23)σ̃ỹ(r̃, θ̃, z̃)(

c22c33 − c2
23
) . (69)

4.1.2. Skew-Symmetric (Mode II) Loading (Sliding Shear/Twisting)

For the case of far-field skew-symmetric (Mode II) loading, the following boundary
conditions can be applied:

θ̃ = 0 : σ̃
θ̃
= τ̃

θ̃z̃ = 0, (70)

θ̃ = π : σ̃
θ̃
= τ̃̃rθ̃

= τ̃
θ̃z̃ = 0. (71)

When s̃ = 1/2, substitution of Equation (55) in conjunction with Equations (45)–(47)
into Equations (70) and (71) yields the following:

Ã1= −Ã3, (72)

Ã2= −Ã4. (73)

Ã2

Ã1
=

4
√

c22c33c44 ξ̃ η̃(
c22c33 − c2

23
) . (74)

Finally, on substitution of Equations (72)–(74) into Equations (42), (43) and (45)–(48),
the relevant components of the displacement vector and the stress tensor in the immediate
neighborhood of a semi-infinite crack front, under Mode II loading, can be written as
given below:

ũ(r̃, θ̃, z̃) = K̃I I(z̃)
(c22c33−c2

23)

√
r̃

2π

[{(
cos θ̃ + ξ̃ sin θ̃

)2
+ η̃ sin2 θ̃

} 1/4{
(c22c33−c2

23)
2c44 ξ̃

cos
(
ψ̃/2

)
+2
√

c22c33η̃ sin
(
ψ̃/2

)}
+

{(
cos θ̃ − ξ̃ sin θ̃

)2
+ η̃ sin2 θ̃

}1/4{
− (c22c33−c2

23)
2c44 ξ̃

cos
(
ψ̃′/2

)
+2
√

c22c33η̃ sin
(
ψ̃′/2

)}]
,

(75)

ṽ(r̃, θ̃, z̃) = − K̃I I(z̃)
(c22c33−c2

23)

√
r̃

2π

[{(
cos θ̃ + ξ̃ sin θ̃

)2
+ η̃ sin2 θ̃

} 1/4{
(
√

c22c33 − c23) cos
(
ψ̃/2

)
+(
√

c22c33 + c23)
η̃

ξ̃
sin
(
ψ̃/2

)}
+

{(
cos θ̃ −

_
ξ sin θ̃

)2
+ η̃ sin2 θ̃

}1/4{
(
√

c22c33 − c23) cos
(
ψ̃′/2

)
− (
√

c22c33 + c23)
η̃

ξ̃
sin
(
ψ̃′/2

)}]
,

(76)
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σ̃x̃(r̃, θ̃, z̃) = K̃I I(z̃)
2
√

2πr̃

[{(
cos θ̃ + ξ̃ sin θ̃

)2
+ η̃ sin2 θ̃

} 1/4{
(η̃2−ξ̃2)

ξ̃
cos
(
ψ̃/2

)
− 2η̃ sin

(
ψ̃/2

)}
−
{(

cos θ̃ − ξ̃ sin θ̃
)2

+ η̃ sin2 θ̃

}1/4{
(η̃2−ξ̃2)

ξ̃
cos
(
ψ̃′/2

)
+ 2η̃ sin

(
ψ̃′/2

)}]
,

(77)

σ̃ỹ(r̃, θ̃, z̃) = K̃I I(z̃)
2
√

2πr̃ ξ̃

[{(
cos θ̃ + ξ̃ sin θ̃

)2
+ η̃ sin2 θ̃

} 1/4
cos
(
ψ̃/2

)
−
{(

cos θ̃ − ξ̃ sin θ̃
)2

+ η̃ sin2 θ̃

}1/4
cos
(
ψ̃′/2

)]
,

(78)

τ̃x̃ỹ(r̃, θ̃, z̃) = − K̃I I(z̃)
2
√

2πr̃

[{(
cos θ̃ + ξ̃ sin θ̃

)2
+ η̃ sin2 θ̃

} 1/4{
cos
(
ψ̃/2

)
+ η̃

ξ̃
sin
(
ψ̃/2

)}
+

{(
cos θ̃ − ξ̃ sin θ̃

)2
+ η̃ sin2 θ̃

}1/4{
cos
(
ψ̃′/2

)
− η̃

ξ̃
sin
(
ψ̃′/2

)}]
,

(79)

in which the mode II stress intensity factor, K̃I I(z̃), is defined as follows:

K̃I I(z̃) = 2
√

2π D̃b(z̃)(ik̃)
1/2

ξ̃c44 A1. (80)

σ̃z̃(r̃, θ̃, z̃) is given by Equation (69). A critical examination of Equations (66) and (79)
reveals the following interesting relationship:

σ̃ỹ(r̃, θ̃, z̃)
∣∣∣

Mode I

K̃I(z̃)
= −

τ̃x̃ỹ(r̃, θ̃, z̃)Mode I I

K̃I I(z̃)
, valid f or all θ. (81)

Since K̃I(z̃) and K̃I I(z̃) are directly proportional to far-field loadings, σ̃∞
ỹ (z̃) and τ̃∞

x̃ỹ(z̃),
respectively, this interesting result implies that both these loadings produce identical
(except the negative sign for τ̃x̃ỹ) θ̃-dependence of these two near-field driving stresses,

σ̃ỹ(r̃, θ̃, z̃)
∣∣∣

Mode I
/τ̃x̃ỹ(r̃, θ̃, z̃)Mode I I :

K̃I(z̃)
K̃I I(z̃)

=
σ̃∞

ỹ (z̃)

τ̃∞
x̃ỹ(z̃)

= −
σ̃ỹ(r̃, θ̃, z̃)

∣∣∣
Mode I

τ̃x̃ỹ(r̃, θ̃, z̃)Mode I I
, valid f or all |θ| < π. (82)

This is unlike what happens in the case of an isotropic material, where no such θ̃-
invariance (i.e., identical θ̃-dependence) exists, as the following relationship would clearly
demonstrate [25,55]:

σ̃ỹ(r̃, θ̃, z̃)
∣∣∣

Mode I

K̃I(z̃)
{

1 + sin
(

θ̃/2
)

sin
(

3θ̃/2
)} = −

τ̃x̃ỹ(r̃, θ̃, z̃)Mode I I

K̃I I(z̃)
{

1− sin
(

θ̃/2
)

sin
(

3θ̃/2
)} . (83)



Appl. Mech. 2023, 4 601

K̃I(z̃)
K̃I I(z̃)

=
σ̃∞

ỹ

τ̃∞
x̃ỹ

= −
σ̃ỹ(r̃, θ̃, z̃)

∣∣∣Mode I

{
1− sin

(
θ̃/2

)
sin
(

3θ̃/2
)}

τ̃x̃ỹ(r̃, θ̃, z̃)Mode I I

{
1 + sin

(
θ̃/2

)
sin
(

3θ̃/2
)} . (84)

Comparison of Equations (81)–(84) shows that while the ratio of mode I to mode II
stress intensity factors or its far-field loading counterpart is equal to negative times the ratio
of the corresponding driving stresses, σ̃ỹ(r̃, θ̃, z̃)

∣∣∣
Mode I

/τ̃x̃ỹ(r̃, θ̃, z̃)Mode I I , for the case of an

orthorhombic crystal with complex roots (valid for Ã > 1 or, equivalently, κ̃ >
√

c33/c22),
and this relationship is invariant with respect to coordinate transformation (here specifically
with respect to θ̃ variation), the same cannot be said about the corresponding relationship
for an isotropic material. The coupling between cos

(
ψ̃/2

)
and sin

(
ψ̃/2

)
, and similar cou-

pling between cos
(
ψ̃′/2

)
and sin

(
ψ̃′/2

)
in the two driving stresses, σ̃ỹ(r̃, θ̃, z̃)

∣∣∣
Mode I

and

τ̃x̃ỹ(r̃, θ̃, z̃)Mode I I , which has also been reported in earlier studies [22,56], is instrumental in
causing the above remarkable relationship given by Equations (81) and (82), which signifies
mode mixity. It is also somewhat counter-intuitive that an invariant (more specifically, with
respect to θ̃) relationship, such as Equations (81) and (82), resulting from complex roots
(valid for Ã > 1 or, equivalently, κ̃ >

√
c33/c22), guarantees the fact of the cleavage system

under consideration being difficult (i.e., not easy), thus further concomitant in ensuring
crack deflection or turning from this difficult cleavage system onto a nearby available
easy one, violating the self-similarity of crack growth or propagation in the process. In
contrast, again counter-intuitively, a non-invariant (more specifically, with respect to θ̃)
relationship, such as Equations (83) and (84) resulting from the degenerate case (Ã = 1 or,
equivalently, κ̃ = 1), guarantees the cleavage system under consideration of being super-
easy, thus ensuring the self-similarity (i.e., θ̃-invariance) of crack growth or propagation in
the process.

The dimensionless parameters, such as the anisotropic ratio, Ã, or, equivalently, the
normalized elastic parameter, κ̃, can serve as the Holy Grail quantity for an a priori
determination of the status of a cleavage system to be easy or difficult, very much akin
to Reynold’s number for fluid flow problems, crossing a critical value of which signifies
transition from one regime to another. Here, the anisotropic ratio, Ã, or, equivalently,
normalized elastic parameter, κ̃, for a (001) [100] × [010] cleavage system, crossing the
critical value of 1 or

√
c33/c22, respectively, signifies transitioning from self-similar crack

growth or propagation to crack deflection or turning from a difficult cleavage system onto
a nearby easy one.

As has been suggested by Sedov [83], similarity analysis is an effective tool to solve
complex problems in mechanics. This can be employed to establish a sorely needed
sufficient condition for the problem at hand and is further elaborated in Section 7.2 below.

4.2. Case (b): Imaginary Roots

Equation (24) can also have four imaginary roots given by

p̃1,2 = ±i
(

ξ̃ ′ + η̃′
)

, (85)
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p̃3,4 = ±i
(

ξ̃ ′ − η̃′
)

, (86)

where

ξ̃ ′ =
1√
2

[(
c22

c33

)1/2
+ χ̃

]1/2

, (87)

η̃′ =
1√
2

[
−
(

c22

c33

)1/2
+ χ̃

]1/2

, (88)

is valid for

Ã < 1 or, equivalently, κ̃ <
√

c33/c22

)
, (89)

which corresponds to a candidate plane of minimum surface energy.
As has been explained earlier, the general asymptotic form for the displacement

and stress fields in the vicinity of the crack front (a branch point in 2D form) can most
conveniently be obtained by employing a set of two polar coordinate systems, (ρ̃, ψ̃) and
(ρ̃′, ψ̃′), derived from the affine transformation discussed earlier, and expressed in terms of
the cylindrical polar coordinate system (r̃, θ̃, z̃), as follows:

ρ̃1 cos (ψ̃1(θ̃)) = r̃ cos(θ̃), ρ̃1 sin (ψ̃1(θ̃)) = r̃(ξ̃ ′ + η̃′) sin(θ̃), (90)

ρ̃′1 cos (ψ̃′1(θ̃)) = r̃ cos(θ̃), ρ̃′1 sin (ψ̃′1(θ̃)) = r̃(ξ̃ ′ − η̃′) sin(θ̃), (91)

in which

ρ̃1 = r̃
{

cos2(θ̃) + (ξ̃ ′ + η̃′)
2

sin2(θ̃)
}1/2

, (92)

ρ̃′1 = r̃
{

cos2(θ̃) + (ξ̃ ′ − η̃′)
2

sin2(θ̃)
}1/2

, (93)

and

cos
(

ψ̃1(θ̃)
)
=

cos(θ̃){
cos2 (θ̃) + (ξ̃ ′ + η̃′)

2
sin2(θ̃)

}1/2 , (94)

sin
(

ψ̃1(θ̃)
)
=

(ξ̃ ′ + η̃′) sin(θ̃){
cos2 (θ̃) + (ξ̃ ′ + η̃′)

2
sin2(θ̃)

}1/2 , (95)

cos
(

ψ̃′1(θ̃)
)
=

cos(θ̃){
cos2 (θ̃) + (ξ̃ ′ − η̃′)

2
sin2(θ̃)

}1/2 , (96)
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sin
(

ψ̃′1(θ̃)
)
=

(ξ̃ ′ − η̃′) sin(θ̃){
cos2 (θ̃) + (ξ̃ ′ − η̃′)

2
sin2(θ̃)

}1/2 , (97)

The components of the displacement vector and the stress tensor in the immediate
neighborhood of the crack front can now be written as shown below:

ũ(r̃, θ̃, z̃) = r̃sD̃b(z̃)
(

ik̃
)s̃
[{

cos2(θ̃) +
(

ξ̃ ′ + η̃′
)2

sin2(θ̃)

