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Abstract: This study’s goal is to utilize robust control theory to effectively mitigate structural oscilla-
tions in smart structures. While modeling the structures, two-dimensional finite elements are used to
account for system uncertainty. Advanced control methods are used to completely reduce vibration.
Complete vibration suppression is achieved using advanced control techniques. In comparison to
traditional control approaches, Hinfinity techniques offer the benefit of being easily adaptable to
issues with multivariate systems. It is challenging to simultaneously optimize robust performance
and robust stabilization. One technique that approaches the goal of achieving robust performance
in mitigating structural oscillations in smart structures is H-infinity control. H-infinity control em-
powers control designers by enabling them to utilize traditional loop-shaping techniques on the
multi-variable frequency response. This approach enhances the robustness of the control system,
allowing it to better handle uncertainties and disturbances while achieving desired performance objec-
tives. By leveraging H-infinity control, control designers can effectively shape the system’s frequency
response to enhance stability, tracking performance, disturbance rejection, and overall robustness.

Keywords: robust control; smart structures; uncertainty modelling; reduce oscillations

1. Introduction

Smart structures have garnered significant attention in recent years due to their im-
mense potential and wide-ranging applications. A smart structure is defined as one that
intelligently perceives mechanical disturbances and automatically reacts to them by re-
ducing oscillations [1–3]. The field of smart structures has seen a big increase in recent
years [3–6]. In this work, an intelligent structure that has integrated actuators and sensors
that are capable of damping the oscillations is presented [7–10]. Dynamic loads such as
wind forces are applied and finite element analysis is performed [1,6,11,12]. Advanced
testing techniques such as robust control theory are used. It is then applied to engineering
applications that are made with smart materials such as piezoelectric material. In these
constructions, both sensors and actuators are integrated; the actuators achieve the suppres-
sion of the oscillation [9–11]. Many researchers have mainly dealt with the modeling of
these constructions but also with the application of advanced control techniques [2,12–16].
Modeling and control techniques are often used for the analysis of optimization of the
materials response [17–21]. In addition, many researchers have engaged in research on com-
posite concrete structures in the frequency domain and have presented very good results in
solving optimization problems [22,23] in this field; they are many practical applications
from important researchers [24,25].

Our paper provides the innovation in the piezoelectric intelligent structures with
robust control theory. We achieve complete vibration suppression even for uncertainty
modeling of the smart structure. This work has provided many innovations in the suppres-
sion of oscillations with the application of smart materials:
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1. With the help of advanced control techniques such as the Hinfinity Control, the
reduction of oscillations is achieved even for changes in the mass and stiffness of the
original model that is presented for modeling uncertainties.

2. By demonstrating the use of Hinfinity control in both the state space and frequency
domain, the study explores the benefits of robust control in intelligent structures.
It takes into consideration a dynamic model for intelligent constructions subject to
excitations induced by the wind.

3. The Hinfinity robust controller solves the dynamical system uncertainties and the
partial data measurements to make the design possible. The effectiveness of the sug-
gested strategies to reduce vibrations in piezoelectric smart structures is demonstrated
by numerical simulations. The strategy guarantees a thorough and unified process for
creating and verifying reliable control systems.

4. The Hinfinity robust controller aids in the creation of intelligent structures by taking
into account dynamical system uncertainties and partial data.

5. Notably, advances in intelligent structures with advanced control methods have been
well demonstrated.

2. Materials and Methods

The system’s dynamical description is provided by,

M
..
q(t)+D

.
q(t) + K q(t) = fm(t) + fe(t) (1)

The independent variable q(t) represents the collective behavior of the system, includ-
ing transversal deflections wi and rotations ψi. It is influenced by several factors, including
the external loading vector fm, which represents the applied external forces, the gener-
alized control force vector fe, which arises from electromechanical coupling effects, the
generalized stiffness matrix K, which characterizes the structural stiffness, the generalized
mass matrix M, which describes the mass distribution, and the viscous damping matrix D,
which accounts for energy dissipation due to damping effects. These factors collectively
contribute to the dynamic response and behavior of the system, i.e.,

q(t) =


w1
ψ1
· · ·
wn
ψn

 (2)

The parameter n in the analysis refers to the number of nodes present in the finite
elements under consideration. Both the w and fm vectors point upward [10,15,16].

