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Abstract: A comprehensive review of the electroactive materials for non-enzymatic glucose sensing
and sensing devices has been performed in this work. A general introduction for glucose sensing, a
facile electrochemical technique for glucose detection, and explanations of fundamental mechanisms
for the electro-oxidation of glucose via the electrochemical technique are conducted. The glucose
sensing materials are classified into five major systems: (1) mono-metallic materials, (2) bi-metallic
materials, (3) metallic-oxide compounds, (4) metallic-hydroxide materials, and (5) metal-metal
derivatives. The performances of various systems within this decade have been compared and
explained in terms of sensitivity, linear regime, the limit of detection (LOD), and detection potentials.
Some promising materials and practicable methodologies for the further developments of glucose
sensors have been proposed. Firstly, the atomic deposition of alloys is expected to enhance the
selectivity, which is considered to be lacking in non-enzymatic glucose sensing. Secondly, by using
the modification of the hydrophilicity of the metallic-oxides, a promoted current response from
the electro-oxidation of glucose is expected. Lastly, by taking the advantage of the redistribution
phenomenon of the oxide particles, the usage of the noble metals is foreseen to be reduced.

Keywords: chemical sensing; electroactive materials; electrochemical technique; glucose sensors;
metallic nanomaterials; oxide nanomaterials

1. Introduction

According to the International Diabetes Federation (IDF), diabetes, which is a serious
and long-term health care issue, is among the top 10 causes of death in adults [1]. Possible
complications, including retinopathy, nephropathy, neuropathy, and so forth [2–4], could
take place and have a great influence on the quality of life (QoL). It was also reported that
diabetes has brought about 4 million deaths globally and the expenditure on diabetes care
was estimated to be up to USD 727 billion in 2017 [1]. The early detection of the glucose
concentration in the human body and the continuous monitoring of glucose concentration
in patients by the glucose sensor, which possesses high sensitivity, high selectivity, good
long-term stability, and so forth, have thus become critical issues.

From the materials point of view, the glucose sensors are generally categorized
into two types: (1) enzymatic glucose sensors [5–7] and (2) non-enzymatic glucose sen-
sors [8–10]. From the device point of view, on the other hand, the glucose sensors could
be typically divided into two different classifications: (1) invasive glucose sensors and
(2) non-invasive glucose sensors. The introductions to the various classifications of the
glucose sensors in terms of both the materials and the devices are as follows.

The first material for the enzymatic glucose sensor was developed by Clark and
Lyons [7] in 1962. Thereafter, the realization of the glucose sensor electrode was achieved
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by Updike and Hicks [6] in 1967. From then on, much effort has been made to enhance the
performances of the enzymatic glucose sensors in those few decades [11–16]. In the case of
the enzymatic type glucose sensor, for the detection of glucose concentration in different
human physiological fluids, glucose oxidase (GOx) [17–20] and glucose dehydrogenase
(GDH) [21–24] are frequently utilized enzymes. However, based on the reports from
Wilson and Turner [25] and other literature [26,27], the activity of the GOx deteriorated
immediately as the operating pH went below 2 or beyond 8. In addition, fatal damages
were also brought to GOx when the operating temperature was higher than 40 ◦C. Similar
to the GOx enzyme, there is also a stability issue in the GDH enzyme as the pH and
temperature are out of stable ranges of the GDH enzyme [28,29]. In addition to the
aforementioned stability dilemma, immobilizations of enzymes are essential requirements
but could be complicated, time-consuming, and expensive [30–33]. Therefore, the non-
enzymatic glucose sensor, which possesses high stability, high sensitivity, low cost, good
long-term stability, and proper selectivity, has attracted much attention in the glucose-
sensing community. The selectivity, which is strongly dependent on the detection potential,
is further discussed in Sections 7.3 and 7.5.

In this article, the non-enzymatic glucose sensors are further classified into five major
systems: (1) mono-metallic-based [34,35], (2) bi-metallic-based [36,37], (3) metallic-oxide-
based [38–40], (4) metallic-hydroxide-based [41], and (5) mixtures of the metal/metal
derivative-based electrodes [42–46]. Besides the aforementioned metal and/or metal
derivative-based catalysts, supporting materials, which could enhance the overall electrode
stability, the overall electrical conductivity of the electrode, the surface area of active mate-
rials, and the strength of the electroactive sites, have been often utilized [47–51]. Among
the supporting materials, multi-walled carbon nanotube (MWCNT) [36,48,50,51], graphene
sheet [35], polyaniline (PANI) [42,47], graphene oxide [49], and so on, are often seen mate-
rials. In the consideration of the functionality, carbon materials provide a higher surface
area of the electroactive materials, while PANI promoted the overall electrical conductivity.
Furthermore, surface chemistry, which strongly affects the performance of the electrodes,
could be fine-tuned via the manipulation of the functional groups on the supporting mate-
rials. In addition to the abovementioned materials, by controlling the microstructures of
the electroactive materials and the supporting materials, the variety and the possibilities for
the performance enhancement of the glucose-sensing electrodes could be almost unlimited.
For example, Pd nanocubes [34], CuO nanowires [38], NiO hollow spheres [39], Fe2O3
nanowire arrays [52], Au@Cu2O core-shell structure [43], AgNPs/CuO nanofibers [44],
and NiO-Ag nanofibers [46] have been claimed to promote the performances, such as the
detection sensitivity, selectivity, long-term stability, detection potential, and so on.