}s/2{
Ã1 cos

(
s̃ψ̃1
)
+ Ã2 sin

(
s̃ψ̃1
)}

+

{
cos2(θ̃) +

(
ξ̃ ′ − η̃′

)2
sin2(θ̃)

}s/2{
Ã3 cos

(
s̃ψ̃′1
)
+ Ã4 sin

(
s̃ψ̃′1
)}]

+ O
(

r̃s̃+2
)

,

(98)

ṽ(r̃, θ̃, z̃) = r̃s̃D̃b(z̃)
(

ik̃
)s̃
[{

cos2(θ̃) +
(

ξ̃ ′ + η̃′
)2

sin2(θ̃)

}s/2{
−H̃′1 Ã2 cos

(
s̃ψ̃1
)
+ H̃′1 Ã1 sin

(
s̃ψ̃1
)}

+

{
cos2(θ̃) +

(
ξ̃ ′ − η̃′

)2
sin2(θ̃)

}s/2{
−H̃′2 Ã4 cos

(
s̃ψ̃′1
)
+ H̃′2 Ã3 sin

(
s̃ψ̃′1
)}]

+ O
(

r̃s̃+2
)

,

(99)

w̃(r̃, θ̃, z̃) = O
(

r̃s̃+1
)

, (100)

and

σ̃x̃

(
r̃, θ̃, z̃

)
= r̃s̃−1D̃b(z̃)

(
ik̃
)s̃

s̃

〈{
cos2(θ̃) +

(
ξ̃ ′ + η̃′

)2
sin2(θ̃)

}(s̃−1)/2

{c22+

H̃′1
(

ξ̃ ′ + η̃′
)

c23

}{
Ã1 cos

(
(s̃− 1)ψ̃1

)
+ Ã2 sin

(
(s̃− 1)ψ̃1

)}
+
{

cos2(θ̃)+(
ξ̃ ′ − η̃′

)2
sin2(θ̃)}(s̃−1)/2{c22 +H̃′2

(
ξ̃ ′ − η̃′

)
c23

}{
Ã3 cos

(
(s̃− 1)ψ̃′1

)
+ Ã4 sin

(
(s̃− 1)ψ̃′1

)}〉
+ O

(
rs+1),

(101)

σy(r, θ, z) = rs−1Db(z)(ik)
ss
〈{

cos2(θ) + (ξ ′ + η′)2 sin2(θ)
}(s−1)/2

{c12+

H′1(ξ ′ + η′)c22}{A1 cos((s− 1)ψ1) + A2 sin((s− 1)ψ1)}+
{

cos2(θ)+

(ξ ′ − η′)2 sin2(θ)}(s−1)/2{c12 +H′2(ξ ′ − η′)c22}{A3 cos((s− 1)ψ′1) + A4 sin((s− 1)ψ′1)}
〉

+ O
(

r̃s̃+1
)

,

(102)
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τ̃x̃ỹ

(
r̃, θ̃, z̃

)
= r̃s̃−1D̃b(z̃)

(
ik̃
)s̃

s̃c44

〈{
cos2(θ̃) +

(
ξ̃ ′ + η̃′

)2
sin2(θ̃)

}(
_
s−1)/2{

H̃′1

−
(

ξ̃ ′ + η̃′
)}{
−Ã2 cos

(
(s̃− 1)ψ̃1

)
+ Ã1 sin

(
(s̃− 1)ψ̃1

)}
+
{

cos2(θ̃)+(
ξ̃ ′ − η̃′

)2
sin2(θ̃)

}(s̃−1)/2{
H̃′2 −

(
ξ̃ ′ − η̃′

)}{
−Ã4 cos

(
(s̃− 1)ψ̃1

)
+ Ã3 sin

(
(s̃− 1)ψ̃1

)}〉
+ O

(
r̃s̃+1

)
,

(103)

σ̃z̃

(
r̃, θ̃, z̃

)
= r̃s̃−1D̃b(z̃)

(
ik̃
)s̃

s̃

〈{
cos2(θ̃) +

(
ξ̃ ′ + η̃′

)2
sin2(θ̃)

}(s̃−1)/2

{c12+

H̃′1
(

ξ̃ ′ + η̃′
)

c13

}{
Ã1 cos

(
(s̃− 1)ψ̃1

)
+ Ã2 sin

(
(s̃− 1)ψ̃1

)}
+
{

cos2(θ̃)+(
ξ̃ ′ − η̃′

)2
sin2(θ̃)}(s̃−1)/2{c12 +H̃′2

(
ξ̃ ′ − η̃′

)
c13

}{
Ã3 cos

(
(s̃− 1)ψ̃′1

)
+ Ã4 sin

(
(s̃− 1)ψ̃′1

)}〉
+ O

(
r̃s̃+1

)
,

(104)

τ̃x̃z̃

(
r̃, θ̃, z̃

)
= O

(
r̃s̃
)

, (105)

τ̃ỹz̃

(
r̃, θ̃, z̃

)
= O

(
r̃s̃
)

(106)

where

H̃′1 = −

{
√

c22c33 − c44

(
ξ̃ ′ + η̃′

)2
}

(c23 + c44)
(

ξ̃ ′ + η̃′
) , (107)

H̃′2 =

{
√

c22c33 − c44

(
ξ̃ ′ − η̃′

)2
}

(c23 + c44)
(

ξ̃ ′ − η̃′
) . (108)

and D̃b(z̃) is same as given earlier in Equation (53).
As before, since s̃ or Re s̃ (when s̃ is complex) is positive, all the higher order terms in

Equations (101)–(104) vanish as r̃→ 0. The non-vanishing components of the asymptotic
displacement vector and the stress tensor in the cylindrical polar coordinate system (r̃,
θ̃, z̃), can now be obtained by using the standard vector and the second-rank tensor
transformation rule, given earlier by Equations (54) and (55). The stress component, σz, is
as given in Equation (104).

Substitution of Equation (55) in conjunction with Equations (101)–(103) into the stress-
free condition on the crack-side surfaces, given by Equation (7), gives rise to four homoge-
neous equations, which finally yields
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Either

cos(s̃− 1)π = 0, (109)

or

sin(s̃− 1)π = 0. (110)

Equation (109) yields the lowest nonvanishing eigenvalue, s̃ = 1/2, 0 < s̃ < 1, thus
meeting the criterion of locally finite energy. Equation (110), in contrast, gives rise to s̃ = 0, 1,
which can take care of rigid body translation and rotation, respectively. Interestingly, s̃ = 1
also accounts for the T-stress.

4.2.1. Symmetric (Mode I) Loading (Extension/Bending)

For s̃ = 1/2,

Ã2 = Ã4 = 0; (111)

and

Ã3

Ã1
= −

{√
c22c33

(
ξ̃ ′ − η̃′

)
+ c23

(
ξ̃ ′ + η̃′

)}
{√

c22c33

(
ξ̃ ′ + η̃′

)
+ c23

(
ξ̃ ′ − η̃′

)} . (112)

Finally, on substitution of Equations (111) and (112) into Equations (98), (99) and (101)–(104),
the relevant components of the displacement vector and the stress tensor in the immediate
neighborhood of a semi-infinite crack front, under Mode I far-field loading, can be written as
given below:

ũ(r̃, θ̃, z̃) = K̃I(z̃)
(c22c33−c2

23)η̃′

√
r̃

2π

[{
cos2 θ̃ +

(
ξ̃ ′ + η̃′

)2
sin2 θ̃

} 1/4{√
c22c33

(
ξ̃ ′ + η̃′

)
+ c23

(
ξ̃ ′ − η̃′

)}
cos
(
ψ̃1/2

)
−
{

cos2 θ̃ +
(

ξ̃ ′ − η̃′
)2

sin2 θ̃

}1/4{√
c22c33

(
ξ̃ ′ − η̃′

)
+ c23

(
ξ̃ ′ + η̃′

)}
cos
(
ψ̃′1/2

)]
,

(113)

ṽ(r̃, θ̃, z̃) = K̃I(z̃)
(c22c33−c2

23)η̃′

√
r̃

2π

[{
cos2 θ̃ +

(
ξ̃ ′ + η̃′

)2
sin2 θ̃

} 1/4

{c23

+
√

c22c33

(
ξ̃ ′ − η̃′

)2
}

sin
(
ψ̃1/2

)
−
{

cos2 θ̃ +
(

ξ̃ ′ − η̃′
)2

sin2 θ̃

}1/4

{c23

+
√

c22c33

(
ξ̃ ′ + η̃′

)2
}

sin
(
ψ̃′1/2

)]
,

(114)

σ̃x̃(r̃, θ̃, z̃) = K̃I(z̃)
2
√

2πr̃ η̃′

[{
cos2 θ̃ +

(
ξ̃ ′ + η̃′

)2
sin2 θ̃

} 1/4(
ξ̃ ′ + η̃′

)
cos
(
ψ̃1/2

)
−
{

cos2 θ̃ +
(

ξ̃ ′ − η̃′
)2

sin2 θ̃

}1/4(
ξ̃ ′ − η̃′

)
cos
(
ψ̃′1/2

)]
,

(115)
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σ̃ỹ(r̃, θ̃, z̃) = − K̃I(z̃)
2
√

2πr̃ η̃′

[{
cos2 θ̃ +

(
ξ̃ ′ + η̃′

)2
sin2 θ̃

} 1/4(
ξ̃ ′ − η̃′

)
cos
(
ψ̃1/2

)
−
{

cos2 θ̃ +
(

ξ̃ ′ − η̃′
)2

sin2 θ̃

}1/4(
ξ̃ ′ + η̃′

)
cos
(
ψ̃′1/2

)]
,

(116)

τ̃x̃ỹ(r̃, θ̃, z̃) = K̃I(z̃)
2
√

2πr̃ η̃′

[{
cos2 θ̃ +

(
ξ̃ ′ + η̃′

)2
sin2 θ̃

} 1/4
sin
(
ψ̃1/2

)
−
{

cos2 θ̃ +
(

ξ̃ ′ − η̃′
)2

sin2 θ̃

}1/4
sin
(
ψ̃′1/2

)
,

(117)

where the mode I stress intensity factor, K̃I(z̃), is defined as follows:

K̃I(z̃) =
√

2π D̃b(z̃)(ik̃)
1/2 c44η̃′

(c23 + c44)

{√
c22c33

(
ξ̃ ′ − η̃′

)
+ c23

(
ξ̃ ′ + η̃′

)}
Ã1. (118)

σ̃z̃(r̃, θ̃, z̃) is given by Equation (69).

4.2.2. Skew-Symmetric (Mode II) Loading (Sliding Shear/Twisting)

For s̃ = 1/2,

Ã1 = Ã3 = 0; (119)

and

Ã4

Ã2
= −

(
ξ̃ ′ − η̃′

)
(

ξ̃ ′ + η̃′
)
{√

c22c33

(
ξ̃ ′ − η̃′

)
+ c23

(
ξ̃ ′ + η̃′

)}
{√

c22c33

(
ξ̃ ′ + η̃′

)
+ c23

(
ξ̃ ′ − η̃′

)} . (120)

Finally, on substitution of Equations (119) and (120) into Equations (98), (99) and (101)–(104),
the relevant components of the displacement vector and the stress tensor in the immediate
neighborhood of a semi-infinite crack front, under Mode II loading, can be written as given below:

ũ(r̃, θ̃, z̃) = − K̃I I(z̃)
(c22c33−c2

23)η̃′

√
r̃

2π

[{
cos2 θ̃ +

(
ξ̃ ′ + η̃′

)2
sin2 θ̃

} 1/4{√
c22c33

(
ξ̃ ′ + η̃′

)2

+c23} sin
(
ψ̃1/2

)
−
{

cos2 θ̃ +
(

ξ̃ ′ − η̃′
)2

sin2 θ̃

}1/4{√
c22c33

(
ξ̃ ′ − η̃′

)2
+ c23

}
sin
(
ψ̃′1/2

)]
,

(121)

ṽ(r̃, θ̃, z̃) = K̃I I(z̃)
(c22c33−c2

23)η̃′

√
r̃

2π

[{
cos2 θ̃ +

(
ξ̃ ′ + η̃′

)2
sin2 θ̃

} 1/4{√
c22c33

(
ξ̃ ′ − η̃′

)
+ c23

(
ξ̃ ′ + η̃′

)}
cos
(
ψ̃1/2

)
−
{

cos2 θ̃ +
(

ξ̃ ′ − η̃′
)2

sin2 θ̃

}1/4{{√
c22c33

(
ξ̃ ′ + η̃′

)
+ c23

(
ξ̃ ′ − η̃′

)}
cos
(
ψ̃′1/2

)]
,

(122)
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σ̃x̃(r̃, θ̃, z̃) = − K̃I I(z̃)
2
√

