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Abstract: This study investigates wind turbine structural dynamics using stochastic analysis and
computational methods in both the time and frequency domains. Simulations and experiments are
utilized to evaluate the dynamic response of a wind turbine structure to turbulent wind loads, with
the aim of validating the results based on real wind farm conditions. Two approaches are employed to
analyze the dynamic responses: the frequency domain modal analysis approach, which incorporates
von Kármán spectra to represent the turbulent wind loads, and the time domain Monte Carlo
simulation and Newmark methods, which generate wind loads and determine dynamic responses,
respectively. The results indicate that, for a larger number of samples, both methods consistently yield
simulated turbulent wind loads, dynamic responses and peak frequencies. These findings are further
validated through experimental data. However, when dealing with a smaller number of samples, the
time domain analysis produces distorted results, necessitating a larger number of samples to achieve
accurate findings, while the frequency domain method maintains accuracy. Therefore, the accurate
analysis of wind turbine structural dynamics can be achieved using simulations in both the time and
frequency domains, considering the importance of the number of samples when choosing between
time domain and frequency domain analyses. Taking these considerations into account allows for a
more comprehensive and robust analysis, ultimately leading to more effective outcomes.

Keywords: dynamic response; turbulent wind load; wind turbine structure; time and frequency
domains; modal analysis; Monte Carlo simulation; von Kármán spectra; Newmark method

1. Introduction

The analysis of the dynamic response of wind turbine structures requires the use of
computational methods in both the time and frequency domains, incorporating stochastic
analysis. Wind speed fluctuates randomly in both time and space. Various sizes of eddies
conveyed by the mean flow would represent this phenomenon, with different sizes of
eddies representing this occurrence. Large eddies result in low-frequency fluctuations,
while small eddies result in high-frequency ones. To describe the distribution of turbulence
energy with frequency, a power spectral density function, or “power spectrum”, is typically
used [1]. While there are different power spectrum representations of turbulent wind loads,
the Kármán-type power spectrum is commonly used in structural codes, with the von
Kármán spectrum considered to represent atmospheric turbulence more accurately [1].
Burton et al. [2] strengthened this concept, stating that the Kaimal and von Kármán spectra
are the most frequently used expressions of the wind spectrum, with the von Kármán
spectrum being the preferred choice.

In addition to the methods discussed earlier, the Monte Carlo simulation is another
reliable tool for estimating turbulent wind loads in dynamic systems and remains widely
used. Shinozuka and Jan [3] developed a digital simulation method of multivariate
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Gaussian random processes to represent a physical process in structural engineering.
They also created a digital simulation of envelope functions using cosine functions with
random phase angles, which was used as a tool for the Monte Carlo method of solution in
various structural engineering applications [3,4]. Wittig and Sinha [5] demonstrated that
using the summation of trigonometric functions with a Fast Fourier Transform (FFT) can
improve computational efficiency.

The Newmark method is a widely used numerical integration algorithm for structural
systems subjected to dynamic loads. It was originally developed for solving second-order
differential equations in structural dynamics. The method approximates the displacement,
velocity and acceleration at a future time using two parameters that can be chosen inde-
pendently of each other [6]. It is important to carefully select these parameters, in addition
to the time-step size, in order to achieve an accurate and stable integration scheme in the
time domain. When the parameters are selected for an unconditionally stable scheme, the
Newmark method is generally preferred for systems with a small number of modes that
contain most of the significant parts of the solution [7].

On the other hand, the frequency response method, incorporating modal analysis,
is commonly utilized in the dynamic analysis of structures, as described by Wirsching
et al. [8] and Brandt [9]. Modal analysis characterizes the system’s dynamics independently
of the applied loads and responses. By associating the modal response with the applied
loads, the dynamic response of structures to these applied loads can be determined. This
approach is particularly relevant for wind turbine structures, where modal characteristics
play a crucial role in determining their dynamic responses [10].