Most of the commercialized glucose sensors are enzymatic ones [8]. However, non-
enzymatic glucose sensors are expected to have high potential because of their relatively
high environmental stability [53–55], good sensitivity [56,57], high long-term stability [58],
and time-efficient manufacture [42,59]. Literature reporting the non-enzymatic glucose
sensor published between 2000 and 2020 is shown in Figure 1.

It is obvious that the literature amount of the non-enzymatic glucose sensors increased
year by year due to the critical applications in the health care and medical fields. Although
it was reported that there might be a selectivity issue in the non-enzymatic glucose sensors
compared with the enzymatic ones [60], it has been revealed that the selectivity issue could
be overcome by various approaches [61–63]. Strategies for the enhancement of the selectivity
of the non-enzymatic glucose sensors are explained in detail in Sections 7.3 and 7.5.

In addition, the detection of the glucose concentration in the human physiological
fluids could be simply accomplished by the facile electrochemical technique [64–67], which
is utilized in cooperation with the non-enzymatic glucose electrodes. An illustration of
the glucose concentration detection system via the electrochemical technique is shown in
Figure 2. Firstly, in Figure 2a, the yellow spheres on the dark blue square electrode plate in-
dicate the electroactive sites, which are the most critical materials for the electro-oxidation of
glucose in the electrochemical cells. The green target materials showing polygon structure
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suggest glucose molecules in the electrolyte, such as human physiological fluids. The target
materials are thus electro-oxidized on the surface of the electroactive materials. Secondly,
the current generated from the electro-oxidation reactions flows out of the electrochemical
cell, enters the external circuit, and is processed by the transducer and amplifier (Figure 2b).
Finally, the detected current is processed by the signal processor and is transformed into
meaningful information, such as glucose concentration (Figure 2c). Therefore, under such
a premise, a comprehensive review article of the non-enzymatic electrodes for the glucose
sensor toward the health care and medical applications was conducted.
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2. Types of Glucose-Sensing Devices

To date, the devices for the glucose sensors could be divided into two major different
types [21,68,69]: (1) the conventional invasive glucose sensor and (2) the advanced non-
invasive glucose sensor. Brief introductions to these two different types of glucose sensors
are described in the following sections.

2.1. Invasive Glucose Sensor Devices

It is widely known that, in the past, for the detection of glucose concentration in the
human blood, it was necessary to invasively stab into fingertips and place the blood on
the disposable strip of the glucometer [70]. For reducing the repeated acquiring of the
human blood in the aforementioned method, an implantable glucometer, which detects
and transmits the glucose concentration along with a wireless monitor, was developed [71].
This could reduce the irritating, multifarious, and repeated processes of fingertip stabbing.
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However, surgery is necessary for the implantation of the glucometer into the human
body. Therefore, non-invasive glucose sensors are greatly required for the replacement of
invasive glucose sensors in the glucose-sensing community.

2.2. Non-Invasive Glucose Sensor Devices

Advanced non-invasive glucose sensors have been developed for solving the above-
mentioned problems in conventional invasive glucose sensors. Firstly, soft contact lens,
which were equipped with integrated circuit (IC) chips, antenna, and glucose sensor, have
been developed for the detection of the glucose concentration in the tears [72–74]. Sec-
ondly, a wireless module and saliva glucose monitoring strip, which are attached to the
mouthguard, has also been developed for the detection of the glucose concentration from
human saliva [75–79]. The aforementioned two non-invasive glucose sensors not only
overcame the painful, time-consuming, and repeated processes, but also achieved the
semi-continuous detection of glucose concentration in the human body.

Thirdly, a painless microneedle-type glucose sensor patch has also been developed for
the continuous detection of glucose from human physiological fluids merely by attaching
the patch to the skin [80–84]. Finally, a stretchable and wearable glucose monitoring
patch, which could measure the glucose concentration from human sweat, was developed
as the simplest and most painless way for the detection of glucose concentration in the
human body [85–89]. Accordingly, with the development of the above-mentioned third
and fourth non-invasive glucose sensors, the conventional problems in the invasive glucose
sensors, such as the non-user-friendliness and non-continuous detection issues, have
been overcome.

Many advantages of the non-invasive glucose sensor devices have been mentioned
and explained in this section. However, some of the issues, such as long-term stability,
evaluations concerning cytotoxicity, and biocompatibility, have become new challenges in
non-invasive glucose sensor devices. Further researches and clinical evaluations should be
dealt with prior to the applications to the human body.

