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Abstract: Image fusion is an effective and efficient way to express the feature information of an
infrared image and abundant detailed information of a visible image in a single fused image. However,
obtaining a fused result with good visual effect, while preserving and inheriting those characteristic
details, seems a challenging problem. In this paper, by combining a multi-level smoothing filter
and regional weight analysis, a dual-band image fusion approach is proposed. Firstly, a series of
dual-band image layers with different details are obtained using smoothing results. With different
parameters in a bilateral filter, different smoothed results are achieved at different levels. Secondly,
regional weight maps are generated for each image layer, and then we fuse the dual-band image layers
with their corresponding regional weight map. Finally, by imposing proper weights, those fused image
layers are synthetized. Through comparison with seven excellent fusion methods, both subjective and
objective evaluations for the experimental results indicate that the proposed approach can produce
the best fused image, which has the best visual effect with good contrast, and those small details
are preserved and highlighted, too. In particular, for the image pairs with a size of 640 × 480, the
algorithm could provide a good visual effect result within 2.86 s, and the result has almost the best
objective metrics.

Keywords: image fusion; infrared and visible; regional weight map; multi-level smoothing

1. Introduction

Infrared (IR) and visible (VI) image fusion aims to combine characteristic information
of the two source images into one single fused image, which is supposed to inherit abundant
object details of the VI image and preserve particular target information of the IR image [1,2].
However, how to fuse IR and VI images with good visual effect, preserving and inheriting
those characteristic details, seems a challenging problem [3].

Over recent decades, researchers have made great efforts in improving dual-image
fusion [4–8]. A set of image fusion methods based on multi-scale decomposition have been
proposed, including the wavelet transform method and curvelet transform approach [4,5].
Pyramid-based algorithms are typical multi-resolution approaches, such as the Laplacian
pyramid [6], contrast pyramid [7], and morphological pyramid [8]. However, those meth-
ods which use a multi-scale strategy usually need down sampling and up sampling, which
will smooth details and introduce some artifacts. In addition, other excellent methods have
been developed. IR and VI image fusion is achieved using visual saliency map calculation
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and weighted least square optimization (weighted least square: WLS) [9]. Different features
of dual-band images are considered by fusing detail layers, and a visual saliency map is
designed to merge the base layers. Naidu et al. makes use of multi-resolution singular value
decomposition (singular value decomposition: SVD) to achieve image fusion [10]. A novel
Bayesian fusion (Bayesian fusion: BF) model is used for image fusion [11], and it is cast into
a regression problem by formulating the problem in a hierarchical Bayesian manner with a
TV penalty. Bai et al. utilize region extraction based on multi-scale center-surround top-hat
transform (center-surround top-hat transform: CSTH) [12] to design an excellent IR and VI
image fusion method. Liu et al. propose a general image fusion framework which considers
multi-scale transform and sparse representation (multi-scale transform: MST) [13]. Kong
et al. use image processing methods and face detection in visible images to determine
the position of the face in the infrared image, and then use target detection algorithms
on infrared images which make good use of dual-band images [14]. Many researchers
have studied learning-based methods. For example, Ma et al. present a new IR/VI fusion
method based on an end-to-end model named FusionGAN; they use generative adversarial
networks for dual-band image fusion (FusionGAN: FG), which can keep both the thermal
radiation and the texture details from the source images [15]. Li et al. mention an IR
and VI image fusion approach with ResNet and zero-phase component analysis [16]; this
design can produce a fused result with good contrast. In this work, ResNet50 is utilized to
extract deep features from two source images. These learning-based methods create good
results according to their experiments [17], but the results usually are determined by the
training image data. Moreover, saliency or weight map extraction is useful in dual-band
image fusion; for example, researchers consider saliency preserving in some image fusion
applications [18]. Particularly, Zhao et al. propose several visual saliency or visual attention
analysis models for image enhancement [19,20] and dual-band image fusion [21,22]; the
visual saliency can help well highlight the details. In particular, they have developed a
multi-scale-based visual saliency extraction method (multi-scale-based saliency extraction:
MBSE) recently [23], and this method could produce a result with good visual effect and
abundant detailed information.