2πr̃ η̃′

[{
cos2 θ̃ +

(
ξ̃ ′ + η̃′

)2
sin2 θ̃

}1/4
(ξ̃ ′ + η̃′)

2
sin
(
ψ̃1/2

)
−
{

cos2 θ̃ +
(

ξ̃ ′ − η̃′
)2

sin2 θ̃

}1/4(
ξ̃ ′ − η̃′

)2
sin
(
ψ̃′1/2

)]
,

(123)

σ̃ỹ(r̃, θ̃, z̃) = K̃I I(z̃)
2
√

2πr̃ η̃′

[{
cos2 θ̃ +

(
ξ̃ ′ + η̃′

)2
sin2 θ̃

} 1/4
sin
(
ψ̃1/2

)
−
{

cos2 θ̃ +
(

ξ̃ ′ − η̃′
)2

sin2 θ̃

}1/4
sin
(
ψ̃′1/2

)]
,

(124)

τ̃x̃ỹ(r̃, θ̃, z̃) = K̃I I(z̃)
2
√

2πr̃ η̃′

[{
cos2 θ̃ +

(
ξ̃ ′ + η̃′

)2
sin2 θ̃

} 1/4(
ξ̃ ′ + η̃′

)
cos
(
ψ̃1/2

)
−
{

cos2 θ̃ +
(

ξ̃ ′ − η̃′
)2

sin2 θ̃

}1/4(
ξ̃ ′ − η̃′

)
cos
(
ψ̃′1/2

)]
,

(125)

in which the mode II stress intensity factor, K̃I I(z̃), is defined as follows:

K̃I I(z̃) =
√

2π D̃b(z̃)(ik̃)
1/2 c44η̃′

(c23 + c44)
(

ξ̃ ′ + η̃′
){√c22c33

(
ξ̃ ′ − η̃′

)
+ c23

(
ξ̃ ′ + η̃′

)}
Ã2. (126)

σ̃z̃(r̃, θ̃, z̃) is given by Equation (69). A critical examination of Equations (116) and
(126) reveals the following relationship involving the two near-field crack driving stresses,
σ̃ỹ(r̃, θ̃, z̃)

∣∣∣
Mode I

and τ̃x̃ỹ(r̃, θ̃, z̃)
∣∣∣

Mode I I
, and corresponding far-field applied stresses, σ̃∞

ỹ (z̃)

and τ̃∞
x̃ỹ(z̃), proportional to K̃I(z̃) and K̃I I(z̃):

K̃I I(z̃)(ξ̃ ′+η̃′)σ̃ỹ(r̃,θ̃,z̃)|Mode I+K̃I(z̃)(ξ̃ ′−η̃′)τ̃x̃ỹ(r̃,θ̃,z̃)|Mode I I

K̃I I(z̃)(ξ̃ ′−η̃′)σ̃ỹ(r̃,θ̃,z̃)|Mode I+K̃I(z̃)(ξ̃ ′+η̃′)τ̃x̃ỹ(r̃,θ̃,z̃)|Mode I I

=

{
cos2 θ̃+(ξ̃ ′−η̃′)

2
sin2 θ̃

}1/4

{
cos2 θ̃+(ξ̃ ′+η̃′)

2
sin2 θ̃

}1/4 .
(127)

Equation (127) shows an absence of θ̃-invariance in the relationship involving the
two far-field and two near-field stresses mentioned above in the case of an orthorhom-
bic crystal with imaginary roots (valid for Ã < 1 or, equivalently, κ̃ <

√
c33/c22) as a

result of the absence of coupling between cos
(
ψ̃1/2

)
and sin

(
ψ̃1/2

)
(and similar cou-

pling between cos
(
ψ̃′1/2

)
and sin

(
ψ̃′1/2

)
) in the two driving stresses, σ̃ỹ(r̃, θ̃, z̃)

∣∣∣
Mode I

and

τ̃x̃ỹ(r̃, θ̃, z̃)Mode I I . The lack of coupling between cos
(
ψ̃1/2

)
and sin

(
ψ̃1/2

)
(and similar cou-

pling between cos
(
ψ̃′1/2

)
and sin

(
ψ̃′1/2

)
) in the two driving stresses, σ̃ỹ(r̃, θ̃, z̃)

∣∣∣
Mode I

and

τ̃x̃ỹ(r̃, θ̃, z̃)Mode I I , which has also been reported in earlier studies [22,56], is instrumental in
guaranteeing the fact of the cleavage system under consideration being easy, thus ensur-
ing self-similar crack growth or propagation in the process, in a manner similar to what
happens in an isotropic solid. Comparison of Equations (83), (84) and (127) also shows a
measure of similarity in terms of the θ̃-dependence discussed above; see further discussion
in Section 7.2 below.
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Finally, it may be noted that the above expressions for displacements, given by
Equations (63), (64), (75), (76), (113), (114), (121) and (122) and stresses, given by (65)–(67),
(77)–(79), (115)–(117) and (123)–(125), reduce to their two-dimensional counterparts (see,
e.g., Sih et al. [17]).

5. Plate Surface Boundary Conditions and Through-Thickness Distribution of
Singular Stress Fields
5.1. Satisfaction of Traction-Free Boundary Conditions

The stress field in the vicinity of the front of a semi-infinite crack under in-
plane extension and out-of-plane bending, respectively, can be recovered if in
Equations (68), (118) or (80), (126), even and odd functions are selected from D̃b(z̃∗):

D̃b(z̃∗) = D̃bs(z̃∗) = D̃2 cos
(

k̃z̃∗
)

, (128)

D̃b(z̃∗) = D̃ba(z̃∗) = D̃1 sin
(

k̃z̃∗
)

. (129)

where z̃∗ = z̃/h. By using the boundary condition on the free plate surfaces, z̃∗ = z̃/h = ±1,
the general form of D̃bs(z̃∗) can be obtained as

D̃bs(z̃∗) =
∞

∑
n=0

D̃2n cos
(
(2n + 1)

2h
πz̃∗

)
. (130)

Hence, K̃I(z̃∗) = K̃Is(z̃∗) and K̃I I(z̃∗) = K̃I Is(z̃∗) would represent symmetric stress
intensity factors; see Section 8 and the penultimate figure below.

D̃ba(z̃∗) that satisfies the traction-free condition on the plate surfaces is, in the absence
of discontinuity of the function at z̃∗ = z̃/h = 0, generally given by

D̃ba(z̃∗) =
∞

∑
n=1

D̃1n sin
(nπ

h
z̃∗
)

, (131)

In the presence of discontinuity of the function at z̃∗ = z̃/h = 0, D̃ba(z̃∗) must be
written as follows:

D̃ba(z̃∗) =

∣∣∣∣∣±∞

∑
n=0

D̃2n cos
(
(2n + 1)

2
πz̃∗

)∣∣∣∣∣. (132)

As a consequence, K̃I(z̃∗) = K̃Ia(z̃∗) and K̃I I(z̃∗) = K̃I Ia(z̃∗) would represent anti-
symmetric stress intensity factors; see Section 8 below. If the boundary conditions on the
traction-free plate surfaces are satisfied, all the displacements and singular stresses vanish
on the plate surfaces in the vicinity of the crack front.

5.2. Hyperbolic Cosine Distributed Far-Field Loading

Hyperbolic cosine distributed far-field loading, which is proportional to cosh(z̃∗),
|z̃∗| < 1, is applied. The applied symmetric loading function and the corresponding “stress
intensity factors” (valid for |z̃∗| ≤ 1) are proportional to

D̃bs(z̃∗) = cosh(z̃∗) =
exp(z̃∗) + exp(−z̃∗)

2
. (133)
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The corresponding Fourier series can be derived as follows:

D̃bs(z̃∗) =
∞

∑
m=0

{
e−1(−1)m + e(−1)m}{

1 +
(

m + 1
2

)2
π2
} (

m +
1
2

)
π cos

((
2m + 1

2

)
πz̃∗

)
. (134)

The applied antisymmetric loading function (valid for |z̃∗| < 1) and the corresponding
“stress intensity factors” (valid for |z̃∗| ≤ 1) are proportional to

D̃ba(z̃∗) = |cosh(−z̃)| = 1
2
|exp(z̃∗) + exp(−z̃∗)|. (135)

Since D̃ba(z̃∗) has a discontinuity at z̃∗ = 0, the corresponding Fourier series can be
obtained as given below:

D̃bs(z̃∗) =

∣∣∣∣∣∣∣∣
∞

∑
m=0

{
e−1(−1)m + e(−1)m}{

1 +
(

m + 1
2

)2
π2
} (

m +
1
2

)
π cos

((
2m + 1

2

)
πz̃∗

)∣∣∣∣∣∣∣∣. (136)

6. Stress Intensity Factors and Energy Release Rates for a Through-Thickness
Center-Crack (Modes I and II)
6.1. Through-Thickness Distribution of Stress Intensity Factors (Modes I and II)

The stress intensity factors, K̃I(z̃∗) and K̃I I(z̃), cannot be determined unless the far-
field loading and a characteristic length (e.g., crack geometry) are specified. Sih et al. [17]
have shown the applicability of the complex variable approach in conjunction with the
eigenfunction expansion approach in the derivation of the two-dimensional stress inten-
sity factors for anisotropic plates. The stress intensity factor for an infinite orthorhom-
bic/tetragonal mono-crystalline plate with a central crack of length, 2a, and subjected to
far-field mode I/II loading is available for the two-dimensional case [17], and can easily be
extended to the present three-dimensional case as follows:

K̃I(z̃∗) +
KI I(z̃∗)

p̃3
= 2
√

2π
( p̃1 − p̃3)

p̃3
Lim

ζ1→ζ0
(ζ1 − ζ0)

1/2 φ1
′(ζ1)D̃b(z̃∗), (137)

where

ζ1 = a + x̃ + p̃1ỹ, (138)

ζ0 = a, (139)

φ1(ζ1) =
a2

4( p̃1 − p̃3)

 2p̃3σ̃∞
ỹ + τ̃∞

x̃ỹ

ζ1 +
√

ζ1
2 − ζ2

0

+ C1ζ1, (140)

with C1 being a constant. On substitution of Equations (138)–(149) into it, Equation (137)
can be expressed in cylindrical polar coordinates as follows:
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K̃I(z̃∗) +
K̃I I(z̃∗)

p̃3
=
√

2πa2

(
σ̃∞

ỹ +
τ̃∞

x̃ỹ

p̃3

)
Lim

r→0

√
r̃√

(a + r̃)2 − a2
{

a + r̃ +
√
(a + r̃)2 − a2

} D̃b(z̃∗), (141)

which finally gives

K̃I(z̃∗) = σ̃∞
ỹ
√

πaD̃b(z̃∗), (142)

K̃I I(z̃∗) = τ̃∞
x̃ỹ
√

πaD̃b(z̃∗), (143)

for both complex and imaginary roots. Equations (142) and (143) reduce to their two-
dimensional counterparts [53], by taking D̃b(z̃∗) = 1. It may further be noted that the
normalization factor, K̃i(z̃)/K̃i,2D, i = I, II, is equal to D̃b(z̃∗) for a given far-field loading.

6.2. Through-Thickness Distribution of Energy Release Rates (Modes I and II)

The through-thickness distributions of the energy release rates due far-field loadings,
σ̃∞

ỹ and τ̃∞
x̃ỹ, for a center-crack of length 2a, weakening an infinite plate of finite thickness,

2 h, can be derived by introducing the thickness-wise partial crack closure method as
follows:

G̃I(z̃∗) = Lim
∆a→0

1
(∆a)

 ∆a∫
0

σ̃ỹ(x̃, 0, z̃∗)ṽ(∆a− x̃, π, z̃∗)dx̃dz̃∗

, (144)

which, on substitution of σ̃ỹ(x̃, 0, z̃∗) = σ̃ỹ

∣∣∣
θ̃=0

and ṽ(∆a− x̃, π, z̃∗) = ṽ|θ̃=π̃
, obtained from

Equations (66) and (64), respectively, for complex roots, and Equations (116) and (114),
respectively, for imaginary roots, yields

G̃I(z̃∗) = Lim
∆a→0

1
(∆a)


√

c22c33
(c22c33−c23

2)
η̃K̃I(∆a, z̃∗)K̃I(0, z̃∗)

∆a∫
0

√
∆a−x̃

x̃ dx̃, f or complex roots

√
c22c33

(c22c33−c23
2)

ξ̃ ′K̃I(∆a, z∗)K̃I(0, z̃∗)
∆a∫
0

√
∆a−x̃

x̃ dx̃, f or imaginary roots

=


√

c22c33
(c22c33−c23

2)
η̃
(

σ̃∞
ỹ

)2
πa
(

D̃b(z̃∗)
)2

, f or complex roots
√

c22c33
(c22c33−c23

2)
ξ̃ ′
(

σ̃∞
ỹ

)2
πa
(

D̃b(z̃∗)
)2

, f or imaginary roots

(145)

Interestingly, solutions for both complex and imaginary roots reduce to the following:

G̃I(z̃∗) =

(
σ̃∞

ỹ

)2
πa
√

c22c33√
2(c22c33−c23

2)

√√
(c22/c33) + χ̃

[
D̃b(z̃∗)

]2

=
(K̃I,2D)

2√
c22c33√

2(c22c33−c23
2)

√√
(c22/c33) + χ̃

[
D̃b(z̃∗)

]2
.