3. Electrochemical Technique for Glucose Sensing
3.1. Three-Electrode System of the Electrochemical Technique

Generally, the electrochemical technique for the detection of glucose concentration is
conducted by the three-electrode system, which is composed of (1) a working electrode
(WE), (2) a counter electrode (CE), and (3) a reference electrode (RE) [90–92]. For an accurate
measurement of the current and potential, the first circuit, which is composed of the WE
and the CE, is used for the loop of the current flow. On the other hand, the second circuit,
which consists of the WE and the RE, is for the loop of the measurement of the potential
between the WE and the RE.

3.2. Various Measurements via the Electrochemical System for Glucose-Sensing

With the manipulation of various parameters in the electrochemical techniques, such
as current, potential, time, and so forth, a series of electrochemical measurement methods
could be realized. For example, cyclic voltammetry (CV), linear sweep voltammetry (LSV),
electrochemical impedance spectroscopy (EIS), amperometric response, and other electro-
chemical techniques are often utilized for the characterization, detection, and quantification
of the glucose in the electrolyte. The examples of the aforementioned techniques are shown
in Figure 3 [93].

In the case of the CV method (Figure 3a [93]), a specific function of the potential is
applied to the aforementioned three-electrode electrochemical system, and the information
of the electrochemical reactions in the electrolyte are known by analyzing the correspond-
ing current response. This CV method is considered as a fundamental technique in the
electrochemical community and is widely used for investigations of the mechanisms of
the electrochemical reactions and the kinetic parameters of electrode processes. In the
studies of the glucose sensors, the CV technique is usually utilized for the characterization
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of the glucose-sensing materials, and also for the investigation of the kinetic reactions of
the electroactive materials at the WE. In addition, whether the electrochemical reactions
belong to diffusion control or reaction control could be recognized by simply alternating
the potential scan rate in the CV method.
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Figure 3. (a) CVs of 5 mM glucose/0.1 M NaOH at graphite/SrPdO3/Aunano electrode at different scan rates
(0.002–0.100 V s−1) (Inset figure: the plot of the anodic peak current values versus square root of scan rate for 5 mM
glucose/0.1 M NaOH at graphite/SrPdO3/Aunano electrode) (b) LSVs of 10 mL of 0.1 M NaOH at graphite/SrPdO3/Aunano

electrode in different concentrations of glucose (0.1–6.0 mM) (Inset figure: calibration curve for glucose for concentrations
from 0.1 to 2.4 mM and from 2.8 to 6.0 mM). (c) Nyquist plot of graphite/SrPdO3/Aunano electrode and bare graphite (Inset
figure: in 5 mM glucose/0.1 M NaOH at the steady-state potential (0.100 V for bare graphite and 0.400 V for the proposed
sensor)). (Black circles represent the experimental measurements and dash red lines with cross symbols represent the com-
puter fitting of impedance spectra). Frequency range: 0.1–100,000 Hz. (d) Chronoamperogram of graphite/SrPdO3/Aunano

electrode at the steady-state potential of glucose (0.400 V) in 5 mM glucose/0.1 M NaOH (Inset figure: the same study at the
oxidation potential of glucose (0.050 V)). (Reproduced with permission from [93]. Copyright Elsevier, 2015).

On the other hand, the LSV method (Figure 3b [93]), which is similar to the CV method,
scans the potential monotonically on the WE. With the LSV method, the corresponding
polarization current at different potentials could be detected. The Randles-Sevcik equa-
tion [94,95], which is used to describe the effect of scan rate on the peak current, is used for
the analysis of the LSV method. However, the LSV method is less often conducted for the
characterization and investigation of the non-enzymatic glucose sensors compared to the
aforementioned CV method.
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In the case of the EIS method (Figure 3c [93]), the electrochemical impedance is usually
measured by applying an AC potential to an electrochemical cell and the corresponding
current through the cell is measured. A small sinusoidal potential excitation is often used
as the applied AC potential, and the response to this applied potential would be an AC
current signal, which can be analyzed as a sum of sinusoidal functions. Therefore, by ma-
nipulating the alternating potential of the electrode to make the alternating current change
in accordance with the sinusoidal wave function in a small amplitude, the alternating
current impedance of the electrode could be measured. The impedance of the examined
electrode could be obtained for the determination of its electrical conductivity via the EIS
method. The EIS method is usually utilized to characterize the assembly of the sensing
materials. Whether the functional materials are properly synthesized on the substrate
surface or not could be recognized by this EIS method via the analysis of the change of
impedance. The effects of each material on the electrical conductivity of the electrode are
also available. Since the impedance also indicates the efficiency of electron transfer, the
EIS method could also be a facile method to evaluate the performance of the synthesized
sensing electrode.