To convert to a state-space control representation, we can perform the transformation
(as typically carried out) by defining the following:

x(t) =
[

q(t)
.
q(t)

]
(3)

Additionally, we can specify the generalized con d as, and the voltages u applied
to the actuators. This allows us to represent fe(t) as Bu(t), where the control force vector
fe(t) is a function of the piezoelectric force per unit displacement; denote B captures the
relationship between the piezoelectric force and the applied voltages. Additionally, we
define the disturbance vector as d(t) = fm(t). Nonetheless,

.
x(t) =

[
02n×2n I2n×2n
−M−1K −M−1D

]
x(t) +

[
02n×n
M−1 f *

e

]
u(t) +

[
02n×2n
M−1

]
d(t)

= Ax(t) + Bu(t) + Gd(t)
= Ax(t) + [B G]

= Ax(t) +
~
B
∼
u(t)

(4)
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By considering the output equation, which involves only measuring the displacements,
denoted as [10], we can enhance the representation further.

y(t) = [x1(t), x3(t) . . . xn−1(t)]T = Cx(t) (5)

In this particular formulation, the control input vector u is represented by an n × 1
matrix, where n is the number of nodes in the system. However, the control input vector
can be smaller than n. On the other hand, the disturbance vector d has a size of 2n × 1.
The measurement units used in this formulation are meters (m) for displacement, radians
(rad) for rotations, seconds (s) for time, and Newtons (N) for force. These units are utilized
to quantify the physical quantities and dimensions involved in the system’s analysis and
control.

The primary objective of the control task is to maintain the beam in a state of equi-
librium. This means ensuring that the displacements and rotations of the beam are kept
at zero, indicating a stable and balanced state [26,27]. The control inputs are utilized to
counteract the effects of external disturbances, noise, and potential inaccuracies in the
model, thereby actively adjusting the system to maintain the desired equilibrium state.
By effectively compensating for these disturbances and model uncertainties, the control
system aims to achieve and sustain the desired zero displacements and rotations, ensuring
stability and optimal performance of the beam [27,28].

3. Robustness Analysis

The following three stages will be performed in a robustness analysis:

1. The range of uncertainty that a mathematical model expresses.
2. Robust stability (RS): For each plant included in the uncertainty set, verify the system’s

stability.
3. Robust performance (RP) refers to the degree of stability exhibited by a system. In

the context of investigating robust performance, the goal is to determine whether any
of the plants included in the uncertainty set meet the specified performance criteria.
This involves analyzing the system’s behavior under various uncertain scenarios
and assessing if the performance requirements are satisfied for each plant within the
uncertainty set [24–26].

The robustness investigation will be performed using the connections shown in
Figure 1.
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Here, K is the estimated Hinfinity controller, and P is the nominal plant with the
uncertainty modeling included. Uncertainty included in ∆ satisfies ||∆|| ∞ ≤ 1 [26,27].

Since Ks is the known controller, Figure 1 can be simplified to Figure 2.
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This arrangement makes it clear that,

• The system (M, ∆) is considered to be robustly stable if it satisfies two conditions:

1. The nominal system M is stable, meaning that it does not exhibit any instability
or unbounded responses in the absence of uncertainties.

2. The system remains stable under all possible variations or uncertainties repre-
sented by the structured uncertainty set ∆. In other words, the system maintains
stability even when the uncertain parameters or inputs vary within the prescribed
uncertainty bounds [27,28].

By satisfying these two conditions, the system (M, ∆) is deemed to be robustly stable,
demonstrating stability and resilience in the face of uncertainties:

sup
ω∈R

µ∆(M11(jω)) < 1 (6)

where,

1
µB(M)

=

 in f
∆∈B∆ ,det(I−M∆)=0

−
σ(∆) (7)

The structured singular value of M, denoted as µ(M), is a measure of robust stability.
It quantifies the largest multiplicative uncertainty that a given system M can tolerate within
the structured uncertainty set B∆ while remaining stable. Hence, the robust stability of the
system (M, ∆) is achieved when the structured singular value of M, µ(M), exceeds one.