Additionally, wind loads on wind turbine structures exhibit stochastic behavior and
can be modeled as stationary processes, assuming a linear and time-invariant transfer
between the loads and the responses of the system [11]. This modeling approach allows for
the analysis of wind turbine structures under varying wind conditions, considering the
stochastic nature of the loads.

Therefore, the dynamic response analysis of wind turbine structures can be performed
using either the time domain method, the frequency domain method or a combination of
both. Some studies preliminarily utilize the time domain method to represent different
load conditions and dynamic responses, with a few results represented in the frequency
domain [12–17]. Conversely, the frequency domain method is predominantly used to
analyze the dynamic response of the structure to various load conditions [18], although
both methods can also be implemented for load conditions and responses [19–23].

Given that both methods are frequently employed for the dynamic analysis of wind
turbine structures, which are typically stochastic and require large numbers of samples
of load and response data, assessing their comparative advantages would be beneficial
in terms of achieving an effective analysis approach. By understanding the strengths
and limitations of each method, researchers and engineers can make informed decisions
regarding the most suitable approach for their specific analysis needs. This assessment
would contribute to optimizing the analysis process and potentially reducing costs.

In this paper, the researchers focused on investigating the structural dynamics of
wind turbines by analyzing their response to turbulent wind loads. To achieve this, they
employed stochastic analysis and computational methods. Firstly, they simulated turbulent
wind loads in the frequency domain using the von Kármán spectrum representation. This
involved utilizing the Monte Carlo simulation and Inverse Fast Fourier Transform (IFFT)
techniques. By doing so, they were able to obtain the corresponding time-domain turbulent
wind load.

Next, the researchers implemented the Newmark method for time-domain dynamic
response analysis. This method allows for the calculation of the structural response of
the wind turbine under the influence of the turbulent wind load. Additionally, a modal
analysis, along with the power spectrum of the turbulent wind load, was implemented
for the dynamic response analysis in the frequency domain. Modal analysis helps in
understanding the natural vibration modes of the wind turbine structure.
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To validate their methods, the researchers compared the results obtained from their
simulations with the measured dynamic response of a wind turbine at a specific wind farm.
This comparison served as a means to verify the accuracy of their approaches. Based on
their findings, the researchers discussed the comparative advantages of the two methods
employed. They likely highlighted the strengths and limitations of each method and
potentially identified areas where the methods performed best.

Overall, this paper aimed to provide insights into the dynamic behavior of wind tur-
bine structures under turbulent wind loads. By utilizing stochastic analysis, computational
techniques and validation against real-world measurements, the researchers contribute to
the understanding and improvement in wind turbine design and analysis.

2. Materials and Methods

In order to investigate the dynamic response of wind turbine structures, a comprehen-
sive approach with complex assessments of stochastic analysis and computational methods
was employed. This involved conducting experiments and simulations to accurately as-
sess the behavior of wind turbines. To achieve this, a model of random wind load that
accurately represented the wind conditions experienced in an existing wind farm was
created. Additionally, the wind turbine structure was modeled using design geometries
and the mechanical properties of the materials used. To validate the results, strain gauge
measurements of the wind turbine’s response were collected from the selected wind farm.

2.1. Modeling the Wind Turbine Structure

In order to investigate the dynamic response of wind turbine structures to turbulent
wind loads at the hub, the simulation process incorporates the actual parameters of an
existing wind turbine. This approach allows us to compare the simulation results with the
measured data obtained from the same wind turbine on site. The analysis took into account
various parameter values of the existing turbine, including the hub height (L = 70 m); the
mass per unit length of the tower (mt = 1674 kg/m); the tower-top mass (Mn = 94, 000 kg),
which represents the combined mass of the nacelle and the blades; and the outer diameter
of the tower (Do = 3.25 m) and inner diameter of the tower (Di = 3.19 m), which are
represented based on the average values. Furthermore, the modulus of elasticity (E), the
cross-sectional area (A) and the moment of inertia (I) were determined based on the
mechanical and geometrical values of the turbine.