The amperometric technique (Figure 3d [93]), which is widely used in the field of
non-enzymatic glucose-sensing, is based on the measurement of electric current as a
function of time (i-t) when a constant electric potential is applied to the electrochemical
cell. The dynamic reaction process of the electrode could be obtained via amperometric
techniques, which are frequently utilized for the examination of various performances of the
glucose-sensing materials. Firstly, for example, the sensitivity of the sensing material could
be investigated by continuously introducing glucose into the electrochemical cell while
maintaining the potential of the WE at a specific constant potential. Secondly, the selectivity
of the sensing materials could also be analyzed by reading the corresponding responses
caused by the introduction of glucose and interfering molecules into the electrochemical
cell. Thirdly, the response time could also be determined by reading the current plateau
after introducing glucose molecules into the electrolyte. Lastly, further analysis could also
be achieved by the amperometric technique, which is considered a promising method for
the investigation and examination of the non-enzymatic glucose sensor.

4. Mechanisms for Glucose-Sensing in Non-Enzymatic Electrodes

The fundamental concept for glucose-sensing is the electro-oxidation reactions of
glucose on the electroactive materials, which are synthesized on the electrode substrate.
Hence, the flow of the electrons from the glucose to the external circuit is detected [96–98].
In the case of the enzymatic glucose sensors, enzymes, such as GOx or GDH, play an
important role in the aforementioned oxidation of glucose [99–101]. On the other hand, in
the case of the non-enzymatic glucose sensor, non-organic materials, such as metals, alloys,
and/or their derivatives (i.e., oxides, hydroxides, etc.), trigger the oxidation reactions of
glucose [34–46].

The mechanisms for the non-enzymatic glucose sensor could be generally classified
into two different manners. The first model, which is known as the “Activated Chemisorp-
tion Model”, was proposed by Pletcher [102] in 1984. An illustration of the mechanism is
shown in Figure 4. Here, C1 indicates the hemiacetalic carbon atom, while R suggests the
remaining part of the glucose molecule.
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4.1. Activated Chemisorption Model (First Model)

In the case of the “activated chemisorption model”, it was claimed that the oxidation
reaction of glucose molecule is firstly initiated through the adsorption of the glucose on
the surface of the electrode (Figure 4a), which is an electroactive material. Secondly, a
weak bonding between the glucose molecule and the substrate surface (dotted blue line)
is formed. Meanwhile, the hydrogen atom in the glucose molecule, which is connected
to the hemiacetal carbon, is extracted (dotted blue line) (Figure 4b). Thirdly, after the
weak bonding between the hemiacetal carbon and the electrode surface as well as the
weak bonding between the hydrogen atom and the electrode surface are both formed
(dotted blue lines), the bonding between the hemiacetal carbon and the hydrogen atom is
broken (Figure 4c). Finally, desorption of the dehydrogenated glucose takes place since
there is a change in the oxidation state of the glucose molecule, and the glucose-metal
bond strength is mitigated (Figure 4d). Since the adsorption (formation of bond) and the
desorption (breaking of bond) take place in the overall reactions, the moderate bonding
strength between the glucose molecule and the surface of the electrode material is favored.

4.2. Incipient Hydrous Oxide Adatom Mediator (IHOAM) (Second Model)

The second model, which was reported by Burke [103] in 1994, is known as the
“incipient hydrous oxide adatom mediator (IHOAM) model”. It was claimed that the
reactivity of the electroactive material on the electrode surface could be attributed to its low
lattice stabilization [103–105]. The hydroxide ion (OH−) in the electrolyte adsorbs on the
electrode (i.e., metallic electrode) forming an incipient hydrous oxide (M-OHads), which is
believed to be the crucial mediator for the electro-oxidation reactions of glucose molecule
in the electrolyte. The glucose molecule is thereafter oxidized by the M-OHads mediator,
while the M-OHads is transformed back to its metallic state. Therefore, the overall reactions
could be divided into the oxidation reaction (red area on the left side) and the reduction
reaction (blue area on the right side), which are shown in Figure 5. Glucose molecules
are oxidized in the red area (left side), the oxidation-reduction reactions are repeatedly
cycled in the electroactive materials (middle), and the corresponding reduction reactions
are shown in the blue area (right side).
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5. Systems of Electroactive Materials for the Sensing of Glucose

An illustration for the classification of the active materials in the glucose-sensing
electrode is shown in Figure 6. Firstly, proper substrates for the synthesis of the active
materials were chosen (Figure 6a). Metallic substrates, such as Ni [37], Cu [106], Pt [107],
Au [108], and alloys [109], are often utilized, while other non-metallic substrates, such as
indium-tin-oxide (ITO) [110] and glassy carbon (GC) [34], are also other choices. Some of
the substrates themselves (i.e., Pt, Au, and so forth) possess an electroactivity to the sensing
of glucose via electrochemical techniques. The electrocatalytic activity of the substrate
could be further improved by decorating the specific substrates with high electroactive
materials. It is also known that the crystal orientation affects the performances of the
electrodes [34,107]. Therefore, the selection of substrates for the growth of crystalline
materials could be a critical issue.