Each dual-band fusion method has its application limitations, as it may produce an
unsatisfactory result with negative artifacts, such as poor local contrast, image details,
characteristic loss, noise amplification, and image quality degradation of the whole fused
image. Aiming at those disadvantages, a dual-band image fusion approach using regional
weight analysis combined with a multi-level smoothing filter is proposed. The main work
and contribution are described as follows.

Firstly, a bilateral filter-based multi-scale decomposition could help extract image
details even from potential targets under different levels.

Secondly, a regional weight map is designed to represent attention importance for
different regions and pixels of an image. This map can help the fused result to inherit
enough information from the original dual-band images.

Thirdly, weight factors are introduced to resynthesize these fused image layers. The
weight factors can adjust the relative weight between different image layers to relatively
enhanced image details.

2. Basic Theory
2.1. Bilateral Filter for Multi-Level Smoothing

Our multi-scale decomposition is based on a bilateral filter, which is a typical image
smooth filter. With varying parameters, an image smooth filter can generate results under
different smoothness levels. Then, we can extract details between those smoothing results, just
like multi-scale decomposition. Those multi-scale decomposition methods, such as wavelet
transform and Laplacian pyramid, are widely used for image fusion. Multi-scale decomposi-
tion is achieved via filters and similar operations, which usually involve up sampling and
down sampling, leading to some negative artifacts, detail loss, and sometimes higher time
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consumption. Thus, we intend to introduce a bilateral filter to construct multi-level smoothing
to form similar multi-scale decomposition without up sampling and down sampling.

Considering edge detail preservation [24], we finally introduce a bilateral filter as our
smooth tool. The filter runs within a local area. On one hand, the result is constrained by
the relative distance between the center pixel and its neighbor pixels, whilst on the other
hand, it is also determined by the gray difference or pixel distance between them. Then,
this filter generally smooths the image while preserving edge details by using a non-linear
combination of nearby sampling values [24].

If the original image is I, and the smoothed result from the bilateral filter is g, for an
arbitrary pixel p, g can be obtained using the following equation:

gp =

∑
q∈Ω

{Gσs(∥p − q∥)Gσr (|I(p)− I(q)|)I(p)}

∑
q∈Ω

{Gσs(∥p − q∥)Gσr (|I(p)− I(q)|)} (1)

where Ω denotes a window or a region, whose center usually is pixel p, q is an arbitrary
pixel in Ω, and I(p) represents the pixel value at p in image I. Ω could be as large as the
whole image. Gσ(x) represents a Gaussian function with parameters x and σ. In this for-
mula, Gσs(∥p − q∥) means the closeness function which measures geometric distance, and
∥p − q∥ represents the spatial distance between pixel p and q. Meanwhile, Gσr (|I(p)− I(q)|)
denotes the photometric similarity function, and |I(p)− I(q)| is the pixel value distance
between Ip and Iq, which means the absolute value of I(p)− I(q).

Learning from Ref. [24], based on the image size comparison, we allow the size of
window Ω to be 9 × 9.

From Equation (1), we can conclude that the smoothed result is mainly determined by
the two deviations σs and σr, where the two deviations are just the parameters for Gaussian
function in Equation (1). Then, we can rewrite Equation (1) as follows, which could be
defined as the function of input I, σs, and σr:

gp = BF(I, σs, σr) (2)

where BF is short for the bilateral filter.
We need to analyze how these two parameters affect image smoothness. Thus, we

try two directions. On one hand, when σr is fixed, we can obtain a smoothed result with
a changing value of σs. As shown in Figure 1, if we fix σr = 0.03, (a)–(d) are the original
image, the result with σs = 5, the result with σs = 11, and the result with σs = 17, respectively.
Images (b)–(d) are so similar, and only the information with high frequency (like ground
area) is smoothed. Therefore, the parameter σs has little influence on smoothness. On the
other hand, when σs is fixed, we can obtain smoothed results with a changing value of
σr. As shown in Figure 2, if we fix σs = 11, (a)–(d) are the original image, the result with
σr = 0.03, the result with σr = 0.13, and the result with σr = 0.23, respectively. Learning from
images (b)–(d), the larger σr can make the result smoother. Meanwhile, the larger σr is, the
less the frequency information is smoothed. Therefore, the parameter σr has a decisive
influence on smoothness.
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Figure 1. Smoothed result gp with different σs and fixed σr = 0.03. (a) Original image, (b) result with
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According to our analysis, we can achieve different smoothing results at different
levels with varying σr. Then, we can extract details between those smoothing results, just
like multi-scale decomposition. Typically, σr is within the range [0, 0.3].