To accurately model the wind turbine using the parameters mentioned earlier, it
is essential to determine the most influential and dominant degree of freedom. This is
achieved by analyzing the first three mode shapes of the tower system, as illustrated in
Figure 1. By comparing the relative deflection values, it was observed that the first mode
shape at the tip exhibits the highest deflection. In structural dynamics, the first natural
frequency of a system is often considered a key indicator of its dynamic responses.

In the design of large wind turbine structures that utilize variable-speed generators,
it is common practice to operate within the soft–stiff range. This implies that the first
natural frequency of the structure should fall between the rotor frequency (1P) and blade-
passing frequency (3P) for three-bladed wind turbines [24]. Based on this consideration, it
is appropriate to represent the turbine structure using a single degree of freedom in this
particular case.

To facilitate the dynamic analysis of the wind turbine structure, two modeling strate-
gies were employed. The first approach involved representing the structure as an equivalent
single-degree-of-freedom system, which offers a relatively simple representation. In this
method, the inertial effect of the tower mass was accounted for by introducing an equiva-
lent mass on the top of the structure. Additionally, the elasticity and damping effects of
the tower structure were modeled using equivalent stiffness and damping values. This
simplified modeling technique allows for a more manageable analysis of the dynamic
behavior of the wind turbine structure.
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Based on the equivalent mass calculation provided by Tom Irvine [25], the total mass
of the wind turbine structure can be represented using the mass on top of the tower, the
mass per unit length of the tower and the tower height as:

m = Mn + 0.2235mtL (1)

Next, the equivalent stiffness of the structure is represented by the equation:

k = 3EI/L3 (2)

To account for damping in the system, a general damping ratio of ζ = 0.2–0.5% is
considered for such structures. The damping coefficient is then represented by:

c = 2ζωnm (3)

where the natural frequency (ωn) is defined as:

ωn =
√

k/m (4)

Based on these calculations, the wind turbine structure is represented as a single-
degree-of-freedom system, as depicted in Figure 2, along with its corresponding equivalent
model.
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Based on this model, the equation of motion was defined as:

m
..
x + c

.
x + kx = f (t) (5)

The second method of modeling involves modal methods with distributed parameters.
In this approach, the system, including the tower with distributed mass, can be represented
using Equations (7)–(10) to determine the modal mass, damping, stiffness and forces on
the assumed mode shape defined in Equation (6). The equations are described in [26] and
presented with some modifications as follows:

ψ(y) = 1− cos(πy/2L), y ∈ [0, L] (6)

The modal mass, denoted as m∗, is calculated in terms of the distributed tower mass
(mt) and the assumed mode shape ψ(y), as well as the contribution from individual mass
(mi) at specific locations in the length of the tower (yi) as:

m∗ =
∫ L

0
mt(y)[ψ(y)]

2dy + ∑n mi[ψ(yi)]
2 (7)

Similarly, the modal stiffness, denoted as k∗, is determined in terms of the assumed
mode shape ψ(y), the bending stiffness EI(y), the distributed stiffness k(y) and the
individual stiffness (ki) at specific locations (yi). It is represented as:

k∗ =
∫ L

0
EI(y)[ψ′′ (y)]2dy +

∫ L

0
k(y)[ψ(y)]2dy + ∑n ki[ψ(yi)]

2 (8)

The modal damping, denoted as c∗, is then calculated in terms of the modal mass
(m∗), the damping ratio (ζ) and the natural frequency (ωn) as:

c∗ = 2m∗ζωn (9)

To determine the excitation force f ∗(t) in the modal equation of motion, the distributed
force f (y, t), the mode shape ψ(y) and the contributions from individual forces f i(t) at
specific locations yi are employed:

f ∗(t) =
∫ L

0
f (y, t)ψ(y)dy + ∑n fi(t)ψ(yi) (10)
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Finally, the modal equation of motion is modeled as:

m∗
..
q(t) + c∗

.
q(t) + k∗q(t) = f ∗(t) (11)

This modal equation of motion allows us to analyze the dynamic behavior of the
wind turbine structure in terms of modal quantities. To evaluate the transformed time
response q(t), time integration methods were employed with Equation (11). Ultimately,
this provided the real-time response x(y, t), as expressed in the following equation:

x(y, t) = ψ(y)q(t) (12)

Both the modal method and the equivalent model technique provide simplified models
that capture the fundamental parameters required for dynamic analysis. These models
serve as a foundation for further analysis, where mathematical models for turbulent loads
and dynamic responses are applied. By employing these methods, we can gain valuable
insights into the behavior of the wind turbine structure under varying wind conditions,
enabling us to assess its performance and make informed design decisions.