Secondly, for the purposes of the high surface area, supporting, and stability, support-
ing materials are usually fabricated for the enhancement of the performances of the elec-
troactive materials (Figure 6b). The carbon-based materials, such as graphene sheets [111],
graphene oxide (GO) [112], reduced graphene oxide (rGO) [113,114], and carbon nano-
based materials [115–118], are frequently used. Electrically conductive polymers, such as
polyaniline (PANI) [119,120] and polypyrrole (PPy) [121] are also promising candidates for
the supporting materials due to their low cost, large surface area, and manipulatable prop-
erties by functionalization treatments [122]. On the other hand, inorganic materials, such
as TiO2 nanotube array [123] and the CoOOH nanosheets [124], are also widely utilized. In
some of the studies, the substrate and the supporting material were not thoroughly inde-
pendent. Instead, the substrates and the supporting materials could be identical material.

The aforementioned substrates and supporting materials were classified as the “auxil-
iary materials” in Figure 6a,b. Meanwhile, the “electroactive materials”, which are listed
and discussed in the following sections, were categorized into five major different types in
Figure 6c–g. Finally, the crucial materials, which determine the performance of the glucose-
sensing electrodes, would be the electroactive materials (Figure 6c–g). There are many types
of electroactive material for the sensing of glucose by the electrochemical methods, such
as (1) metal materials and (2) alloy materials [34–37,48–50,53,61,125–132] (Figure 6c,d),
(3) oxide materials and (4) hydroxide materials [39,40,51,52,54,55,58,59,64–66,133–139]
(Figure 6e,f), as well as (5) composite materials [38,42–47,56,57,62,63,67,140–144] (Figure 6g).
In this review article, the sensing materials, performances, and mechanisms of the aforemen-
tioned five major types of classifications are described separately in the following sections.
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6. Electroactive Materials of Mono-Metallic Materials
6.1. Crystal Structure Controlled Pd Nanocubes

The mono-metallic materials are considered to be the simplest materials for the electro-
oxidation of glucose. It is widely known that the electroactivity alters with the crystalline
planes [145–152]. For the effective utilization of the electrocatalytic activity of the electroac-
tive materials, controlling the growth of the crystalline for promoting the electrocatalytic
activity has attracted much attention. Ye et al. [34] worked on a comparison between the
uncontrolled polyhedral Pd nanoparticles (PdNPs) and the controlled mono-metallic Pd
nanocubes (PdNCs) with (100) plane.

Figure 7 shows the TEM images of morphologies and crystalline of (a) the PdNCs and
(b) the PdNPs. It is observed that the PdNCs possessed a cubic structure (Figure 7a), while
the PdNPs (Figure 7b) demonstrate a polygonal structure.
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Figure 8 shows the CV measurements for the explanation of the mechanisms of the
PdNCs and the PdNPs. Since glucose was not introduced into the 0.1 M NaOH electrolyte
in the CV measurement in Figure 8a, merely the reduction and oxidation reactions of the
PdNCs and the PdNPs electrodes could be observed in the CV curves. At peak R1 in the
negative scan (E = −0.76 V vs. Ag/AgCl) (Figure 8a), the reduction peak indicated the
chemical adsorption reaction of hydrogen on the metallic Pd surface (Equation (1)) [34],
which could be expressed by

Pd + H2O + e− → Pd−Hads + OH− (1)

On the other hand, in the positive sweep, the oxidation peak O1 at approximately
−0.8 V can be ascribed to the oxidation of the hydrogen atoms, which adsorbed on Pd in
the negative scan [153]. This could be expressed by Equation (2):

Pd−Hads + OH− → Pd + H2O + e− (2)

With the increment of the scanning potential in the positive sweep, a small oxidation
peak at approximately −0.42 V (peak O2) could be assigned to the desorption of the
absorbed H atoms, which diffused from the inner part of Pd to the surface of Pd [154].
Continuous oxidation reactions, which took place, with the increment of the potential from
−0.28 V to 0.25 V (oxidation reaction of O3), could be attributed to the following three
reactions (Equations (3)–(5)) [155]

Pd + OH− → Pd−OHads + e− (3)

Pd−OHads + OH− → Pd−O + H2O + e− (4)

Pd−OHads + Pd−OHads → Pd oxides + H2O (5)

Lastly, the electro-reduction reaction, which occurred at approximately −0.24 V (peak
R2) in the negative scan, could correspond to the electro-reduction reaction of the Pd-oxide
film on the Pd nanomaterials [156,157].
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Figure 8b shows the results of the current responses of the PdNCs (black curve) and
the PdNPs (red curve) electrodes under a certain potential range in 5 mM glucose in 0.1 mM
NaOH solution. Two anodic peaks (i.e., A1 and A2) were observed in the positive sweep
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of the CV method. Oxidation peak A1 indicates the electro-adsorption of glucose to the
surface of the Pd nanomaterials along with a release of one proton per glucose molecule,
which becomes to the Pd-glucoseads intermediate [158,159]. The reaction equation could be
described in Equation (6):

Pd + Glucose→ Pd−Glucoseads + H+ + e− (6)

With a further increment of the sweeping potential, another A2 oxidation peak is
observed at approximately −0.11 V in the positive scan. This oxidation reaction could be
attributed to the following reaction [49,160], which is expressed by Equation (7):

Pd−OH + Glucose→ Pd + Gluconolactone (7)

The Pd-OH intermediate in Equation (7) was the electroactive site for the electro-
oxidation of glucose. It has also been reported that the product after the electrochemical
glucose oxidation on the Pd electrode would be gluconolactone [161]. Therefore, the
gluconolactone was assigned to Equation (7). According to Equation (7), the large A2
oxidation peak could be considered as a criterion for the comparison of the electroactivity
of the PdNCs and the PdNPs. An enhanced current in the PdNCs indicated the promoted
electrocatalytic activity of the PdNCs than the PdNPs.