2.2. Regional Weight Analysis

The human visual system (HVS) is highly adapted for detecting and extracting struc-
tural information from a scene or an image [25]. We consider the HVS to be sensitive to
structure information, which is associated with the local contrast of the image. Thus, we
assume those regions with relatively larger intensity and color differences would attract
more attention from the HVS. We intend to generate a regional weight map (RWmap) to
represent attention importance for different regions of an image, and this regional weight
map is designed based on the gray value difference for the gray image. RWmap has the
same size as the original image.

We assume a regional weight map (RWmap) for arbitrary pixel p in a gray image I
follows the subsequent equation:

RWmap(p) = ∑
∀q∈Ω

γd(p, q) (3)

where Ω means the neighborhood of pixel p in the image I, and q is an arbitrary pixel within
Ω. Ω could be a local area around p; it also could cover the whole image. γd(p, q) measures
the gray value difference between p and q:

γd(p, q) = |I(p)− I(q)|α (4)

where α is a constant which can scale the difference. I(p) denotes the gray value of pixel
p in the image I. Usually, a larger α produces a larger γd(p, q). When α = 1, the spatial
contribution of q imposing on γd(p, q) remains the same no matter whether q is next to p or
far away. So, one can change the value of α to design the spatial contribution of q. Usually,
α = 1 is enough.

When α = 1 and Ω covers the whole image, the regional weight value of the arbitrary
pixel p can be calculated pixel by pixel as follows:

RWmap(p) = |I(p)− I(q1)|+ |I(p)− I(q2)|+ · · ·+ |I(p)− I(qMN)| (5)

where M and N are the height and width of image I, respectively. MN means the sum of all
pixels, so qi (i = 1, 2, · · · , MN) has covered all pixels in the image I.

From Equation (5), we find that the same gray value in the image will achieve the same
value in the regional weight map. That is to say, for an arbitrary pixel p in the image I, the
gray value is I(p), and we can obtain a regional weight at the corresponding position p in the
regional weight map as RWmap(p). Then, for all pixels with the same gray value in I, they have
the same regional weight value as RWmap(p) at the corresponding position in the regional
weight map. Thus, this gray value analysis will greatly reduce the amount of computation.

Finally, after analyzing every pixel p in I, we obtain a regional weight map RWmap
corresponding to the original image I.
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According to Equation (5), we can obtain the RWmap for the original image I. The
RWmap should be normalized to guarantee RWmap ∈ [0, 1], which reflects how much
attention that the HVS pays to image I. In Figure 3, we have shown two examples of
regional weight maps. Figure 3a,c denote original images, and (b) and (d) are the RWmap
corresponding to (a) and (c), respectively. From these two examples, we can find that
our regional weight analysis can give a full-resolution image matrix corresponding to the
original image, and large value areas mirror those regions that attract more attention from
the HVS.
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3. Image Fusion Approach
3.1. Multi-Level Smoothing

Learning from Section 2.1, we can achieve different smoothing results at different levels
by varying parameters in the bilateral filter and extracting details between those smoothing
results. Therefore, we intend to construct multi-level smoothing to achieve this target. Then,
we can obtain different detailed preserved images under different smoothing levels.