2.2. Frequency Domain Analysis

By applying the Laplace transform to the equations of motion stated in Equation (5) or
Equation (11), and introducing a change in variable from time t (s) to frequency ω (rad/s),
we can evaluate the transfer function H(ω) in the frequency domain. After performing
some algebraic manipulations, the transfer function H(ω) was defined as follows:

H(ω) = X(ω)/F(ω) = 1/
[
m
(
−ω2 + j2ζωωn + ω2

n

)]
(13)

In this equation, ωn represents the natural frequency in Hz, and ζ denotes the
damping ratio of the structure.

At this point, either Equation (5) or Equation (11) can be used to analyze the dynamic
response using the time and frequency domain methods, with the input force being a
turbulent wind load in the wind direction represented by f (t), which was modeled as:

f (t) = ρCt AU2/2 = ρCt A(V + u(t)) 2/2 (14)

The variables used are: ρ: air density; Ct : thrust coefficient; A : swept area of the
blades; U : overall wind velocity; V : mean wind velocity; and u(t) : turbulent wind
velocity. Expanding the equation, we obtain:

f (t) = ρCt AU2/2 = ρCt A
(

V2 + 2Vu(t) + u(t)2
)

/2 (15)

Assuming that the impact of higher power components ( u(t))2 will be insignificant
when compared to other components, Equation (15) can be rearranged to express f (t) as:

f (t) = ρCt A
(

V2 + 2Vu(t)
)

/2 (16)

This equation represents the combined wind load resulting from both the mean wind
velocity and the turbulent component. However, it is possible to solely consider the
dynamic part, which specifically corresponds to the turbulent wind load. The inclusion of
the mean wind load can be addressed at later stages, if deemed necessary. The expression
for the turbulent wind load was formulated as follows:

f (t) = ρCt AVu(t) (17)
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This turbulent wind load has a zero mean value. To calculate the autocorrelation of
the dynamic wind load, we use the expected value of Equation (17), represented as:

E[ f (t)− f (t + τ)] = (ρCt AV)2E[u(t)·u(t + τ)] (18)

Simplifying Equation (18), the autocorrelation of the dynamic wind load can be
expressed as:

R f (τ) = (ρCt AV)2Ru(τ) (19)

The power spectral density of the dynamic wind load was determined using the
autocorrelation of the turbulent wind load (Equation (19)) and defined as:

S f (ω) = (ρCt AV)2Su(ω) (20)

The power spectral density of the dynamic response of the structure was determined
by combining the transfer function and power spectrum of the turbulent wind load as:

Sy(ω) = |H(ω)|2·S f (ω) (21)

Finally, the turbulent wind power spectral density Su(ω) was determined based on
the von Kármán spectra [1,2] as:

f Su( f )/σu
2 = 4. f̂u/(1 + 70.8 f̂ 2

u)
5/6

(22)

where f̂u = f .Lu/V, in which Lu/V is the integral length scale of the turbulent wind load;
f is the frequency in Hz, which can be replaced by ω = 2π f in rad/s; and σu

2 is the
variance or standard deviation of the turbulent wind load, which is related to the turbulent
intensity Iu and mean wind speed V as:

σu = IuV (23)

The turbulent wind load parameters used to analyze the dynamic response of the
structure were determined based on the specific wind farm conditions being considered. To
comply with the IEC 61400-1 standard [27], the turbulent intensity value Iu was evaluated
using the equation Iu = Ire f (0.75 + 5.6/V), where Ire f = 0.16 for sites with high turbulence
intensity and a wind velocity of V = 0.2Vre f . The reference wind velocity

(
Vre f

)
in this case

was determined to be 42.5 m/s for wind class II. Additionally, the variance was computed
using Equation (23), and all other relevant variables were determined in accordance with
the established standard and the actual wind farm conditions.