On the other hand, in the negative scan, the glucose in the electrolyte was oxidized
immediately upon the reduction reaction from the palladium oxide (i.e., PdO) to the
metallic Pd (i.e., Pd nanomaterials). Therefore, the C1 peak was a combination of the
aforementioned two reactions (i.e., the reduction reaction of PdO and Equation (7)) [158].

6.2. Mechanisms and Comparisons of the Mono-Metallic Materials

The aforementioned mechanisms for the series of the electro-oxidation of glucose
by the Pd nanomaterials could also be applied to other mono-metallic materials, such as
the Au micropillar array [162], Au nanoparticles [163], Pt nanoparticles [164], Co-based
metal-organic framework (Co-MOF) [165], Co-phosphate nanomaterials [166], Cu-based
metal-organic framework (Cu-MOF) [167], Cu nanoflowers [168], porous Ni foam [169],
and Ni nanowire array [170]. Generally, the noble metals, such as Au, Pd, and Pt, are
used in their metallic state while the transition metals, such as Co, Cu, and Ni, are mostly
used in their oxidation forms, which are discussed in the following sections. The mecha-
nisms of the frequently seen mono-metallic (a) Au [162,163], (b) Pd [34,171], (c) Pt [164],
(d) Co [110,165,166], (e) Cu [167,168], and (f) Ni [169,170] materials are summarized in
Table 1. Besides, the general reaction mechanisms for the formation of the electroactive in-
termediates and the electro-oxidation of glucose are also shown and compared in Table 1g.

In Table 1, it can be found that, although there are some differences among the
formation of the electroactive intermediates, the general chemical reaction is the oxidation
of the metals from their metallic state to the oxidized state, which could be the metal-oxide
and/or the metal-hydroxide compounds. Besides the reaction from the metallic form
to the oxidized form, some of the metal-oxide and/or the metal-hydroxide compounds
could be further oxidized into their high oxidation state. For example, CuO could be
further oxidized into CuOOH or Cu(OH)4

− compounds [167,168], while NiO and Ni(OH)2
could be further oxidized to the NiOOH compound [169,170]. In the case of Cu, the
electroactive intermediate for glucose oxidation would be the Cu(III) molecules. Similarly,
the electroactive intermediate would be the Ni(III) in the case of Ni. Again, the oxidized
transition metals, such as Co3O4, CuO, Fe2O3, NiO, and so forth, which were often utilized
as the electrocatalyst directly due to the stability issues, are discussed in Sections 8 and 9.

It was also found that the products could vary while the electroactive materials altered.
For example, gluconolactone was obtained as the product when the electroactive materials
are Au, Pd, Pt, Co, and Ni, while gluconic acid has been claimed as the product when Cu
was used as the electroactive material.
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Table 1. The formation mechanisms of the electroactive intermediates and the electro-oxidation of glucose in the alkaline
solution by the electroactive materials of the mono-metallic (a) Au [162,163], (b) Pd [34,171], (c) Pt [164], (d) Co [110,165,166],
(e) Cu [167,168], and (f) Ni [169,170]. The general mechanisms for the formation of the electroactive intermediates and the
electro-oxidation of glucose in the alkaline solution are also summarized and shown in (g).

Electrodes Chemical Reactions and Mechanisms

(a) Au
[162,163]

• Formation of electroactive intermediate
Au + OH− → Au−OHads + e−

• Electro-oxidation of glucose
Au−OHads + Glucose→ Au + Gluconolactone

(b) Pd
[34,171]

• Formation of electroactive intermediate: step 1 (Pd(0))→ Pd(I))
Pd + OH− → Pd−OHads + e−

• Electrooxidation reaction of Pd: step 2 (Pd(I))→ Pd(II))
Pd−OHads + Pd−OHads → Pd oxides + H2O

• Electro-oxidation of glucose
Pd−OHads + Glucose→ Pd + Gluconolactone

(c) Pt
[164]

• Electro-oxidation reaction of Pt: step 1 (Pt(0)→ Pt(II))
Pt + 2OH− → Pt(OH)2 + 2e−

• Formation of electroactive intermediate: step 2 (Pt(II)→ Pt(IV))
Pt(OH)2 + 2OH− → PtO(OH)2 + H2O + 2e−

• Electro-oxidation of glucose
PtO(OH)2 + Glucose→ Pt(OH)2 + Gluconolactone

(d) Co
[110,165,166]