(146)
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Similarly,

G̃I I(z̃∗) = Lim
∆a→0

1
(∆a)

 ∆a∫
0

τ̃x̃ỹ(x̃, 0, z̃∗)ũ(∆a− x̃, π, z̃∗)dx̃dz̃∗

, (147)

which, on substitution of τ̃x̃ỹ(x̃, 0, z̃∗) = τ̃x̃ỹ

∣∣∣
θ̃=0

and ũ(∆a− x̃, π, z̃∗) = ũ|θ̃=π
, obtained

from Equations (79) and (75), respectively, for complex roots, and Equations (125) and (121),
respectively, for imaginary roots, yields the following:

GI I(z∗) = Lim
∆a→0

1
(∆a)


c33

(c22c33−c23
2)

η̃K̃I I(∆a, z̃∗)K̃I I(0, z̃∗)
∆a∫
0

√
∆a−x̃

x̃ dx̃, f or complex roots

c33
(c22c33−c23

2)
ξ̃ ′c33K̃I I(∆a, z̃∗)K̃I I(0, z̃∗)

∆a∫
0

√
∆a−x̃

x̃ dx̃, f or imaginary roots

=


c33

(c22c33−c23
2)

η̃
(

τ̃∞
x̃ỹ

)2
πa
(

D̃b(z̃∗)
)2

, f or complex roots

c33
(c22c33−c23

2)
ξ̃ ′
(

τ̃∞
x̃ỹ

)2
πa
(

D̃b(z̃∗)
)2

, f or imaginary roots

(148)

As before, solutions for both complex and imaginary roots reduce to the following:

G̃I I(z̃∗) =

(
τ∞

x̃ỹ

)2
πac33√

2(c22c33−c23
2)

√√
(c22/c33) + χ̃

[
D̃b(z̃∗)

]2
.

=
(K̃I,2D)

2
c33√

2(c22c33−c23
2)

√√
c22/c33 + χ̃

[
D̃b(z̃∗)

]2
.

(149)

Equations (146) and (149) reduce to their two-dimensional (plane strain) counter-
parts [53], by taking D̃b(z̃∗) = 1. It may further be noted that the normalization factor is

equal to
[

D̃b(z̃∗)
]2

for a given far-field loading.
For the special case of a tetragonal single crystal, the above energy release rates

reduce to

G̃I(z̃∗) =

(
K̃I,2D

)2√
c11c33

√
2(c11c33 − c13

2)

√√
(c11/c33) + χ̃

[
D̃b(z̃∗)

]2
. (150)

GI I(z∗) ==

(
K̃I,2D

)2
c33

√
2(c11c33 − c13

2)

√√
c11/c33 + χ̃

[
D̃b(z̃∗)

]2
. (151)

7. Necessary and Sufficient Conditions for Easy or Difficult Cleavage Planes
7.1. Crack Deflection Criterion, Based on the Relative Fracture Energy

The important issue of a cleavage plane being deemed easy or difficult can be related
to a crack deflection criterion, which is based on the relative fracture energy (or the energy
release rate) available for possible “fracture paths” [17]. The deflection or kinking of a crack
from the cleavage system 1 to the cleavage system 2 is favored if (however, not iff, i.e., if
and only if):
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G1/(2Γ1) < 1 < G2/(2Γ2)⇒G2/G1 > Γ2/Γ1 (152)

in which Gi and i, i = 1, 2, are energy release rate and surface energy, respectively, of
the ith cleavage system. The above Griffith–Irwin theory-based crack deflection criterion
is not accepted as a sufficient condition (albeit being still extremely useful and widely
employed, including in the present work) for a cleavage system deemed to be easy or
difficult for crack propagation in single crystals, which calls for development of a new
conceptual-cum-analytical tool, which would take into account short-range interactions.

Atomistic scale modeling of cracks, however, requires consideration of both the long-
range elastic interactions and the short-range chemical reactions. The Griffith theory
does not take the latter into account [22]. Secondly and more importantly, fracture cri-
teria derived from equilibrium theories such as the Griffith (thermodynamics-based) en-
ergy balance criterion are not equipped to meet the sufficiency condition, because of the
prevailing non-equilibrium conditions such as physico-chemical reactions during crack
propagation. Hence, such criteria can only be regarded as necessary conditions for frac-
ture [79,83], but not as sufficient [80,84]. The effect of short-range chemical reactions can
obviously be encapsulated by atomic scale simulations, such as the investigation of low-
speed propagation instabilities in silicon using quantum-mechanical hybrid, multi-scale
modelling due to Kermode et al. [85], which, however, entails extensive computational
and other resources. Alternatively, and more importantly, such short-range interactions
can also be captured by elastic properties-based parameters (with a few exceptions), such
as the anisotropic ratio, Ã, or, equivalently, the normalized elastic parameter, κ̃. This
is because elastic properties are controlled by various aspects of the underlying struc-
tural chemistry of single crystals, such as the Bravais lattice type, bonding (covalent,
ionic, and metallic), bonding (including hybridized) orbitals, electro-negativity of con-
stituent atoms in a compound, polarity, etc. [22]. The general theory behind these char-
acteristics pertaining to the structural chemistry of crystals are available in well-known
treatises (see, e.g., [86–88]). More specifically, the elastic properties of superconducting
YBa2Cu3O7-δ are strongly influenced by oxygen non-stoichiometry (as well as various
structural defects). It is known to crystallize in a defect perovskite structure consisting
of layers. When δ = 1, the O(1) sites in the Cu(1) layer are vacant and the structure
is tetragonal. For δ < 0.65, Cu-O chains along the b-axis of the crystal are formed; see
Wikipedia, 2010. http://en.wikipedia.org/wiki/Yttrium_barium_copper_oxide (accessed
on 1 February 2023).

Elongation of the b-axis changes the structure from tetragonal (insulator) to orthorhom-
bic (superconductor), with lattice parameters of a = 3.82 Å, b = 3.89 Å, and c = 11.68 Å.
Optimum superconducting properties occur when δ ~ 0.07 and all of the O(1) sites are
occupied with few vacancies; see Wikipedia, 2010. http://en.wikipedia.org/wiki/Yttrium_
barium_copper_oxide (accessed on 1 February 2023). The coordination geometry of metal
centers in YBCO, such as cubic {YO8}, {BaO10}, square planar {CuO4}, and square pyramidal
{CuO5}, as well as structural features such as puckered Cu plane and Cu ribbons were first
reported by Williams et al. [89]. Furthermore, Ledbetter [90] and Lin et al. [73] measured the
elastic constants of polycrystalline YBCO using ultrasonic methods and found that while
the “Elastic moduli corresponding mainly to shear modes increase monotonically with
oxygen concentration”, their counterparts due to “Dilation modes increase up to the values
of 6.7 of the oxygen index, after which they begin to decrease”; see also Lubenets et al. [91].

http://en.wikipedia.org/wiki/Yttrium_barium_copper_oxide
http://en.wikipedia.org/wiki/Yttrium_barium_copper_oxide
http://en.wikipedia.org/wiki/Yttrium_barium_copper_oxide
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In this connection, it must be noted that the invariant relationship (82), derived earlier
in Section 4.1, equating the ratio of mode I to mode II stress intensity factors or its far-field
loading counterpart (long range order) to negative times the ratio of the corresponding
driving stresses, σ̃ỹ(r̃, θ̃, z̃)

∣∣∣
Mode I

/τ̃x̃ỹ(r̃, θ̃, z̃)Mode I I (short range interaction) for the case of

an orthorhombic crystal with complex roots (valid for Ã > 1 or, equivalently, κ̃ >
√

c33/c22),
guarantees the fact of the cleavage system under consideration being difficult, thus further
concomitant in ensuring crack deflection or turning from this difficult cleavage system onto
a nearby available easy one, violating the self-similarity of crack growth or propagation
in the process. This type of behavior of Ã(or, equivalently, κ̃), crossing a threshold or
critical value that signifies transition from one regime to another, very much establishes its
Reynold’s number-like character.

It may also be interesting to observe that experimental determination of surface energy,
Gi, can sometimes be notoriously challenging due to the presence of micro-to-nano scale
defects, such as porosity, dislocation, twin boundaries, misalignment of bonds [22,86]
with respect to the loading axis, and the like. In contrast, the above-derived invariant
relationship (38) demands only measurement of strains or stresses at a point for a given far-
field loading, which are, relatively speaking, much easier in comparison to determination
of surface energies.

7.2. Similarity/Dissimilarity of Present Solutions with Their Isotropic Counterpart

As has been mentioned earlier in Section 4.1, similarity analysis is an effective tool
to solve complex problems in the fracture mechanics of single crystals [22,83]. In what
follows, such similarity or lack thereof to the present solutions for singular stress fields
at crack fronts weakening orthorhombic single crystals with their isotropic counterpart
is investigated. Such analyses can lead to a sufficient condition for determination of a
cleavage system being easy or difficult for crack propagation.

7.2.1. Isotropic Materials

For an isotropic material, the in-plane displacements (for n = 0) can be given as
follows [25,55]:

U(x, y, z) = (ik)sas(z)ρseipψ, (153)

V(x, y, z) = (ik)sbs(z)ρseipψ, (154)

in which

p = ±(s± 1), (155)

and

ρ =
√

x2 + y2, (156)

ψ = tan−1
( y

x

)
, (157)

giving rise to ψ = π/2 for all positive values of y, for x = 0.
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7.2.2. Present Solution Involving Complex Roots

Going back to Equations (20), (21), (30) and (31), the in-plane displacements can be
rewritten in the form (for n = 0), by dropping the overhead ~ over certain relevant variables
and constants (in the interest of generality):

U(x, y, z) = (ik)sas(z)(x + py)s = (ik)sas(z)ρseisψ, (158)

V(x, y, z) = (ik)sbs(z)(x + py)s = (ik)sbs(z)ρseisψ, (159)

in which ρ and ψ can be rewritten as follows:

ρ =

√
(x± ξy)2 + η2y2, (160)

ψ = tan−1
(
±ηy

x± ξy

)
. (161)

Therefore, for an orthorhombic (tetragonal and cubic being special cases) crystal with
complex roots when x = 0,

ψ = tan−1
(
±η

±ξ

)
, (162)

for all positive values of y, which completely differs from its isotropic counterpart.

7.2.3. Present Solution Involving Imaginary Roots

Going back to Equations (20), (21), (85) and (86), the in-plane displacements can be
rewritten in the form (for n = 0), by dropping the overhead ~ over certain relevant variables
and constants:

U(x, y, z) = (ik)sas(z)(x + py)s = (ik)sas(z)ρseisψ, (163)

V(x, y, z) = (ik)sbs(z)(x + py)s = (ik)sbs(z)ρseisψ, (164)

in which ρ and ψ can be rewritten as follows:

ρ =

√
x2 + (±ξ ′ ± η′)2y2,ψ = tan−1

(
(±ξ ′ ± η′)y

x

)
, (165)

again yielding ψ = π/2 for all positive values of y, when x = 0, thus affirming the similarity
of crack propagation in such a cleavage system with its isotropic counterpart.
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8. Numerical Results and Discussion

Table 1 displays the elastic stiffness constants of orthorhombic (superconductor) and
tetragonal (insulator) YBCO single crystals. If otherwise not specified, the elastic stiffness
constants are measured at room temperature (Approx. 300 ◦K). Table 2 shows the elastic
stiffness ratio square root,

√
c22/c11, the normalized elastic parameter, κ, nature of the

four roots of characteristic equation (complex or imaginary), and the character of the
cleavageplane (easy or not) for a (010)[001] through-thickness crack with [100] being the
initial propagation direction (see Figure 3), while Table 3 exhibits their counterparts for a
(010)[100] through-thickness crack with [001] being the initial propagation direction (see
Figure 4). Tables 4–7 present similar results for (100)[001] × [010], shown in Figure 5,
(100)[010] × [001], (001)[100] × [010], shown in Figure 2, and (001)[010] × [100] through-
thickness crack systems, respectively.