2.3. Time Domain Analysis

A Monte Carlo simulation using cosine functions with random phase angles (ϕk) was
used to determine an equivalent turbulent wind load in the time domain. This involved
representing the load as the sum of cosine functions with random phase angles. The
resulting equation for the turbulent wind load in the time domain is:

F(t) = 2∑N
k=1

√
Su(ωk)∆ω cos(ωkt− ϕk) (24)

In this equation, ωk = (k− 1/2)∆ω, where ∆ω = 2∆ f π and ∆ f = 1/T. The period
T can be expressed in terms of the number of samples N and the change in time ∆t as
T = N∆t. The number of samples N represents the length of the data being used. In
this case, ∆t has been set to 0.01 to demonstrate different results for a varying number of
samples, as shown in Section 3.

In addition to the aforementioned method, the turbulent wind load in the time domain
can also be evaluated using the Inverse Fast Fourier Transform (IFFT) of the power spectral
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density (PSD). This technique can be implemented using the IFFT functions in software
programs like Matlab or other coding platforms as:

F(t) = IFFT
(√

Su( f )∆ f eiϕ
)

N (25)

Then, the Newmark method, coupled with the turbulent wind load in the time domain
and the system parameters from Section 2.1, was employed to evaluate the time response
by integrating Equation (5) or Equation (11) following Mendes et al.’s algorithm [28] as
follows:

o Provide initial values for displacement, velocity and external force:

u0,
.
u0, f 0 (26)

o Solve for the acceleration:

..
u0 = m−1( f0 − c

.
u0 − ku0

)
(27)

o Define an integration step ∆t constant in the iterative process.

o Determine an effective stiffness matrix ke:

ke = k + (α/β∆t)c +
(

1/β∆t2
)

m (28)

o Determine auxiliary matrices A1 and A2:

A1 =
(

1/β∆t2
)

m + α/β; A2 = (1 / 2β)m + ∆t(α/(2β)− 1)c (29)

o Then proceed to an iterative process as follows:

a. Solve the equation of dynamic equilibrium for the calculation of ∆ ft as:

∆ ft = ( ft − ft−∆t) + A1
.
ut−∆t + A2

..
ut−∆t (30)

b. Determine displacement, velocity and acceleration variations as:

∆ut = ke
−1∆ f t ; ∆

.
ut = (α/β∆t)∆ut − (α/β)

.
ut−∆t ∆t(1 + α/(2β))

..
ut−∆t ;

∆
..
ut =

(
α/β∆t2

)
∆ut − (1/β∆t)

.
ut−∆t − (1 / 2β)

..
ut−∆t

(31)

c. Update the variables ut,
.
ut,

..
ut:

ut = ut−∆t + ∆ut;
.
ut =

.
ut−∆t + ∆

.
ut;

..
ut =

..
ut−∆t + ∆

..
ut (32)

To insure stability in the Newmark method, the condition is β ≤ 1
2 ≤ α when

∆t ≤
√

2/
(
ωmax

√
α− 2β

)
, withωmax being the maximum un-damped natural frequency

of the structure. The method is unconditionally stable for α = 1/2 and β = 1/4, and in
this case, the acceleration term in the above iterative process is assumed to be a constant
average value during the time interval t ε [ti ti+1).