• The system (M, ∆) is said to exhibit robust performance if it satisfies the specified per-
formance criteria despite the presence of uncertainties represented by the structured
uncertainty set ∆. Robust performance implies that the system can maintain desired
performance levels, such as stability, tracking accuracy, disturbance rejection, or other
performance metrics, even in the presence of uncertainties. Achieving robust perfor-
mance involves designing control strategies or mechanisms that can effectively handle
and mitigate the effects of uncertainties within the specified performance bounds,

sup
ω∈R

µ∆α(M(jω)) < 1 (8)

where,

∆α =

[
∆p 0
0 ∆

]
(9)

The uncertainty set ∆p has a similar structure to ∆ but with dimensions corresponding
to (w, z) [9,27,28]. To proceed, let us consider uncertainties in the form of variations or
perturbations in the M (mass), D (damping), and K (stiffness) matrices,

M = M0(I + mpδM) (10)
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D = D0(I + dpδD) (11)

K = K0(I + kpδK) (12)

with,

||∆||∞
def
=

∥∥∥∥∥∥
δM

δD
δK

∥∥∥∥∥∥
∞

< 1 (13)

By allowing a percentage deviation from the nominal values, we accommodate vari-
ations in the M (mass), D (damping), and K (stiffness) matrices. With these definitions,
Equation (1) can be expressed as follows:

M0
(
I + mpδM

) ..
q(t) +D0

(
I + dpδD

) .
q(t) +K0

(
I + kpδK

)
q(t) = fm(t) + fe(t)

⇒ M0
..
q(t) +D0

.
q(t) +K0q(t) = −

[
M0mpδM

..
q(t) +D0dpδD

.
q(t) +K0kpδKq(t)

]
+ fm(t) + fe(t)

⇒ M0
..
q(t) +D0

.
q(t) +K0q(t) =

∼
Dqu(t) + fm(t) + fe(t)

(14)

where,

qu(t)
def
=

 ..
q(t)
.
q(t)
q(t)

,
~
D= −

[
M0mp D0dp K0kp

]I2n×2nδM
I2n×2nδD

I2n×2nδK

 (15)

Writing (5) in state space form, gives,

.
x(t) =

[
02n×2n I2n×2n
−M−1K −M−1D

]
x(t) +

[
02n×n
M−1 f *

e

]
u(t) +

[
02n×2n
M−1

]
d(t) +

[
02n×6n

M−1
∼
D

]
qu(t)

= Ax(t) + Bu(t) + Gd(t) + Guqu(t)

(16)

In this approach, we account for the uncertainty in the original matrices by treating it
as an additional factor of uncertainty. To represent our system in the frequency domain as
depicted in Figure 2, we consider the configuration shown in Figure 3.
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The matrices E1 and E2 are exploited to derive,

qu(t)
def
=

 ..
q(t)
.
q(t)
q(t)

 (17)
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Since,

γ =

[ ..
q(t)
.
q(t)

]
and β =

∫ [ ..
q(t)
.
q(t)

]
=

[ .
q(t)
q(t)

]
(18)

Possible selections for E1 and E2 depend on the specific situation and criteria of the
system,

E1 =

I 0
0 I
0 0

, E2 =

0 0
0 0
0 I

 (19)

The idea is to find an M such that,qu
e
u

= M

pu
d
n

, M =

M11 M12 M13
M21 M22 M23
M31 M32 M33

 =

Mpuqu Mdqu
Mnqu

Mpue Mde Mne
Mpuu Mdu Mnu

 (20)

Alternatively, in the notation depicted in Figure 3,[
qu
w

]
= M

[
pu
z

]
(21)

Now Mde, Mdu, Mne, and Mnu, are known:[
Mde Mne
Mdu Mnu

]
=

[
J
(

I − HBKC)−1HG J
(

I − HBKC)−1HBK(
I − KCHB)−1KCHG

(
I − KCHB)−1K

]
(22)