Table 2. Normalized elastic parameter, roots of characteristic equation, and the nature (easy or
difficult) of a (010) [001] × [100] through-thickness cleavage system, shown in Figure 3.

Material A
√

c22
c11

κ Roots
(010)[001] × [100]

Cleavage System †:
Easy or Difficult

YBCO * 1.6266 1.0771 2.624 Complex Difficult

YBCO ** 0.9884 1.046 1.0321 Imaginary Easy

YBCO *** 0.8971 1.0771 0.9406 Imaginary Easy

YBCOT 1.3077 1.0 1.5097 Complex Difficult
† Cleavage system for a (010) [001] through-thickness crack, with [100] being its initial length direction. * All
values measured by resonant ultrasound spectroscopy (except c12) by Lei et al. [1]. ** Estimated by Ledbetter and
Lei [79]. *** Same as *, except c12 and c66 measured by ultrasound by Saint-Paul and Henry [71].

Table 3. Normalized elastic parameter, roots of characteristic equation, and the nature (easy or
difficult) of the (010) [100] × [001] through-thickness cleavage system, shown in Figure 4.

Material A
′

√
c′ 22

c′ 11

κ
′ Roots

(010)[100] × [001]
Cleavage System:
Easy or Difficult

YBCO * 0.7641 1.2003 0.8334 Imaginary Easy

YBCO ** 1.3481 1.3298 2.1763 Complex Difficult

YBCO *** 0.7641 1.2003 0.8334 Imaginary Easy

YBCOT 1.1663 1.2382 1.586 Complex Difficult
* All values measured by resonant ultrasound spectroscopy (except c12) by Lei et al. [1]. ** Estimated by Ledbetter
and Lei [79]. *** Same as *, except c12 and c66 measured by ultrasound by Saint-Paul and Henry [71].
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Table 4. Normalized elastic parameter, roots of characteristic equation, and nature (easy or difficult)
of the (100) [001] × [010] through-thickness cleavage system, shown in Figure 5.

Material A
′′

√
c′′ 22

c′′ 11

κ
′′ Roots

(100) [001] × [010
Cleavage System:
Easy or Difficult

YBCO * 1.6266 0.9284 2.2619 Complex Difficult

YBCO ** 0.9884 0.956 0.9432 Imaginary Easy

YBCO *** 0.8971 0.9284 0.817 Imaginary Easy

YBCOT 1.3077 1.0 1.3086 Complex Difficult
* All values measured by resonant ultrasound spectroscopy (except c12) by Lei et al. [1]. ** Estimated by Ledbetter
and Lei [79]. *** Same as *, except c12 and c66 measured by ultrasound by Saint-Paul and Henry [71].

Table 5. Normalized elastic parameter, roots of characteristic equation, and the nature (easy or
difficult) of the (100) [010] × [001] through-thickness cleavage system.

Material A
√

c22
c11

κ Roots
(100)[010] × [001]
Cleavage System:
Easy or Difficult

YBCO * 0.543 1.1145 0.5232 Imaginary Easy

YBCO ** 1.0877 1.2711 1.447 Complex Difficult

YBCO *** 0.543 1.1145 0.5232 Imaginary Easy

YBCOT 1.1663 1.2382 1.5863 Complex Difficult
* All values measured by resonant ultrasound spectroscopy (except c12) by Lei et al. [1]. ** Estimated by Ledbetter
and Lei [79]. *** Same as *, except c12 and c66 measured by ultrasound by Saint-Paul and Henry [71].

Table 6. Normalized elastic parameter, roots of characteristic equation, and the nature (easy or
difficult) of the (001) [100] × [010] through-thickness cleavage system.

Material
~
A

√
~
c22
~
c11

~
κ Roots

(001)[100] × [010]
Cleavage System:
Easy or Difficult

YBCO * 0.7641 0.8331 0.5784 Imaginary Easy

YBCO ** 1.3481 0.7521 1.2309 Complex Difficult

YBCO *** 0.7641 0.8331 0.5784 Imaginary Easy

YBCOT 1.1663 0.8076 1.0345 Complex Difficult
* All values measured by resonant ultrasound spectroscopy (except c12) by Lei et al. [1]. ** Estimated by Ledbetter
and Lei [79]. *** Same as *, except c12 and c66 measured by ultrasound by Saint-Paul and Henry [71].

Table 7. Normalized elastic parameter, roots of characteristic equation, the nature (easy or difficult)
of the (001) [010] × [100] through-thickness cleavage system.

Material Â
√

ĉ22
ĉ11

κ̂ Roots
(001)[010] × [100]
Cleavage System:
Easy or Difficult

YBCO * 0.543 0.8973 0.4213 Imaginary Easy

YBCO ** 1.0877 0.7867 0.8954 Complex Difficult

YBCO *** 0.543 0.8973 0.4213 Imaginary Easy

YBCOT 1.1663 0.8076 1.0345 Complex Difficult
* All values measured by resonant ultrasound spectroscopy (except c12) by Lei et al. [1]. ** Estimated by Ledbetter
and Lei [79]. *** Same as *, except c12 and c66 measured by ultrasound by Saint-Paul and Henry [71].
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Next, the effect of elastic constants, cij (especially c12 and, to a lesser extent, c66), on the
nature (i.e., easy or difficult) of a cleavage system in YBCO (YBa2Cu3O7−δ) is discussed.
Only three complete sets of elastic constants are available in the Literature accessible to
the present author, out of which those due to Ledbetter and Lei [79] are just estimates
(marked ** in Table 1), while their experimental counterparts due to Reichard et al. [67]
are based on the assumption of tetragonal symmetry; see Table 1. This only leaves the
experimental measurements (by resonant ultrasound spectroscopy) due to Lei et al. [1],
marked * in Table 1. However, their c12 value appears to be excessively high. This is
because, according to these authors themselves, “no wave speed in the crystal depends
only on c12, it is no way to estimate it directly.” It also is well-known that while c12 and c66
can be measured independently by static tests [76], these constants are always coupled in
vibrations-based measurements [77,78]. Therefore, in Table 1 of the present investigation,
both c12 and c66, measured by ultrasound by Saint-Paul and Henry [71], have been utilized
(marked ***) in replacement of their counterparts due to Lei et al. [1] in order to assess the
fracture characteristics of YBCO, and to compare them with experiments by Cook et al. [6],
Raynes et al. [9] and Goyal et al. [10] among others.
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Table 2 shows that the anisotropic ratio, A = 1.6266, or, equivalently, normalized elastic
parameter, κ = 2.624, for YBCO * (measurements reported by Lei et al. [1]) is larger than 1 or√

c22/c11 = 0.9284, respectively, giving rise to complex roots (of the characteristic equation)
for a (010)[001]× [100] through-crack, weakening a YBCO mono-crystalline plate. The same
is true for a (100)[001] × [010] crack shown in Table 4, which shows that A′′ (respectively,
κ′′ ) value of 1.6266 (resp. 2.2619) have crossed the critical magnitude of 1 (resp. 0.9284).
These results predict that (010)[001] × [100] and (100)[001] × [010] are difficult cleavage
systems, which are in contradiction with the experimental observations by Cook et al. [6],
Raynes et al. [9], and Goyal et al. [10], among others. The reason behind this anomaly lies
in the excessive values of c12 (and c66 to a lesser extent) used in the computation of the
anisotropic ratio, A or A′′ , and normalized elastic parameter, κ or κ′′ .

Tables 3 and 5–7 show that the planar anisotropic ratios, A′ = 0.7641, A= 0.543,
Ã= 0.7641, and Â= 0.543 (or, equivalently, normalized elastic parameters, κ′ = 0.8334,
κ = 0.5232, κ̃= 0.5784, and κ̂= 0.4213 for YBCO*) are less than 1 (or

√
c′22/c′11 = 1.2003,√

c22/c11= 1.1145,
√

c̃22/c̃11= 0.8331, and
√

ĉ22/ĉ11 = 0.8973), respectively, giving rise to
imaginary roots. Thus, the rest of the crack systems are predicted to constitute easy cleav-
age planes/directions (see Tables 3 and 5–7), the remaining elastic constants measured by
Lei et al. [1] are considered to be reasonably accurate.

Tables 3 and 5–7 further show that for YBCO**, A′ = 1.3481, A= 1.0877, Ã= 1.3481,
and Â= 0.543 (or, equivalently, normalized elastic parameters, κ′ = 2.1763, κ= 1.447,
κ̃= 1.2309, and κ̂= 1.0877) are greater than 1 (or

√
c′22/c′11= 1.2003,

√
c22/c11= 1.2711,√

c̃22/c̃11= 0.8331, and
√

ĉ22/ĉ11 = 0.7867), respectively, giving rise to complex
roots, and rendering the cleavage systems, (010)[100] × [001], (001)[100] × [010],
(100)[010] × [001], and (001)[010] × [100], to be difficult, thus invalidating the values
of the corresponding elastic constants estimated by Ledbetter and Lei [92]. Further-
more, Tables 2–7 show that for (tetragonal) YBCOT, A = 1.3077, A′ = 1.1663, A′′= 1.3077,
A= 1.1663, Ã= 1.1663, and Â=1.1663 (or, equivalently, normalized elastic parameters,
κ = 1.5097, κ′ = 1.586, κ′′ = 1.3086, κ = 1.5863, κ̃ = 1.0345, and κ̂ = 1.0345) are greater than 1
(or
√

c22/c11 = 1,
√

c′22/c′11 = 1.0,
√

c′′ 22/c′′ 11 = 1.0,
√

c22/c11 = 1.2382,
√

c̃22/c̃11= 0.8076,
and
√

ĉ22/ĉ11 = 0.8076), respectively, giving rise to complex roots, and rendering all the
six cleavage systems, namely (010)[001] × [100], (010)[100] × [001], (100)[001] × [010],
(001)[100] × [010], (100)[010] × [001], and (001)[010] × [100], to be difficult, thus com-
pletely invalidating the values of the corresponding experimentally determined elastic
constants reported by Reichard et al. [67].

As can be seen from Tables 2–7, only for YBCO***, A = 0.8971, A′ = 0.7641, A′′ = 0.8971,
A = 0.543, Ã = 0.7641, and Â = 0.543 (or, equivalently, normalized elastic parameters,
κ = 0.9406, κ′ = 0.8334, κ′′ = 0.817, κ = 0.5232, κ̃ = 0.5784, and κ̂ = 0.4213) are less than
1 (or

√
c22/c11 = 1,

√
c′22/c′11 = 1.2003,

√
c′′ 22/c′′ 11 = 0.9284,

√
c22/c11 = 1.1145,√

c̃22/c̃11 = 0.8331, and
√

ĉ22/ĉ11 = 0.8076), respectively, giving rise to imaginary roots,
and rendering all the cleavage systems, namely (010)[001] × [100], (010)[100] × [001],
(100)[001] × [010], (001)[100] × [010], (100)[010] × [001], and (001)[010] × [100], to be easy,
which is in agreement with the experimentally observed fracture characteristics of YBCO
due to Cook et al. [6], Raynes et al. [9], and Goyal et al. [10], among others; see also Granozio
and di Uccio [14] for a summary of the available experimental results. They [14] have also
presented approximate theoretical results of fully oxidized YBCOs (δ = 0, 1), and concluded
that the three lowest surface energies follow the inequality: γ (001) < γ (100) < γ (010).
Furthermore, based on experimental results from transmission electron microscopy [92],
X-ray photo-emission microscopy [93], low-energy ion scattering spectroscopy [94], and
surface polarity [95] analyses performed on fully oxidized YBCO crystals, these authors [14]
have shown that the low energy cut is between the Ba = O and Cu = O planes.
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The efficacy of the indentation test has been extensively studied in the brittle fracture
Literature [96–98]. Lawn [96] and Anstis et al. [97] have presented the following relationship
between fracture toughness and the size of a radial crack produced by a Vickers-type
sharp indenter:

Kc = χrPc−3/2
0 , where χr = §R

V(E/H)1/2, finally giving rise to the following:

Kc = §R
V(E/H)1/2Pc−3/2

0 , (166)

in which P, c0, E, and H represent the indentation load, equilibrium half-crack length,
Young’s modulus, and hardness (of an isotropic material), respectively, and §R

V denotes
a material-independent constant for the Vickers-produced radial crack. Raynes et al. [9],
following the lead of Anstis et al. [97], have determined the fracture toughness of mono-
crystalline YBa2Cu3O7−δ, taking into account its anisotropy. Table 8 presents the critical
stress intensity factor or fracture toughness (Kc = KIc) and the critical energy release
rate or fracture energy (Gc = GIc) of the six easy cleavage systems of mono-crystalline
superconducting YBCO. It is worthwhile to note here that there is some misconception
about the computation of fracture energy, Gc, from the corresponding measured value of
Kc of an anisotropic (e.g., orthorhombic) single crystal in the Literature; see, e.g., Granozio

and di Uccio [14]. The factor
√√

(c22/c33) + χ̃ (see Equation (146) above), and/or its
counterparts for other cleavage systems treated in Appendices A–E, are not accounted for in
these authors’ computations. The energy release rate in an anisotropic (e.g., orthorhombic)
single crystal not only varies from one cleavage plane to another, but also varies according
to propagation direction.