Assuming the input image I, the smoothing result S(k) at the kth level can be obtained
using Equation (6):

S(k) = BF(I, σs(k), σr(k)) (6)

where k = 1, 2, 3, · · · , M, and S(k) can be changed with varied parameters σs(k) and σr(k).
If we let σs(k) < σs(k + 1) and σr(k) < σr(k + 1), the result S(k + 1) will be smoother than
S(k). If the smoothed images {S(k)} of order M have been obtained, the original image I
can be expressed by the following:

I = (I − S(1)) + (S(1)− S(2)) + · · ·+ (S(M − 1)− S(M)) + S(M) (7)

where I can be treated as S(0), so Equation (7) can be written as follows:

I =
M

∑
k=1

(S(k − 1)− S(k)) + S(M) (8)

Here, we can consider S(k − 1)− S(k) as the extracted details between those smooth-
ing results; then, the original image I is composed of a base layer and M detail layers. A
base image layer is S(M), which is defined as follows:

S(M) = BF(I, σs(M), σr(M)) (9)

S(M) is the most smoothed result. In Equation (9), M detail image layers are deter-
mined by the following:

D(k) = S(k − 1)− S(k) (10)

where Equation (10) can be solved using the corresponding σs(k) and σr(k), and
k = 1, 2, 3, · · · , M.

Finally, the original image I is designed to form (n + 1) levels, including a base image
layer and M detail image layers. The multi-level smoothing and detail extraction are
conducted without any down sampling or up sampling, so non-band-limited detail layers
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can be produced. We can impose our fusion operation on a base layer and detail layers to
achieve different detail preserved fusion and enhancement. Meanwhile, we can emphasize
different details after image synthesis, which is a contrary process of this section, and it
will be discussed in Section 3.3.

3.2. Image Fusion Based on Image Layers

After the base layer and detail layers based on multi-level smoothing have been
handled, image fusion is attempted in those layers between the two source images. For
each layer, the regional weight analysis as described in Section 2.2 is introduced to achieve
detailed enhanced fusion results.

Supposing the IR image is X and the VI image is Y, our fusion is achieved under
different layers based on Section 3.1. Here, we consider M + 1 layers, too. According to
Equation (9), the base layer of X and Y are SX(M) and SY(M), respectively. Their regional

weight maps are RWSX(M)
map and RWSY

(M)

map . Then, the fused result FS(M) is defined as follows:

FS(M) =
1
2

[
SX(M)RWSX(M)

map + SY(M)
(

1 − RWSX(M)
map

)]
+

1
2

[
SX(M)

(
1 − RWSY

(M)

map

)
+ SY(M)RWSY

(M)

map

]
(11)

Meanwhile, according to Equation (11), for an arbitrary level k, detail image layers for
two source images are DX(k) and DY(k), whose regional weight maps are RWDX(k)

map and

RWDY(k)
map . In a similar way, the fused equation is defined as follows:

FD(k) =
1
2

[
DX(k)RWDX(k)

map + DY(k)
(

1 − RWDX(k)
map

)]
+

1
2

[
DX(k)

(
1 − RWDY(k)

map

)
+ DY(k)RWDY(k)

map

]
(12)

Based on different layers and regional weight analysis, the fusion can be operated under
different detail levels. Both one base layer fusion and M detail layer fusion will effectively
fuse detail features.

3.3. Image Layer Resynthesis

Based on layer extraction (Equations (9) and (10)) and image layer-based image fusion
(Equations (11) and (12)), we have obtained M + 1 fused layers. In this section, we try to
resynthesize these layers to form a fused image.

Equation (8) is used for layer extraction; now, similar to Equation (8), we try to resynthe-
size the image layers based on Equations (11) and (12) to obtain a final fused result F:

F =
M

∑
k=1

(
λkFD(k)

)
+ λ0FS(M) (13)

Different from Equation (8), we introduce weight parameters λk (k = 0, 1. . . M) in Equation (13).
This weight factor could help adjust the relative contribution of different fusion layers to the
final fused result, and this could help enhance those details from different layers.

In a real application, usually, M < 5, as a small M is sufficient to extract and distinguish
detailed information. If λk is relatively large, more information would be inherited from
the corresponding layer FD(k) (when k = 1, 2. . . M) or FS(M) (when k = 0). Therefore, proper
factors λk (k = 0, 1. . . M) are important for detail preservation and enhancement. To control
the energy of the final result, λk ∈ [0, 1].