To proceed with the methodology known as “pulling out the ∆’s”, we will break the
loop at points pu and qu, utilizing the auxiliary signals α, β, and γ. This approach will
allow us to derive the transfer function. Mdqu

(from d to qu):

qu = E2β + E1γ = (E2H + E1)γ (23)

γ = Gd + Bu = Gd + BKCHγ⇒ γ = (I-BKCH)−1 Gd (24)

Hence,
Mpuqu = (E2H + E1)(I-BKCH)−1G (25)

Now, Mpuqu ,Mpue,Mpuu, are similar to Mde, Mde, and Mdu with G switched by Du, i.e.,

Mpuqu = (E2H + E1)(I-BKCH)−1Du (26)

Mpue = J
(

I − HBKC)−1 HDu (27)

Mpuu =
(

I − KCHB)−1KCHDu (28)

Finally, to find Mnqu
,

qu = E2β + E1γ = (E2H + E1)γ (29)

γ = Bu = BK(n + y) = BKn + BKCHγ⇒ γ = (I-BKCH)−1 BKn (30)

Hence,
Mnqu

= (E2H + E1)(I-BKCH)−1BK (31)

Collecting all the above yields M:
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M =

(E2H + E1)
(

I − BKCH)−1Du (E2H + E1)
(

I − BKCH)−1G (E2H + E1)
(

I − BKCH)−1BK
J
(

I − HBKC)−1HDu J
(

I − HBKC)−1HG J
(

I − HBKC)−1HBK(
I − KCHB)−1KCHDu

(
I − KCHB)−1KCHG

(
I − KCHB)−1K

 (32)

4. Results

Figure 4a,b shows a cantilever smart beam with piezoelectric actuators and a sensor.
It used the Euler-Bernoulli formulation. The beam’s specifications are given in Table 1.
The beam has dimensions L × W × H, representing its length, width, and height. The
piezoelectric sensors have a width of bS, while the piezoelectric actuators have a thickness
of bA.
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Figure 4. (a) Smart structures with piezoelectric patches; (b) Schematic vibration of cantilever smart
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Table 1. Parameters of the smart beam.

Parameters Values

L, for beam length 1.00 m

W, for beam width 0.08 m

h, for beam thickness 0.02 m

ρ, for beam density 1600 kg/m3

E, for Young’s modulus of the beam 1.5 × 1011 N/m2

bs, ba, for Pzt thickness 0.002 m

d31 the piezoelectric constant 280 × 10−12 m/V

First, a wind force acting on the side of the smart beam is taken. The function d(t) =
fm(t), in Figure 5, is determined from the record of wind speed using the relation

fm(t) =
1
2
ρCuV2(t) (33)

where ρ = density, V(t) = velocity, and Cu = 1.5 (orthogonal cross-section)
The mechanical force was calculated using actual wind speed measurements made

in Estavromenos, Heraklion Crete. Furthermore, measurements at the system’s response
sites were exposed to random noise with a probability of 1% in all simulations. As a result
of the system nodal points’ minor displacements, the noise amplitude is considered to be
minimal, on the order of 5 × 10−5 of the initial pricing. However, each node of the beam
introduces a different proportion of the signal, with the first node’s percentage being lower
due to the clamping of the beam’s endpoint.
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Figure 5. The external mechanical force.