Figure 6a,b show that a (010)[001] crack initially propagating in [100] direction would
turn into a (100)[001] crack propagating in [010] direction (also in [010] direction because
of symmetry), while a (100)[001] crack initially propagating in [010] direction would
continue in its original track. This is because the Gc of a (010)[001] × [100] cleavage
system, 1.50177 J/m2, is higher than its (100)[001] × [010] counterpart, 1.02649 J/m2. In
a similar vein, as shown in Figure 7a,b, a (010)[100] crack initially propagating in [001]
direction would turn into a (001)[100] crack propagating in [010] direction (also in [010]
direction because of symmetry), while a (001)[100] crack initially propagating in [010]
direction would continue uninterrupted in its original track. This is because the Gc of a
(010)[100] × [001] cleavage system, 1.91945 J/m2, is about 2.6 times its (001)[100] × [010]
counterpart, 0.73912 J/m2. Likewise, as shown in Figure 8a,b, a (100)[010] crack initially
propagating in [001] direction would turn into a (001) [010] crack propagating in [100]
direction (also in [100] direction because of symmetry), while a (001)[010] crack initially
propagating in [100] direction would continue unhindered in its original track. This
is because the Gc of a (100)[010] × [001] cleavage system, 1.02649 J/m2, is more than
1.4 times its (001)[010] × [100] counterpart, 0.71163 J/m2. Finally, in mono-crystalline
superconducting YBCO under triaxial-tension far-field loading, a (010)[100] crack initially
propagating in [001] direction would eventually turn into a c-plane cleavage fracture, as
shown in Figure 9.
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Table 8. Fracture Toughness (Kc) and Fracture Energy (Gc) of the Six Easy Cleavage Systems of
Mono-crystalline YBCO.

Cleavage
System

(010)[001]
× [100]

(010)[100]
× [001]

(100)[001]
× [010]

(100)[010]
× [001]

(001)[100]
× [010]

(001)[010]
× [100]

Fracture
Toughness,

Kc [9]
(MPa

√
m)

0.59 ± 0.09 0.59 ± 0.09 0.47 ± 0.12 0.47 ± 0.12 0.32 ± 0.07 0.32 ± 0.07

Fracture
Energy, Gc

(J/m2)
1.50177 1.91945 1.02649 1.43075 0.73912 0.71163

Figure 10a,b shows variation of the normalized stress intensity factors,
K∗(z) = K(z)/KPlaneStrain, through the thickness of an orthorhombic mono-crystalline plate
weakened by a through-thickness crack. Variation of the normalized stress intensity fac-
tor, K∗(z), through the thickness of the same plate weakened by any of the six through-
cracks investigated here is identical. Figure 10a shows the through-thickness variation of
K∗S(z) = KS(z)/KPlaneStrain for a far-field symmetrically distributed hyperbolic cosine load
for mode I (stretching) or mode II (in-plane shear), while its skew-symmetric counterpart
K∗A(z) = KA(z)/KPlaneStrain for mode I (bending) or mode II (twisting) is displayed in
Figure 10b. Of special significance is the discontinuity in the stress intensity factor at z* = 0
in the skew-symmetric loading case, shown in Figure 9. Figure 11 shows the corresponding
variation of energy release rate, G∗, through the top half of the plate thickness. For through-
thickness symmetric far-field loading, the crack is expected to grow through thickness
in a stable manner until the stress intensity factor or the energy release rate reaches its
critical value at mid-thickness. With further increase in the magnitude of far-field loading,
unstable crack growth is expected to progressively spread throughout the plate thickness.
For skew-symmetric loading, as reported on earlier occasions [55], the bottom half will ex-
perience crack closure. Such types of results describing the three-dimensional distribution
of stress intensity factors and energy release rates are generally unavailable in the fracture
mechanics Literature.
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normalized elastic parameter, κ. This is because the elastic properties are controlled by 
various aspects of the underlying structural chemistry of single crystals, such as the Bra-
vais lattice type, bonding (covalent, ionic, and metallic), bonding (including hybridized) 
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Figure 11. The variation of (mode I, II) energy release rate through thickness due to far-field cosine
hyperbolic load.

9. Summary and Conclusions

A modified eigenfunction expansion technique, based partly on the separation of the z-
variable and, in part, on the Eshelby [60]–Stroh [15] type affine transformation, is employed
to derive three-dimensional asymptotic displacement and stress fields in the vicinity of the
front of a semi-infinite through-thickness crack weakening an infinite orthorhombic single
crystal plate. Crack-face boundary conditions and those that are prescribed on the top and
bottom (free) surfaces of the orthorhombic plate are exactly satisfied. Explicit expressions
for the singular stresses in the vicinity of the front of the through-thickness crack, subjected
to far-field in-plane mode I and II loadings, are presented.

The present investigation considers six through-crack systems—(010)[001] with the
[100] length direction, (010)[100] with the [001] length direction, (100)[001] with the [010]
length direction, (100)[010] with the [001] length direction, (001)[010] with the [100] length
direction, and (001)[100] with the [010] length direction—weakening orthorhombic YBCO
single crystal plates. More importantly, the present approach predicts whether a crack
would propagate in its original plane/direction or deflect to a different one. The present
study is unique in the sense that such a fracture mechanic criterion is employed for accurate
determination of the full set of elastic constants of mono-crystalline YBCO.
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The following interesting conclusions can be drawn from the present investigation:
(i) Atomistic scale modeling of cracks requires consideration of both the long-range

elastic interactions and the short-range chemical reactions. The Griffith thermodynamic-
based theory does not take the latter into account, and hence must be regarded as a
necessary condition (albeit still extremely useful and widely employed) but not as sufficient.

(ii) The effect of short-range chemical reactions can be adequately captured by the
elastic properties-based parameters, such as the anisotropic ratio, A, or, equivalently, the
normalized elastic parameter, κ. This is because the elastic properties are controlled by
various aspects of the underlying structural chemistry of single crystals, such as the Bravais
lattice type, bonding (covalent, ionic, and metallic), bonding (including hybridized) orbitals,
electro-negativity of constituent atoms in a compound, polarity, etc.

(iii) More specifically, the elastic properties of superconducting YBa2Cu3O7-δ are
strongly influenced by oxygen non-stoichiometry (as well as various structural defects).

(iv) It is somewhat paradoxical (or counter-intuitive) that an invariant (more specif-
ically, with respect to θ) relationship, such as Equations (81) and (82) equating the ra-
tio of mode I to mode II stress intensity factors or its far-field loadings counterpart
(long range order) to negative times the ratio of the corresponding driving stresses,
σy(r, θ, z)

∣∣
Mode I/τxy(r, θ, z)Mode I I (short range interaction) for the case of an orthorhombic

crystal with complex roots (valid for A > 1 (or, equivalently, κ >
√

c22/c11)), guarantees
the fact of the (010)[001] × [100] cleavage system being difficult, thus further concomi-
tant in ensuring crack deflection or turning from this difficult cleavage system onto a
nearby available easy one, violating the self-similarity of crack growth or propagation in
the process.

(v) In contrast to (iv), again counter-intuitively, a non-invariant (more specifically,
with respect to θ), relationship, such as Equations (83) and (84) or (127) resulting from
the degenerate case (A = 1 or, equivalently, κ = 1) or imaginary roots (valid for A < 1
or, equivalently, κ <

√
c22/c11), guarantees the cleavage system (010)[001] × [100] being

easy, thus ensuring the self-similarity (i.e., θ invariance) of crack growth or propagation in
the process.

(vi) Similarity or dissimilarity of the present asymptotic solutions for a (010)[001] × [100]
cleavage system involving complex (A > 1 or, equivalently, κ >

√
c22/c11) and imaginary

roots (A < 1 or, equivalently, κ <
√

c22/c11) with their isotropic (A = κ = 1) counterparts can
lead to a sufficient condition for determination of a cleavage system being easy or difficult
for crack propagation.

(vii) The dimensionless parameters, such as the anisotropic ratio, A, or, equivalently,
the normalized elastic parameter, κ, can serve as the Holy Grail quantity for an a priori
determination of the status of a cleavage system to be easy or difficult, very much akin
to Reynold’s number for fluid flow problems, crossing a critical value which signifies
transition from one regime to another. Here, the anisotropic ratio, A, or, equivalently,
normalized elastic parameter, κ, for a (010)[001] × [100] cleavage system, crossing the
critical value of 1 or

√
c22/c11, respectively, signifies transitioning from self-similar crack

growth or propagation to crack deflection or turning from a difficult cleavage system onto
a nearby easy one.

(viii) Just as the introduction of Reynold’s number facilitated the design and setting
up of experiments in addition to experimental verification of analytical and computational
solutions in fluid dynamics, the accuracy and efficacy of the available test results on elastic
constants of YBCO single crystals, measured by modern experimental techniques with
resolutions at the atomic scale, or nearly so, such as X-Ray diffraction, the ultrasound
technique, neutron diffraction/scattering, Brillouin spectroscopy/scattering, resonant ul-
trasound spectroscopy, and the like, is assessed with a powerful theoretical analysis on
crack path stability/instability, in part based on a dimensionless parameter, such as the
planar anisotropic ratio, A.
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(ix) Experimental determination of surface energy, Gi, can sometimes be notoriously
challenging, due to the presence of micro-to-nano scale defects, such as porosity, dislocation,
twin boundaries, misalignment of bonds with respect to the loading axis, and the like.
In contrast, the above-derived invariant relationship, (38), requires only measurement of
strains or stresses at a point for a given far-field loading, which are, relatively speaking,
much easier in comparison to the determination of surface energies.

(x) The planar anisotropic ratio, A, or, equivalently, the normalized elastic parameter,
κ, for YBCO * is larger than 1 or

√
c22/c11, respectively, giving rise to complex roots (of

the characteristic equation) for a (010)[001] × [100] through-crack, weakening a YBCO
mono-crystalline orthorhombic plate. The same is true for a (100)[001] × [010] crack. These
results predict that (010) and (100) are difficult cleavage planes, which are in contradiction
with the experimental observations.

(xi) Only for YBCO ***, all the cleavage systems are predicted to be easy, which is in
agreement with the experimentally observed fracture characteristics, thus ensuring that a
reasonably accurate complete set of nine experimentally determined elastic constants has
been arrived at, by employing the present theoretical fracture mechanic approach.

(xii) For tetragonal YBCOT, all six cleavage systems investigated here are found to
be difficult, thus completely invalidating the values of the corresponding experimentally
determined elastic constants reported by Reichard et al. [67].

(xiii) Finally, generally unavailable results, pertaining to the through-thickness vari-
ations of stress intensity factors and energy release rates for a crack corresponding to
symmetric and skew-symmetric hyperbolic cosine loads that also satisfy the bound-
ary conditions on the top and bottom surfaces of an orthorhombic mono-crystalline
plate under investigation, bridge a longstanding gap in the stress singularity/fracture
mechanics Literature.
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Appendix A. Singular Stress Fields in the Vicinity of a (010)[001] Through-Crack Front
Propagating under Mode I (Extension/Bending) and Mode II (Sliding Shear/Twisting)
in [100] Direction

The cleavage plane considered is (010) (Figure 3). Here, the z-axis is placed along the
straight crack front, while the coordinates x, y, are used to define the directions along the
length of the crack and transverse to it, respectively, in the plane of the plate. u, v, and w
represent the components of the displacements in the x, y, and z directions, respectively.

The stress-strain relations for an orthorhombic single crystal are given as follows:



σx
σy
σz
τyz
τxz
τxy


=



c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66





εx
εy
εz

γyz
γxz
γxy


. (A1)

where cij, i, j = 1, ..., 6, denotes the elastic stiffness constants of an orthorhombic mono-
crystalline plate. σx, σy, σz represent the normal stresses, and τxy, τxz, τyz denote the shear
stresses, while εx, εy, εz denote normal strains, and γxy, γxz, γyz represent the shear strains.