2.4. Evaluation and Validation Processes

By formulating the necessary relationships and parameters, a Matlab code was utilized
to conduct dynamic response analysis in both the frequency and time domains. In the fre-
quency domain analysis, turbulent wind loads were generated using von Kármán spectra,
taking into account the specific site conditions. To capture the dynamics of the structure,
a governing mathematical model was applied, incorporating the turbine’s structural pa-
rameters under selected field conditions. By combining modal analysis with the power
spectrum of the turbulent wind load, the structure’s dynamic responses in the frequency
domain were determined.
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For the time domain analysis, a Monte Carlo simulation technique was employed,
utilizing the von Kármán spectrum of the turbulent wind loads to generate simulated
frequency domain input forces. From these simulated forces, equivalent time domain
input forces were obtained. The Newmark method, employing unconditional stability
parameters, was then employed to determine the dynamic response in the time domain.
The obtained results were subsequently transformed back into the frequency domain using
the Fast Fourier Transform (FFT) technique and compared against the results obtained
from the direct frequency domain analysis. This allowed for a fair and comprehensive
comparison between the two domains.

Consequently, various frequency domain parameters of the wind turbine structure, as
well as the turbulent wind loads and associated dynamic responses such as peak frequencies
and the root mean squared (RMS) values of the response amplitudes, were evaluated and
prepared for comparison. To validate the accuracy of the simulations, existing data on the
dynamic response of the structure, measured using strain gauges positioned approximately
4 m above the ground, were considered. These measured data were used to determine
the peak frequencies for the dynamic response of existing wind turbines, as showcased in
both response plots from the time and frequency domains. Since the simulation parameters
were tailored to the same turbine, the frequency responses obtained from the simulations
were validated against the measured data for further accuracy assessment.

3. Results and Discussion

The turbulent wind loads in the time domain were evaluated using a Matlab code with
the Monte Carlo simulation technique and the IFFT technique as outlined in Section 2.3
with Equations (24) and (25). The analysis revealed that the root mean squared values of
the amplitude for both results and the PSD of the turbulent wind load using von Kármán
spectra were found to be equal. Furthermore, Figure 3 demonstrates that the results
obtained from the time domain simulations are identical. However, it is important to note
that the Monte Carlo simulation method was found to be more time-consuming compared
to the IFFT method. This finding is consistent with previous studies and becomes more
pronounced when using a larger number of samples.
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Therefore, in the subsequent steps, the IFFT method was employed to evaluate the
turbulent wind loads in the time domain. Consequently, Figure 4a illustrates the power
spectral density of the turbulent wind load obtained as a function of frequencyω, without
any form of normalization. Additionally, Figure 4b demonstrates the same power spectral
density in a normally distributed form, according to Equation (22). Figure 5 further displays
the corresponding representation of the turbulent wind load in the time domain, which
exhibits a mean value of zero. Notably, we observed that the RMS values of the power
spectrum of the turbulent wind load align with those of its time domain representation.
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Figure 5. Simulated turbulent wind load in the time domain.

Then, using the time domain loads shown in Figure 5 as input forces to the structural
system, the dynamic response of the structure was evaluated using the Newmark method.
The resulting displacement response of the structure in the time domain is shown in
Figure 6. This response was then transformed to the frequency domain to obtain the
corresponding value in the frequency domain to verify the natural frequencies of the wind
turbine structure.
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To validate the simulated results, recorded data of the dynamic response of an existing
wind turbine, measured using strain gauges, data loggers and associated accessories at
a height of approximately 4 m above the ground, were considered. The recorded data
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consist of 540 sample points recorded at approximately 0.5 s time intervals. Figure 7a
shows the recorded data versus time for a real turbine plotted at mean zero. Then, the FFT
was applied to obtain the power spectral density of the data and represent the frequency
response as shown in Figure 7b. The spectrum shows a broader peak at lower, near-zero
frequencies, consistent with the turbulent wind load and response spectrum, with a peak
frequency of about 2.47 rad/s as the first natural frequency of the structure. Considering
the time domain data, the peak frequency was determined to be approximately 2.45 rad/s.
This slight difference is likely related to the size of the time interval, which is related to the
sampling frequency used by the data recorder and the number of samples considered.
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response.