Figure 6 depicts the translation of the free end of the beam in the state space domain
for closed and open loops with varied mass and stiffness matrices. Figure 6b (middle
graphic) depicts the displacement of the cantilever beam’s free end for various stiffness and
mass matrices (i.e., by changing mp, kp in the relation M = M0(I + mp δM), K = K0(I + kpδK).
This displacement is shown in Equation (6) as a function of the stiffness and mass matrices.
The blue diagram represents mp with kp equal to 0.7, the green diagram represents mp with
kp equal to 0.6, and the red diagram represents mp with kp equal to 0.5. We take the light
blue diagram in Figure 6a,b using PZT patches and the robust control theory Hinfinit [29,30].
Even for varied costs of the Mass and Stiffness matrices, Figure 6a shows the prices for the
closed loop with Hinfinity control [30,31]. We used Hinfinity control theory to get good results
in suppressing structural oscillations in intelligent systems. The piezoelectric voltages for
the closed loop, which implies Hinfinity control for various costs of the Stiffness and Mass
matrices, are shown in Figure 6c.
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Figure 6. (a) Displacements for the closed loop (with Hinfinity) Translations for the open and closed
loops (with and without Hinfinity control) for different prices of Mass(M) and Stiffness(K) matrices;
(b) Displacements for the open and closed loops (with and without Hinfinity control) for different
prices of Mass(M) and Stiffness(K) matrices; (c) Control Voltages for the closed loop (with Hinfinity

control) for different prices of Mass and Stiffness matrices.
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Figure 7 also depicts the translation of the free end of the beam with and without
control (for closed and open loops). Figure 7b (middle diagram) depicts the translation
of the cantilever beam’s free end for various values of matrices A and B in Equation (6).
We take the light blue diagram in Figure 7a,b using PZT patches and the robust control
theory Hinfinity. Even for varied costs of the Mass and Stiffness matrices, Figure 7a shows
the pricing for the closed loop with Hinfinity control. We used Hinfinity control theory to
obtain good results in suppressing structural oscillations in intelligent structures [30,31].
The control voltages for the PZT actuators are shown in diagram Figure 7c for the various
costs of matrices A and B. The voltages fall below the piezoelectric limit of 500 Volts.

Appl. Mech. 2023, 4, FOR PEER REVIEW 10 
 

 

Figure 7. (a) Displacements for the closed loop (with Hinfinity) control for varying the prices of matri-

ces A and B in our system; (b) displacements for varying the prices of matrices A and B in our system 

for both the open and closed loops (with and without Hinfinity control). (c) Control voltages for the 

closed loop of our system’s matrices A and B at various prices (with Hinfinity control). 

Additionally, a sinusoidal force is therefore regarded as an external mechanical force 

at the free end of the beam. In Figure 8, the displacement of the free end of the beam is 

shown both with and without the use of control theory. Figure 8b (middle diagram) illus-

trates the displacement of the free end of the cantilever beam for various values of the 

matrices A and B in Equation (6). We use the robust control theory Hinfinity and PZT 

patches to create the light blue diagram in Figure 8b. Prices for the near loop (with Hin-

finity), even for prices A and B, which differ, are shown in Figure 8a. We used Hinfinity 

control theory to obtain excellent results in suppressing structural oscillations in intelli-

gent systems. The piezoelectric voltages for the closed loop (with Hinfinity control) for 

various prices of the A and B matrices are shown in Figure 8c. The maximum piezoelectric 

voltage is 500 V. Our prices are below the maximum for piezoelectric materials. 

Figure 7. (a) Displacements for the closed loop (with Hinfinity) control for varying the prices of
matrices A and B in our system; (b) displacements for varying the prices of matrices A and B in our
system for both the open and closed loops (with and without Hinfinity control). (c) Control voltages
for the closed loop of our system’s matrices A and B at various prices (with Hinfinity control).

Additionally, a sinusoidal force is therefore regarded as an external mechanical force at
the free end of the beam. In Figure 8, the displacement of the free end of the beam is shown
both with and without the use of control theory. Figure 8b (middle diagram) illustrates
the displacement of the free end of the cantilever beam for various values of the matrices
A and B in Equation (6). We use the robust control theory Hinfinity and PZT patches to
create the light blue diagram in Figure 8b. Prices for the near loop (with Hinfinity), even
for prices A and B, which differ, are shown in Figure 8a. We used Hinfinity control theory
to obtain excellent results in suppressing structural oscillations in intelligent systems. The
piezoelectric voltages for the closed loop (with Hinfinity control) for various prices of the A
and B matrices are shown in Figure 8c. The maximum piezoelectric voltage is 500 V. Our
prices are below the maximum for piezoelectric materials.
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The results were excellent. Using Hinfinity control theory, we could reduce structural
oscillations in intelligent structures. In comparison to traditional control approaches,
Hinfinity techniques offer the benefit of being easily adaptable to issues with multivariate
systems. Figure 9 shows a schematic representation of the piezoelectric smart structure for
closed-loop Hinfinity control. The construction totally suppresses its vibration.
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In references [7–10,16], the same problem of the suppression of structure oscillation
using piezoelectric materials is presented, but the displacement in none of these references
is zero; that is, complete suppression of the oscillation is not achieved in any report. In
addition, in no references is infinite control used to solve the specific problem.