• Electro-oxidation reaction of Co: step 1 (Co(0)→ Co(II))
Co + 2OH− → Co(OH)2 + 2e−

• Formation of electroactive intermediate: step 2 (Co(II)→ Co(III))
Co(OH)2 + OH− → CoOOH + H2O + e−

• Formation of electroactive intermediate: step 3 (Co(III)→ Co(IV))
CoOOH + OH− → CoO2 + H2O + e−

• Electro-oxidation of glucose
CoOOH + Glucose→ Co(OH)2 + Gluconolactone

or
CoO2 + Glucose→ CoOOH + Gluconolactone

(e) Cu
[167,168]

• Electro-oxidation reaction of Cu: step 1 (Cu(0)→ Cu(II))
Cu + 2OH− → CuO + H2O + 2e−

or
Cu + 2OH− → Cu(OH)2 + 2e−

• Formation of electroactive intermediates: step 2 (Cu(II)→ Cu(III))
CuO + OH− → CuOOH + e−

or
CuO + H2O + 2OH− → Cu(OH)−4 + e−

• Electro-oxidation of glucose
Cu(III) + Glucose→ Cu(II) + Gluconic acid

(f) Ni
[169,170]

• Electro-oxidation reaction of Ni: step 1 (Ni(0)→ Ni(II))
Ni + 2OH− → NiO + H2O + 2e−

or
Ni + 2OH− → Ni(OH)2 + 2e−

• Formation of electroactive intermediates: step 2 (Ni(II)→ Ni(III))
NiO + OH− → NiOOH + e−

or
Ni(OH)2 + OH− → NiOOH + H2O + e−

• Electro-oxidation of glucose
NiOOH + Glucose→ Ni(OH)2 + Gluconolactone



Electrochem 2021, 2 359

Table 1. Cont.

Electrodes Chemical Reactions and Mechanisms

(g) General

• Formation of electroactive intermediates
M(LOS) + OH− → M(MOS) + e−

and/or
M(MOS) + OH− → M(HOS) + e−

• Electro-oxidation of glucose
M(HOS) + Glucose→ M(LOS) + Products

where
M = Mono-metal

LOS = Low oxidation state
MOS = Medium oxidation state

HOS = High oxidation state
Products = Glucose derivatives

In Section 6.1, the mechanisms for the series of the electro-oxidation of the glucose in
the alkaline solution by the Pd nanomaterials [34] are reviewed. In addition, the similar
mechanisms of the noble metals and the transition metals in their mono-metallic forms are
also listed, summarized, and compared [34,110,162–170]. A general reaction mechanism
was summarized and expressed in Table 1g. Moreover, the performances of the non-
enzymatic glucose sensors, which were composed of the noble metals (i.e., Au, Pd, and Pt)
and transition metals (i.e., Co, Cu, and Ni), within this decade are listed and compared in
Tables 2 and 3, respectively. Here, it was found that although the transition metal series
performed relatively high sensitivity, the operation potential is three times higher than
that of the noble metals. The average operation potential of the transition metal series
(Table 3) is 0.54 V (with respect to Ag/AgCl), while the average operation potential of the
noble metal series (Table 2) is 0.17 V. One could also discover that the linear range of the
transition metal series is narrower than that of the noble metal series. For balancing the
various performances, such as sensitivity, linear range, limit of detection (LOD), and other
behaviors, bi-metallic electrodes have been also widely studied. The bi-metallic (alloy)
electrodes are reviewed in Section 7.

Table 2. Electrodes for the sensing of glucose by the noble mono-metallic (a) Au, (b) Pd, and (c) Pt materials within this
decade. The performances are compared in terms of sensitivity, linear range, limit of detection (LOD), and working potential.
The working potentials were based on the reference electrode of Ag/AgCl.

Electrode
[Electrolyte]

Sensitivity
(µA mM−1 cm−2)

Linear
Range (mM) LOD (µM) Working

Potential (V) *
Year

[Reference]

(a) Mono-metallic Au electrodes

Dendrite Au/paper fiber
[0.1 M NaOH] 30.0 0.01–15 0.6 +0.60 2020 [172]

Au NP/N-doped GCNTs/GCE
[0.1 M NaOH] 0.98 0.002–19.6 0.5 +0.20 2018 [173]

Mesoporous Au/Au-Si electrode
[0.1 M NaOH] 291.6 0.0–10 4.13 +0.20 2017 [174]

Au NPs-MWCNTs/AuE
[0.05 M NaOH] 27.7 0.001–1.0 0.5 +0.20 2017 [116]

Au nanocages/GCE
[0.2 M NaOH] 2131 1–9 100 – 2016 [175]

Pine-like nano-Au/AuE
[0.1 M NaOH] 776.9 0.02–0.24 3.39 +0.07 2016 [176]

Au NPs/GCE
[1 M NaOH] 87.5 0.1–25 50 +0.24 2014 [177]
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Table 2. Cont.