3.4. Implementation

As shown in Figure 4, we have described the flowchart of the implementation of the
proposed method. Firstly, the IR image and the VI image are processed into image layers
(Section 3.1). Secondly, image fusion is achieved using regional weight extraction based on
image layers (Section 3.2). Finally, we try to resynthesize these fused layers to form a fused
image (Section 3.3).
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Different from Equation (8), we introduce weight parameters kλ  (k = 0, 1,⋯,  M) in Equa-
tion (13). This weight factor could help adjust the relative contribution of different fusion 
layers to the final fused result, and this could help enhance those details from different 
layers.  
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from the corresponding layer ( )D kF  (when k = 1, 2,⋯, M) or ( )S MF  (when k = 0). Therefore, 
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3.4. Implementation 
As shown in Figure 4, we have described the flowchart of the implementation of the 

proposed method. Firstly, the IR image and the VI image are processed into image layers 
(Section 3.1). Secondly, image fusion is achieved using regional weight extraction based 
on image layers (Section 3.2). Finally, we try to resynthesize these fused layers to form a 
fused image (Section 3.3). 

Infrared 
Image

Visible 
Image

Multi-level smoothing
Section 3.1

Infrared image 
layers

Visible image 
layers

Image 
layers 
fusion

Section 3.2

regional weight 
maps

regional weight 
maps

 Image 
layers 

resynthesis
Section3.3

 
Figure 4. Flowchart of the proposed approach. 

To carefully show how the algorithm functions, we have given the program codes to 
describe our approach, as follows, with which one can easily understand the method. 

  

Figure 4. Flowchart of the proposed approach.

To carefully show how the algorithm functions, we have given the program codes for
our image fusion approach, as described in Algorithm 1 as follows, with which one can
easily understand the method.

Algorithm 1 Image fusion approach algorithm

Require: X, Y, k, σs(k), σr(k), λ0, λk.
1: Get initial infrared image data X and visible image data Y.
2: Init: Initial σs(k), σr(k), λ0, k = 1.
3: Get the base image layers SX(M) and SY(M) of X and Y by Equation (9).
4: While k <= M do:

a. Get the smoothing images SX(k) and SY(k) corresponding to X and Y by Equation (6).
b. Get detail image layers DX(k) and DY(k) corresponding to X and Y by Equation (10).

c. The RWSX(M)
map and RWDX(k)

map of X are obtained by Equation (5).

d. The RWSY(M)
map and RWDY(k)

map of Y are obtained by Equation (5).
e. Get the fused result FS(M) by Equation (11).
f. Get the detail image layers fused result FD(k) by Equation (12).
g. Sum the fusion results of weighted detail image layer FD = λkFD(k)

5: End while
6: The final fusion result F is obtained by fusing FS(M) and FD by Equation (13).

4. Experimental Results and Discussion

In our experiment, we have introduced seven excellent fusion methods for compar-
ison, including classical model-based methods and recent deep learning-based works.
These seven approaches are weighted least square optimization (WLS) [9], an image fu-
sion technique using multi-resolution singular value decomposition (SVD) [10], Bayesian
fusion for infrared and visible images (BF) [11], multi-scale center-surround top-hat trans-
form (CSTH) [12], a generative adversarial network for infrared and visible image fusion
(FG) [26], multi-scale transform (MST) [13], and the multi-scale visual saliency extraction
method (MBSE) [23].

The image pairs that we tested for our experiments were downloaded from the website,
https://doi.org/10.6084/m9.figshare.c.3860689.v1 (accessed on 26 January 2024), they can
also be found in Ref. [27]. These two pairs of source images are shown in Figure 5. (a) and
(b) are VI and IR images (434 × 340), mainly including road, cars, and people. (c) and (d)
are VI and IR images (640 × 480), mainly including trees, buildings, and a person.

In our experiment, we performed tests on a personal computer using AMD Ryzen 5
3400G (Advanced Micro Devices, Inc., Santa Clara City, CA, USA) with Radeon Vega Graphics
3.7 GHz, and the software used is MATLAB 2014b (MathWorks, Natick city, MA, USA).

https://doi.org/10.6084/m9.figshare.c.3860689.v1
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Figure 5. Source images: (a,b) are VI and IR images (434 × 340), mainly including road, cars, and
people. (c,d) are VI and IR images (640 × 480), mainly including trees, buildings, and a person.