This advanced control technique takes into account modeling uncertainties that cor-
respond to construction imperfections or smears likely to be generated during oscillation.
The problem of this control technique is the optimal selection of the weights resulting from
optimization methods.

In the frequency domain, the robust controller infinity minimizes the maximum
singular value of the transfer function in the frequency domain Tzw(s) from the inputSw=[

d
n

]
(disturbances and nose of the system) to output z =

[
u
e

]
(control and error). The

design might be enhanced to lessen the noise (n) influence at frequencies of 1000 Hz. The
acceptable impact of the disturbance (d) on the size of the control scheme is shown in
Figure 10. An open loop system’s frequency graph and a closed loop system’s frequency
graph (i.e., with and without Hinfinity control) cannot be distinguished from one another.
The size of the control scheme (u) is sufficiently affected by the disturbance (d), as shown
in Figure 10. According to Figure 10, the noise seems to have less of an effect on the error
at frequencies greater than 1000 Hz. The design might be enhanced if it could reduce the
noise influence at frequencies above 1000 Hz.
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As shown in Figure 11, the impact of disturbance (d) on error (e) significantly improves
up to a frequency of 1000 Hz. It is shown that there is little effect of noise on the jump for
frequencies above 1000Hz. Figure 12 shows the maximum singular values for the diagram
of the open (blue line) and closed loop (green line) in the field of frequencies. As can be
seen after the frequency of 100 rad/s, there is a decrease in the values for both cases. The
findings demonstrate the robust controller’s efficacy by being satisfactory in both the state
space domain and the frequency domain.
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5. Conclusions

The article examines the advantages of robust control in intelligent structures, show-
casing the application of Hinfinity control in both the state space and frequency domain.
It considers a dynamic model for intelligent structures under wind-induced excitations.
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The Hinfinity robust controller allows for the design by addressing uncertainties in the
dynamical system and incomplete data measurements. Numerical simulations provide
evidence that the proposed methods can effectively suppress vibrations in piezoelectric
smart structures. The approach ensures a comprehensive and consistent methodology
for designing and validating robust control systems. By accounting for uncertainties in
the dynamical system and incomplete data, the Hinfinity robust controller facilitates the
development of intelligent structures. The numerical simulation validates the efficacy of
the general methods, presented in a tutorial format, in achieving satisfactory vibration
suppression for a piezoelectric smart structure. This approach offers a comprehensive and
cohesive framework for designing and validating robust controllers for smart structures.
The findings highlight significant innovations and demonstrate the successful implementa-
tion of robust control techniques in intelligent structures, resulting in complete vibration
suppression. The smart piezoelectric structure’s vibration is intended to be suppressed
by a controller based on Hinfinity. In vibration suppuration issues, the resilience of the
Hinfinity controller to parametric uncertainty is demonstrated. This paper provides a
comprehensive illustration of the advantages of robust control and active vibration sup-
pression in the dynamics of smart structures. There are several benefits of Hinfinity control
for the examination of reliable control systems. With Hinfinity Control, the reduction in
oscillations is achieved even for changes in the mass and stiffness of the original model that
is presented for modeling uncertainties. The effectiveness of the suggested strategies to
reduce vibrations in piezoelectric smart structures is demonstrated by numerical simulation.
Notably, innovations in intelligent structures with advanced control techniques are clearly
showcased. In our future scientific plans, an experimental approach as presented in the
article would be implemented, aiming to confirm the very good modeling results.
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