Meanwhile, the frequency response results of the simulations are illustrated in Figure 8.
Specifically, Figure 8a displays the simulation result of the Newmark time response in the
transformed frequency domain, while Figure 8b shows the result obtained through the
direct frequency response method. Both figures present the power spectral density of the
turbulent wind load and the structure, exhibiting similar characteristics. It is worth noting
that, while the dynamic wind load’s peak frequency is observed at low frequencies close to
zero, the natural frequency of the structure is approximately 2.45 rad/s in both cases. These
findings align with the results obtained from the measured data, as presented in Figure 7.

In addition to the frequency peak points, Figure 8a,b demonstrate identical RMS values
of the power spectrum for the dynamic response amplitudes. Furthermore, these RMS
values are consistent with the RMS values of the response observed in the time domains.
It is important to note that these results were obtained using a large number of samples
(N of 224) for the turbulent wind load. To further investigate the effects of the number of
samples used, we analyzed the results considering a smaller value of 218 for both cases,
as shown in Figure 9. In this scenario, the time domain response using the Newmark
method begins to exhibit scattering effects, as depicted in Figure 9a; conversely, the result
obtained through the direct frequency method in Figure 9b remains nearly unchanged and
displays a precise peak frequency value, similar to the previous result. Additionally, it
is worth noting that the RMS value for the time domain response starts to deviate when
compared to the results obtained using a larger number of samples. However, the frequency
domain method demonstrates consistent outcomes with minimal variation, highlighting
its reliability. To gain further insights, we conducted additional analyses by reducing the
number of samples even further to 214. Figure 10a,b present the corresponding results
in the same order. Notably, the time domain approach yields highly distorted results,
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indicating a significant loss of accuracy. In contrast, the direct frequency response method
maintains its precision, showcasing the consistent peak frequency values and RMS values
of the amplitudes.
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Therefore, for a smaller number of samples, the time domain analysis may yield
misleading results, necessitating larger samples to achieve accurate findings. However, this
approach is computationally time-consuming compared to its counterpart. Conversely,
the frequency domain analysis provides precise results with a smaller number of samples
and is computationally less demanding. Time domain results can be effectively obtained
utilizing direct frequency domain methods with the help of the IFFT technique. This allows
for improved efficiency and accuracy in obtaining the desired time domain information.
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4. Conclusions

In general, the investigation of the dynamic response of a wind turbine structure to
turbulent wind loads was conducted in both the time and frequency domains. Stochastic
analysis and computational methods were employed for this analysis. In the frequency
domain analysis, von Kármán spectra were employed to generate turbulent wind loads.
The dynamic response of the structure was analyzed using modal analysis combined with
the power spectral density of the turbulent wind load. For the time domain analysis,
the Monte Carlo simulation technique was utilized to simulate the input force, and the
Newmark method was then applied to determine the dynamic response in the time domain.

To enable comprehensive comparisons between the two domains, the obtained time
domain data were transformed to the frequency domain using the Fast Fourier Transform
technique. A comparison was then made in the frequency domain. The accuracy of the
analysis was validated using measured data for the dynamic response of the wind turbine
structure. As a result, an almost perfect match between the peak frequencies of the dynamic
wind load and the natural frequencies of the measured and simulated structures was
achieved by utilizing a larger number of samples.

With a larger number of samples, both the time domain and direct frequency domain
methods showed almost identical response results in terms of peak frequency values, root
mean squared (RMS) amplitudes of the simulated input wind loads and dynamic responses
of the structure. However, when using a smaller number of samples, the time domain
analysis with the Newmark method deviated from these results, while the direct frequency
domain method remained close to the measured data in terms of the frequency-related
contents and RMS values of the amplitudes.

In conclusion, it is important to consider the number of samples when choosing
between time domain and frequency domain analysis. For a smaller number of samples,
the time domain analysis may produce misleading results and require larger samples
for accuracy. However, frequency domain analysis offers precise results with smaller
samples and is computationally less demanding. Additionally, time domain results can
be effectively obtained utilizing direct frequency domain methods with the help of the
inverse Fast Fourier Transform technique. Therefore, by comprehending the advantages
and limitations of each approach, researchers can make informed decisions and analyze
their systems effectively, leading to more accurate and reliable results.
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