4.1. Experimental Setting

In Section 3.1, the level M can determine how much we can separate detail levels.
According to our experience, M = 3 is sufficient. Two deviations σs and σr are important for
our smoothness. Learning from Figures 1 and 2, we have concluded that the parameter σr
has a decisive influence on smoothness. Thus, we keep σs = 11 and set σr(k) = {0.05, 0.11,
0.2} when k = 1, 2, 3. In addition, as we analyzed for Figure 1, if we select σs = 5, σs = 11, or
σs = 17, the results are similar. Therefore, σs = 11 is our experimental selection.

In Section 3.3, synthetic weight parameters λk (k = 0, 1,. . ., M = 3) are selected as
λk = {0.3, 0.8, 0.6, 0.1} when k = 0, 1, 2, 3.

Since those parameters are selected from experience, they usually are fixed for our
fusion. But one can slightly adjust them if the user needs a special output. Therefore, in our
experiment, we simply input the original images, then the method can output a good result.

4.2. Objective Evaluation Methods

Whether the fused image is good or not, we need both a subjective assessment and
objective assessment. Our HVS can rapidly provide subjective scores when observing an
image, but the HVS seems inefficient when facing lots of images. Here, we need to consider
objective measurement for image fusion.

In this section, X and Y denote two source images, respectively. F represents the fused result.
Entropy (En) is usually used for evaluating how much information the image con-

tains [28]. Here, we consider En to evaluate fusion performance:

En = −
L−1

∑
i=0

pF(i) log2(PF(i)) (14)

where PF(i) represents the probability for the pixel value i in image F, and L is the gray level
(L = 255 when the image has a bit depth = 8). For the entropy metric, a larger value means
a better fused result.

Joint entropy (JE) can mirror how much information the fused result has inherited
from the source images [29]. The joint entropy can be defined as follows:

JEFXY = −
L−1

∑
i=0

L−1

∑
j=0

L−1

∑
k=0

pFXY(i, j, k) log2(pFXY(i, j, k)) (15)

where L is the gray level (L = 255 when the image has a bit depth = 8), and PFXY(i, j, k) is a
joint probability that pixel values in images X, Y, and F are i, j, and k, respectively. We need
a larger JE to show a better fusion performance.

Spatial frequency (SF) is usually considered for measuring image sharpness. SF reflects
the overall activity degree of the image in the spatial domain. SF is defined by the gradient
energy between horizontal and vertical directions:
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SF =

√√√√[
W−1

∑
i=1

H−1

∑
j=1

(F(x + 1, y)− F(x, y))/WH

]2

+

[
W−1

∑
i=1

H−1

∑
j=1

(F(x, y + 1)− F(x, y))/WH

]2

(16)

where W denotes the width of the image F, and H represents the height of F. The larger the
SF value is, the better the fused result is.

4.3. Performance Comparison

The fusion results for Figure 5a,b are shown in Figure 6. The two images contain
unique information, especially the road, cars, and people. Figure 6a–h are the fused images
with different methods. In these two source images, the special information includes
pedestrians and cars on the road, the signs on the shops, and some streetlamp details. In
image (a), the result of the WLS method looks good, but it loses some details. The results
of images (b), (c), and (d) have low contrast, and those details are not clear enough. The
results of (e), (f), and (g) look better than (b), (c), and (d), they have a good visual effect,
and the main features are well preserved and highlighted. According to (h), our algorithm
inherits much information with good image contrast. Meanwhile, compared with (e), (f),
and (g), the result of the proposed method emphasizes those small features much better.
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Figure 6. Fused results for Figure 5a,b: (a–h) are the results based on the eight methods, respectively.
(a) WLS, (b) BF, (c) SVD (d) FG, (e) MST, (f) CSTH, (g) MBSE, and (h) ours.

Figure 6 is tested using objective evaluations including En, JE, and SF. The results
are listed in Table 1. According to the objective assessment, the proposed method has the
largest En, JE, and SF values, indicating that our fused result performs best.

Table 1. Quantitative comparison using En, JE, and SF for Figure 6.