The three equilibrium equations for a linear elastic solid, made of an orthotropic/
orthorhombic material, can be expressed in terms of the displacement components, u, v,
and w, as follows:

c11
∂2u
∂x2 + c66

∂2u
∂y2 + c55

∂2u
∂z2 + (c12 + c66)

∂2v
∂x∂y

+ (c13 + c55)
∂2w
∂x∂z

= 0, (A2)

(c12 + c66)
∂2u

∂x∂y
+ c66

∂2v
∂x2 + c22

∂2v
∂y2 + c44

∂2v
∂z2 + (c23 + c44)

∂2w
∂y∂z

= 0, (A3)

(c13 + c55)
∂2u

∂x∂z
+ (c23 + c44)

∂2v
∂y∂z

+ c55
∂2w
∂x2 + c44

∂2w
∂y2 + c33

∂2w
∂z2 = 0, (A4)

The characteristic equations for the coupled partial differential Equations (A2)–(A4)
can be written as follows:

p4 + 2χ p2 +
c11

c22
= 0, (A5)

in which the normalized elastic parameter, κ = 1/χ, is given by

κ =
1
χ
=

2c22c66(
c11c22 − c2

12 − 2c12c66
) =

2G12(1− ν13ν31)

[E1 − 2G12(ν12 + ν32ν13)]
, (A6)

in which E1 is Young’s modulus in the x direction, G12 is the shear modulus in the x-y
plane, while ν12 is the major Poisson’s ratio in the x-y plane. ν13 and ν31 denote the major
and minor Poisson’s ratios in the x-z plane, while ν32 represents the minor Poisson’s ratio
in the y-z plane. κ can also be expressed in terms of the planar anisotropic ratio (in the x-y
plane), A, as follows:

κ =
1
χ
=

Ac22√
c11c22 + c12(1− A)

. (A7)

where A is defined as

A =
2c66√

c11c22 − c12
. (A8)
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Equation (A5) has either (a) four complex or (b) four imaginary roots, depending
on whether

(a) A > 1 or, equivalently, κ >

√
c22

c11
=

√
E2(1− ν13ν31)

E1(1− ν23ν32)
, (A9)

(b) A < 1 or, equivalently, κ <

√
c22

c11
=

√
E2(1− ν13ν31)

E1(1− ν23ν32)
. (A10)

A = 1, κ = 1 represents the degenerate isotropic material case, for which the solution is
available in Chaudhuri and Xie [25].

For the extension-bending (mode I) and in-plane shear-twisting (mode II) loadings,
it can easily be seen that for orthorhombic single crystals with A < 1 or, equivalently,
κ <
√

c22/c11, the (010) plane is the easy cleavage plane, and [100] is the easy propagation
direction. Conversely, A > 1 or, equivalently, κ >

√
c22/c11 yields complex roots, implying

that neither (010) is the easy cleavage plane nor is [100] the easy propagation direction, and
the crack will likely deviate from this plane and this direction under mode I/II loadings.

KI(z∗) = σ∞
y
√

πaDb(z∗), (A11)

KI I(z∗) = τ∞
xy
√

πaDb(z∗). (A12)

GI(z∗) =

(
σ∞

y

)2
πa
√

c11c22
√

2(c11c22 − c12
2)

√√
(c11/c22) + χ[Db(z∗)]2, (A13)

GI I(z∗) =

(
τ∞

xy

)2
πac22

√
2(c11c22 − c12

2)

√√
(c11/c22) + χ[Db(z∗)]2. (A14)
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Appendix B. Singular Stress Fields in the Vicinity of a (010)[100] Through-Crack Front
Weakening an Orthorhombic Single Crystal under Mode I (Extension/Bending) and
Mode II (Sliding Shear/Twisting)

The cleavage plane considered is (010) (Figure 4). Here, the z′-axis is placed along the
straight crack front, [100], while the coordinates x′ [001], y′ [010] are used to define the
directions along the length of the crack (propagation direction) and the direction transverse
to it, respectively, in the middle plane of the plate. u′, v′ and w′ represent the components
of the displacements in x′, y′, and z′ directions, respectively. The stress-strain relations for
an orthorhombic single crystal are given by



σ′x
σ′y
σz

τ′yz
τ′xz
τ′xy


=



c′11 c′12 c′13 0 0 0
c′12 c′22 c′23 0 0 0
c′13 c′23 c′33 0 0 0

0 0 0 c′44 0 0
0 0 0 0 c′55 0
0 0 0 0 0 c′66





ε′x
ε′y
εz

γ′yz
γ′xz
γ′xy


, (A15)

where c′ ij, i, j = 1, 2, 6, denote the elastic stiffness constants with respect to the rotated
coordinate system, x′, y′ (obtained by rotation of 90o about the z-axis):

c′11 = c33, c′12 = c23, c′13 = c13, c′22 = c22, c′23 = c12, c′33 = c11,

c′44 = c66, c′55 = c55, c′66 = c44.
(A16)

The three equilibrium equations for a linear elastic orthotropic/orthorhombic solid
can now be expressed in terms of the displacement functions, u′, v′, and w, as follows:

c′11
∂2u′

∂x′2
+ c′66

∂2u′

∂y′2
+ c′55

∂2u′

∂z2 + (c′12 + c′66)
∂2v′

∂x′∂y′
+ (c′13 + c′55)

∂2w
∂x′∂z

= 0, (A17)

(c′12 + c′66)
∂2u′

∂x′∂y′
+ c′66

∂2v′

∂x′2
+ c′22

∂2v′

∂y′2
+ c′44

∂2v′

∂z2 + (c′23 + c′44)
∂2w

∂y′∂z
= 0, (A18)

(c′13 + c′55)
∂2u′

∂x′∂z
+ (c′23 + c′44)

∂2v′

∂y′∂z
+ c′55

∂2w
∂x′2

+ c′44
∂2w
∂y′2

+ c′33
∂2w
∂z2 = 0, (A19)

The characteristic equations for the coupled partial differential Equations (A17)–(A19)
can be written as follows:

p4 + 2χ′ p2 +
c′11

c′22
= 0, (A20)

in which the normalized elastic parameter, κ′ = 1/χ′, is given by

κ′ =
1
χ′

=
2c′22c′66(

c′11c′22 − c′212 − 2c′12c′66

) =
2G12(1− ν23ν32)

[E2 − 2G12(ν21 + ν31ν23)]
, (A21)



Appl. Mech. 2023, 4 633

In which E2 is y-direction Young’s modulus, and G12 is the shear modulus in the
x-y plane, while ν21 is the minor Poisson’s ratio in the x-y plane. ν31 denotes the minor
Poisson’s ratio in the x-z plane, while ν23 and ν32 represent the major and minor Poisson’s
ratios, respectively, in the y-z plane. κ′. can also be expressed in terms of the planar
anisotropic ratio (in the x′ [001]-y′ [010] plane), A′, as follows:

κ′ =
1
χ′

=
A′c′22(√

c′11c′22 + c′12
)
− A′c′12

=
A′c22

[
√

c22c33 + c23(1− A′)]
. (A22)

where A′ is defined as

A′ =
2c44√

c22c33 − c23
. (A23)

Equation (A20) has either (a) four complex or (b) four imaginary roots, depending
on whether

(a) A′> 1, or, equivalently, κ′ >

√
c′22

c′11
=

√
c22

c33
=

√
E2(1− ν13ν31)

E3(1− ν12ν21)
, (A24)

(b) A′< 1, or, equivalently, κ′ <

√
c′22

c′11
=

√
c22

c33
=

√
E2(1− ν13ν31)

E3(1− ν12ν21)
, (A25)

A′= 1, κ′= 1 represents the degenerate isotropic material case, for which the solution is
available in Chaudhuri and Xie [25].

For the extension-bending (mode I) and in-plane shear-twisting (mode II) loadings,
it can easily be seen that for orthorhombic single crystals with A′< 1, or, equivalently,
κ′ <

√
c′22/c′11 =

√
c22/c33, the (010) plane is the easy cleavage plane, and [001] is the

easy propagation direction. Conversely, A′> 1, or, equivalently, κ′ >
√

c22/c33 yields
complex roots, implying that neither (010) is the easy cleavage plane nor is [001] the easy
propagation direction, and the crack will likely deviate from this plane and this direction
under mode I/II loadings.

K′ I
(

z′∗
)
= σ∞

y′
√

πaDb

(
z′∗
)

, (A26)

K′ I I

(
z′∗
)
= τ∞

x′y′
√

πaDb

(
z′∗
)

. (A27)

G′ I
(

z′∗
)
=

(
σ∞

y′

)2
πa
√

c33c22
√

2(c33c22 − c232)

√√
(c33/c22) + χ′

[
Db
(
z′∗
)]2, (A28)

G′ I I

(
z′∗
)
=

(
τ∞

x′y′

)2
πac22

√
2(c33c22 − c232)

√√
(c33/c22) + χ′

[
Db
(
z′∗
)]2. (A29)
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Appendix C. Singular Stress Fields in the Vicinity of a (100)[001] Through-Crack Front
Propagating under Mode I (Extension/Bending) and Mode II (Sliding Shear/Twisting)
in [010] Direction

The cleavage plane considered is (100) (Figure 5). Here, the z-axis is placed along the
straight crack front, [001], while the coordinates x′′ [010], y′′ [100] are used to define the
directions along the length of the crack (propagation direction) and the direction transverse
to it, respectively, in the middle plane of the plate. u′′ , v′′ and w′′ represent the components
of the displacements in x′′ , y′′ , and z directions, respectively. The stress-strain relations for
an orthorhombic single crystal are given by



σ′′ x
σ′′ y
σ′′ z
τ′′ yz
τ′′ xz
τ′′ xy


=



c′′ 11 c′′ 12 c′′ 13 0 0 0
c′′ 12 c′′ 22 c′′ 23 0 0 0
c′′ 13 c′′ 23 c′′ 33 0 0 0

0 0 0 c′′ 44 0 0
0 0 0 0 c′′ 55 0
0 0 0 0 0 c′′ 66





ε′′ x
ε′′ y
ε′′ z

γ′′ yz
γ′′ xz
γ′′ xy


, (A30)

where c′′ ij, i, j = 1, 2, 6, denote the elastic stiffness constants with respect to the rotated
coordinate system, x′′ , y′′ , z′′ (obtained by rotation of 90◦ about the -y-axis):

c′′ 11 = c22, c′′ 12 = c12, c′′ 13 = c23, c′′ 22 = c11, c′′ 23 = c13,

c′′ 33 = c33, c′′ 44 = c55, c′′ 55 = c44, c′′ 66 = c66.
(A31)

The three equilibrium equations for a linear elastic orthotropic/orthorhombic solid
can now be expressed in terms of the displacement functions, u′′ , v′′ , and w′′ , as follows:

c′′ 11
∂2u′′

∂x′′ 2
+ c′′ 66

∂2u′′

∂y′′ 2
+ c′′ 55

∂2u′′

∂z′′ 2
+ (c′′ 12 + c′′ 66)

∂2v′′

∂x′′ ∂y′′
+ (c′′ 13 + c′′ 55)

∂2w′′

∂x′′ ∂z′′
= 0, (A32)

(c′′ 12 + c′′ 66)
∂2u′′

∂x′′ ∂y′′
+ c′′ 66

∂2v′′

∂x′′ 2
+ c′′ 22

∂2v′′

∂y′′ 2
+ c′′ 44

∂2v′′

∂z′′ 2
+ (c′′ 23 + c′′ 44)

∂2w′′

∂y′′ ∂z′′
= 0, (A33)

(c′′ 13 + c′′ 55)
∂2u′′

∂x′′ ∂z′′
+ (c′′ 23 + c′′ 44)

∂2v′′

∂y′′ ∂z′′
+ c′′ 55

∂2w′′

∂x′′ 2
+ c′′ 44

∂2w′′

∂y′′ 2
+ c′′ 33

∂2w′′

∂z′′ 2
= 0, (A34)

The characteristic equations for the coupled partial differential Equations (A32)–(A34)
can be written as

p4 + 2χ′′ p2 +
c′′ 11

c′′ 22
= 0, (A35)

in which the normalized elastic parameter, κ′′ = 1/χ′′ , is given by

κ′′ = 1
χ′′ =

2c′′ 22c′′ 66(
c′′ 11c′′ 22−c′′ 212−2c′′ 12c′′ 66

) = 2c22c44
(c22c33−c2

23−2c23c44)

= 2G23(1−ν13ν31)
[E3−2G23(ν32+ν12ν31)]

,
(A36)

in which E3 is z-direction Young’s modulus, and G23 is the shear modulus in the y-z plane,
while ν32 denotes the minor Poisson’s ratio in the y-z plane. ν12 is the major Poisson’s
ratio in the x-y plane, while ν13 and ν31 represent the major and minor Poisson’s ratios,
respectively, in the x-z plane. κ′′ can also be expressed in terms of the planar anisotropic
ratio (in the x′′ [010]-y′′ [100] plane), A′′ as follows:
which finally yields
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κ′′ =
1

χ′′
=

A′′ c′′ 22

(
√

c′′ 11c′′ 22 + c′′ 12)− A′′ c′′ 12
=

A′′ c11√
c11c22 + c12(1− A′′ )

, (A37)

in which A′′ is defined as follows:

A′′ =
2c66√

c11c22 − c12
, (A38)

Equation (A35) has either (a) four complex or (b) four imaginary roots, depending
on whether

(a) A′′> 1, or, equivalently, κ′′ >

√
c′′ 22

c′′ 11
=

√
c11

c22
=

√
E1(1− ν23ν32)

E2(1− ν13ν31)
, (A39)

or

(b) A′′< 1, or, equivalently, κ′′ <

√
c′′ 22

c′′ 11
=

√
c11

c22
=

√
E1(1− ν23ν32)

E2(1− ν13ν31)
. (A40)

A′′ = 1, κ′′ = 1 represents the degenerate isotropic material case, for which the solution
is available in Chaudhuri and Xie [25].