Methods En JE SF

WLS 6.23 6.53 13.77
BF 5.54 6.30 9.54

SVD 5.88 6.41 10.49
FG 6.00 6.45 7.76

MST 6.92 6.75 14.92
CSTH 6.60 6.65 15.30
MBSE 6.25 6.53 13.84
Ours 7.08 6.81 21.54

Figure 7 shows the fused results for Figure 5c,d using the eight approaches. The main
information in these two images is trees, buildings, and a person, especially the running
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person. In the VI image, this person can be hardly seen, while in the IR image, they can
be well observed; whether the person could be found in the fused result would greatly
affect the subjective evaluation. From images (a), (b), (c), and (e), we cannot easily find
this person, so WLS, BF, SVD, and MST fail to inherit and preserve this important detail
feature. The result of FG for the image (d) seems to be low contrast, and the details on the
grass are completely lost. In image (g), the MBSE creates a good result, but the details on
the grass are completely lost. CSTH produces a better result, as the main features are well
preserved and highlighted. According to (h), our algorithm has the best visual effect with
good contrast, and those small details are preserved and highlighted, too.
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The objective evaluation results for Figure 7 are shown in Table 2. Learning from
quantitative comparison, the proposed method has the largest En and SF values, and the
second largest JE value, indicating that our fused result performs best.

Table 2. Quantitative comparison using E, JE, and SF for Figure 7.

Methods En JE SF

WLS 6.71 7.19 15.60
BF 6.45 7.10 13.83

SVD 6.20 7.02 12.01
FG 6.32 7.06 12.22

MST 7.12 7.32 18.54
CSTH 7.35 7.50 26.04
MBSE 6.83 7.23 20.87
Ours 7.41 7.36 30.51

4.4. Computational Efficiency Discussion

Computational efficiency is one of the most important factors in algorithm measurement.
In this section, we will discuss how fast the methods run. The size of Figure 6 is 434 × 340, and
Figure 7 is 640 × 480. The processing time of these eight approaches for Figures 6 and 7 are listed
in Table 3. According to the data, we find that MST and SVD run the fastest because their design
seems more efficient. CSTH is the slowest algorithm as the multi-scale center-surround
top-hat transform takes a long time. Our algorithm lies in the middle of those methods, and
we need to accelerate it in the future. The multi-level smoothing affects the efficiency. In the
future, we need to try to reduce the levels of smoothness based on parameter optimization.
Meanwhile, code optimization could also help speed up the processing time.
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Table 3. Comparison of processing time for experimental images (unit: second).

Image/Algorithms Size WLS BF SVD FG MST CSTH MBSE Ours

Figure 6 434 × 340 2.17 0.84 0.56 4.34 0.21 2.87 0.38 1.47
Figure 7 640 × 480 3.21 1.13 0.97 6.21 0.43 4.12 0.53 2.86

5. Conclusions

The fusion of IR and VI images with good visual effect, while preserving and inheriting
those characteristic details, is challenging work. In this paper, we propose a dual-band
image fusion approach using regional weight analysis combined with a multi-level smooth-
ing filter. According to the experiment and discussion, the proposed method has powerful
performance, preserving and even enhancing image details, resulting in the fused image
having a good visual effect. Actually, by using a smoothing filter, we can extract differ-
ent details to form a series of dual-band image layers. Then, we can obtain a regional
weight map for different image layers and use them for our dual-band fusion to express
and highlight those potential target regions and pixels. Finally, those fused image layers
are synthetized utilizing proper weights, which can be artificially adjusted to emphasize
different details in different image layers.

Because of our design, the fused image usually has a good visual effect, well preserving
and inheriting characteristic details which the HVS pays attention to. This kind of fusion
strategy can be quite suitable and well applied in target detection and recognition, multiple
source image application, and other relative fields.

The limitation of our approach lies in the computational efficiency and parameter
selection. In the future, computational efficiency should be a key point, and we will focus
on algorithm acceleration and algorithm structure optimization. Since some computation
is conducted separately for dual-band images, we will consider parallel computing to
accelerate the algorithm. For parameter selection, we will learn how to set them adaptively
and automatically.

This approach is difficult to apply in RGB imagery. RGB images contain three channels.
We can perform image fusion on the three channels, respectively. We can obtain the final
result by combining the fused images of three channels. There will be distortion in the color
of final result because of the changes in all three channels.

In future, we will make an effort to integrate our algorithm into our own equipment.
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