For the extension-bending (mode I) and in-plane shear-twisting (mode II) load-
ings, it can easily be seen that for orthorhombic single crystals with A′′< 1, or, equiv-
alently, κ′′ <

√
c′′ 22/c′′ 11 =

√
c11/c22, the (100) plane is the easy cleavage plane (and y

[010]-direction is the easy propagation direction). Conversely, A′′> 1 or, equivalently,
κ′′ >

√
c11/c22 yields complex roots, implying that neither (100) is the easy cleavage plane

nor is [010] the easy propagation direction, and the crack will likely deviate from this plane
and this direction under mode I/II loadings.

K′′ I(z′′ ∗) = σ∞
y′′
√

πaDb(z′′ ∗), (A41)

K′′ I I(z′′ ∗) = τ∞
x′′ y′′
√

πaDb(z′′ ∗). (A42)

G′′ I(z′′ ∗) =

(
σ∞

y′′

)2
πa
√

c11c22
√

2(c11c22 − c12
2)

√√
(c22/c11) + χ′′ [Db(z′′ ∗)]2, (A43)

G′′ I I(z′′ ∗) =

(
τ∞

x′′ y′′

)2
πac22

√
2(c11c22 − c12

2)

√√
(c22/c11) + χ′′ [Db(z′′ ∗)]2. (A44)

For the special case of a tetragonal single crystal, the above energy release rates
reduce to

G′′ I(z′′ ∗) =

(
σ∞

y′′

)2
πac11

√
2(c11

2 − c12
2)

√
1 + χ′′ [Db(z′′ ∗)]2, (A45)

G′′ I I(z′′ ∗) =

(
τ∞

x′′ y′′

)2
πac22

√
2(c11

2 − c12
2)

√
1 + χ′′ [Db(z′′ ∗)]2. (A46)



Appl. Mech. 2023, 4 636

Appendix D. Singular Stress Fields in the Vicinity of a (100)[010] Through-Crack Front
Propagating under Mode I (Extension/Bending) and Mode II (Sliding Shear/Twisting)
in [001] Direction

The cleavage plane considered is (100). Here, the z-axis is placed along the straight
crack front, [010], while the coordinates x [001], y [100] are used to define the directions
along the length of the crack (propagation direction) and the direction transverse to it,
respectively, in the middle plane of the plate. u, v and w represent the components of
the displacements in x [001], y [100], and z [010] directions, respectively. The stress-strain
relations for an orthorhombic single crystal are given by



σx
σy
σz
τyz
τxz
τxy


=



c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66





εx
εy
εz

γyz
γxz
γxy


, (A47)

where cij, i, j = 1, 2, 6, denote the elastic stiffness constants with respect to the transformed
coordinate system, x [001], y [100], and z [010]

c11 = c33, c12 = c13, c13 = c23, c22 = c11, c23 = c12, c33 = c22,

c44 = c66, c55 = c44, c66 = c55.
(A48)

The three equilibrium equations for a linear elastic orthotropic/orthorhombic solid
can now be expressed in terms of the displacement functions, u, v and w, as follows:

c33
∂2u
∂x2 + c55

∂2u
∂y2 + c44

∂2u
∂z2 + (c13 + c55)

∂2v

∂
⇀
x ∂y

+ (c23 + c44)
∂2w

∂x′∂z
= 0, (A49)

(c13 + c55)
∂2u

∂x∂y
+ c55

∂2v
∂x2 + c11

∂2v
∂y2 + c66

∂2v
∂z2 + (c12 + c66)

∂2w
∂y∂z

= 0, (A50)

(c23 + c44)
∂2u

∂x∂z
+ (c12 + c66)

∂2v
∂y∂z

+ c44
∂2w
∂x2 + c66

∂2w
∂y2 + c22

∂2w
∂z2 = 0, (A51)

The characteristic equations for the coupled partial differential Equation (121) can be
written as follows:

p4 + 2χ p2 +
c33

c11
= 0, (A52)

in which the normalized elastic parameter, κ = 1/χ, is given by

κ =
1
χ
=

2c11c55(
c11c33 − c2

13 − 2c13c55
) =

2G13(1− ν12ν21)

[E3 − 2G13(ν13 + ν23ν12)]
, (A53)

in which E3 is z-direction Young’s modulus, and G13 is the shear modulus in the x-z plane,
while ν12 and ν21 denote the major and minor Poisson’s ratios, respectively in the x-y plane.
ν13 is the major Poisson’s ratio in the x-z plane, while ν23 represents the major and minor
Poisson’s ratio in the y-z plane. κ can also be expressed in terms of the planar anisotropic
ratio (in the x [001]-y [100] plane), A, as follows:

κ =
1
χ
=

Ac22(√
c11c22 + c12

)
− Ac12

=
Ac11√

c11c33 + c13
(
1− A

) . (A54)
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where A is defined as

A =
2c66√

c11c22 − c12
=

2c55√
c11c33 − c13

. (A55)

Equation (A52) has either (a) four complex or (b) four imaginary roots, depending
on whether

(a) A > 1, or, equivalently, κ >

√
c11

c33
=

√
E1(1− ν23ν32)

E3(1− ν12ν21)
, (A56)

or

(b) A < 1, or, equivalently, κ <

√
c11

c33
=

√
E1(1− ν23ν32)

E3(1− ν12ν21)
. (A57)

A = 1, κ = 1 represents the degenerate isotropic material case, for which the solution is
available in Chaudhuri and Xie [25].

For the extension-bending (mode I) and in-plane shear-twisting (mode II) loadings,
it can easily be seen that for orthorhombic single crystals with A < 1, or, equivalently,
κ <
√

c11/c33, the (010) plane is the easy cleavage plane (and z [001] direction is the easy
propagation direction). Conversely, A > 1, or, equivalently, κ >

√
c11/c33 yields complex

roots, implying that neither (010) is the easy cleavage plane nor is [001] the easy propagation
direction, and the crack will likely deviate from this plane and this direction under mode
I/II loadings.

K I(z∗) = σ∞
y
√

πaDb(z∗), (A58)

K I I(z∗) = τ∞
xy
√

πaDb(z∗). (A59)

GI(z∗) =

(
σ∞

y

)2
πa
√

c11c33
√

2(c11c33 − c13
2)

√√
(c33/c11) + χ[Db(z∗)]

2. (A60)

GI I(z∗) =

(
τ∞

xy

)2
πac11

√
2(c11c33 − c13

2)

√√
(c33/c11) + χ[Db(z∗)]

2. (A61)
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Appendix E. Singular Stress Fields in the Vicinity of a (001)[010]. Through-Crack Front
Propagating under Mode I (Extension/Bending) and Mode II (Sliding Shear/Twisting)
in [100] Direction

The cleavage plane considered is (001). Here, the ẑ-axis is placed along the straight
crack front, [010], while the coordinates x̂ [100], ŷ [001] are used to define the directions
along the length of the crack (propagation direction) and the direction transverse to it,
respectively, in the middle plane of the plate. û, v̂ and ŵ represent the components of
the displacements in x̂ [100], ŷ [001], and ẑ [010] directions, respectively. The stress-strain
relations for an orthorhombic single crystal are given by



σ̂x
σ̂y
σ̂z
τ̂yz
τ̂xz
τ̂xy


=



c11 c13 c12 0 0 0
c13 c33 c23 0 0 0
c12 c23 c22 0 0 0
0 0 0 c44 0 0
0 0 0 0 c66 0
0 0 0 0 0 c55





ε̂x
ε̂y
ε̂z

γ̂yz
γ̂xz
γ̂xy


, (A62)

The three equilibrium equations for a linear elastic orthotropic/orthorhombic solid
can now be expressed in terms of the displacement functions, û, v̂ and ŵ, as follows:

c11
∂2û
∂x̂2 + c55

∂2û
∂ŷ2 + c66

∂2û
∂ẑ2 + (c13 + c55)

∂2v̂
∂x̂∂ŷ

+ (c12 + c66)
∂2ŵ
∂x̂∂ẑ

= 0, (A63)

(c13 + c55)
∂2û

∂x̂∂ŷ
+ c55

∂2v̂
∂x̂2 + c33

∂2v̂
∂ŷ2 + c44

∂2v̂
∂ẑ2 + (c23 + c44)

∂2ŵ
∂ŷ∂ẑ

= 0, (A64)

(c13 + c55)
∂2û

∂x̂∂ŷ
+ c55

∂2v̂
∂x̂2 + c33

∂2v̂
∂ŷ2 + c44

∂2v̂
∂ẑ2 + (c23 + c44)

∂2ŵ
∂ŷ∂ẑ

= 0, (A65)

The characteristic equations for the coupled partial differential Equations (A63)–(A65)
can be written as follows:

p4 + 2χ̂ p2 +
c11

c33
= 0, (A66)

in which the normalized elastic parameter, κ̂ = 1/χ̂, is given by

κ̂ =
1
χ̂
=

2c33c55(
c11c33 − c2

13 − 2c13c55
) =

2G13(1− ν23ν32)

[E3 − 2G13(ν31 + ν21ν23)]
, (A67)

in which E3 is y-direction Young’s modulus, and G13 is the shear modulus in the x-z plane,
while ν21 is the minor Poisson’s ratio in the x-y plane. ν31 denotes the minor Poisson’s
ratio in the x-z plane, while ν23 and ν32 represent the major and minor Poisson’s ratios,
respectively, in the y-z plane. κ̂ can also be expressed in terms of the planar anisotropic
ratio (in the x̂ [100]-ŷ [001] plane), Â, as follows:

κ̂ =
Âc33√

c11c33 + c13
(
1− Â

) , (A68)

where Â is defined as

Â =
2c55√

c11c33 − c13
. (A69)
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Equation (A66) has either (a) four complex or (b) four imaginary roots, depending
on whether

(a) Â> 1 or, equivalently, κ̂ >

√
c33

c11
=

√
E3(1− ν12ν21)

E1(1− ν23ν32)
, (A70)

or

(b) Â< 1 or, equivalently, κ̂ <

√
c33

c11
=

√
E3(1− ν12ν21)

E1(1− ν23ν32)
, (A71)

Â = 1, κ̂ = 1 represents the degenerate isotropic material case, for which the solution is
available in Chaudhuri and Xie [25].

For the extension-bending (mode I) and in-plane shear-twisting (mode II) loadings,
it can easily be seen that for orthorhombic single crystals with Â< 1 or, equivalently,
κ̂ <
√

c33/c11, the (001) plane is the easy cleavage plane (and [100] -direction is the easy
propagation direction). Conversely, Â> 1 or, equivalently, κ̂ >

√
c33/c11 yields complex

roots, implying that neither (001) is the easy cleavage plane nor is [100] the easy propagation
direction, and the crack will likely deviate from this plane and this direction under mode
I/II loadings.

K̂I(ẑ∗) = σ∞
ŷ
√

πaDb(ẑ∗), (A72)

K̂I I(ẑ∗) = τ∞
x̂ŷ
√

πaDb(ẑ∗). (A73)

ĜI(ẑ∗) =

(
σ∞

ŷ

)2
πa
√

c11c33
√

2(c11c33 − c13
2)

√√
(c11/c33) + χ̂[Db(ẑ∗)]

2, (A74)

ĜI I(ẑ∗) =

(
τ∞

x̂ŷ

)2
πac33

√
2(c11c33 − c13

2)

√√
(c11/c33) + χ̂[Db(ẑ∗)]

2. (A75)
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