Electrode
[Electrolyte]

Sensitivity
(µA mM−1 cm−2)

Linear
Range (mM) LOD (µM) Working

Potential (V) *
Year

[Reference]

Au NPs/GCE
[1 M NaOH] 87.5 0.1–25 50 +0.24 2014 [177]

Au NPs-GO nanoribbons/Carbon sheet
[0.1 M PBS]

59.1
31.4

0.005–4.92
4.92–10 5 +0.20 2014 [178]

Nano Au-CNTs/GCE
[0.01 M PBS] 25 0–50 100 +0.39 2014 [179]

Au MPA/Si
[0.01 M PBS] 13.2 0.5–9 60 – 2012 [162]

(b) Mono-metallic Pd electrodes

PBTh-Pd particles/ITO
[0.1 M NaOH] 5620 0.04–0.4 7 +0.60 2020 [180]

Pd NPs-GN-MWCNTs/GCE
[0.1 M NaOH]

83.0
52.9

0.025–10
10–100 8 −0.1 2019 [181]

GO-PAA-Pd NPs/SPCE
[0.1 M NaOH]

75
37

0.05–15
15–60 22 −0.1 2019 [171]

Pd NPs-CSP/GCE
[0.1 M NaOH] 17.7 1–8 237 −0.05 2018 [182]

Pd NPs-halloysite nanotubes/GCE
[0.1 M NaOH]

362.9
86.3

0.0005–2
2–15 0.43 +0.45 2016 [183]

Porous Pd NTs/GCE
[0.1 M NaOH] 6.58 0.005–10 1 +0.45 2015 [184]

Pd NPs-IFMC/GCE
[0.15 M NaOH] – 1–55 200 +0.40 2015 [185]

Pd nanocubes/GCE
[0.1 M NaOH] 34 1–10 – −0.05 2015 [34]

Pd NPs-MWCNTs/GCE
[0.1 M NaOH] 1275 1–22 0.2 −0.4 2014 [186]

Pd NPs-MWCNTs/GCE
[1 M NaOH] 11 1–10 – +0.025 2013 [187]

(c) Mono-metallic Pt electrodes

GFs Pt/GCE
[0.1 M NaOH]

46,060.9
205.2

0.0001–0.01
0.01–20 0.03 −0.15 2019 [164]

Pt CNs/FTO
[0.1 M NaOH] 20.75 0.33–12.5 0.7 +0.2 2018 [188]

Pt particles-PANI/PtE
[0.1 M NaOH] 215.8 0.1–12 10 +0.02 2018 [189]

Nanoporous Pt/PtE
[0.5 M H2SO4] 5.67 1–10 800 +0.4 2017 [190]

Pt NPs-GOH/GCE
[0.1 M NaOH] 137.4 5–20 – +0.1 2015 [131]

Pt nanoclusters-graphene/GCE
[0.1 M PBS] 1.21 1–25 30 +0.05 2015 [111]

Pt NFs-GO/GCE
[0.05 M PBS]

1.26
0.64

0.002–10.3
10.3–20.3 2 +0.52 2013 [112]

Pt-PGA/GCE
[0.2 M PBS] 0.88 0.05–5.95 11 +0.35 2013 [191]
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Table 2. Cont.

Electrode
[Electrolyte]

Sensitivity
(µA mM−1 cm−2)

Linear
Range (mM) LOD (µM) Working

Potential (V) *
Year

[Reference]

(c) Mono-metallic Pt electrodes

Pt-MWCNTs/GCE
[0.1 M NaOH] 106 Up to 2.4 – −0.25 2013 [192]

Pt NFs-MWCNT/AuE
[0.2 M PBS] 1.87 1–16 48 – 2012 [193]

* All potentials are with respect to the Ag/AgCl reference electrode. Abbreviation: AuE: Au electrode; CNTs: Carbon nanotubes; CSP:
Cynomorium songaricum polysaccharides; FTO: Fluorine-doped tin oxide; GCE: Glassy carbon electrode; GCNTs: Graphene-carbon
nanotube; GF: Graphene framework; GN: Graphene nanoplates; GO: Graphene oxide; GOH: Graphene oxide hydrogel; LOD: limit of
detection; MPA: Micropillar array; MWCNTs: Multiwalled carbon nanotubes; NCs: Nanocubes; NFs: Nano flowers; NPs: Nanoparticles;
NTs: Nanotubes; PAA: Poly(acrylic acid); PANI: Polyaniline; PBS: Phosphate-buffered saline; PBTh: Polybithiophene; PtE: Pt electrode;
SPCE: Screen-printed carbon electrode.

Table 3. Electrodes for the sensing of glucose by the transition mono-metallic (a) Co, (b) Cu, and (c) Ni materials within
this decade. The performances are compared in terms of sensitivity, linear range, limit of detection (LOD), and working
potential. The working potentials are based on the reference electrode of Ag/AgCl.

Electrode
[Electrolyte]

Sensitivity
(µA mM−1 cm−2)

Linear
Range (mM)

LOD
(µM)

Working
Potential (V) *

Year
[Reference]

(a) Mono-metallic Co electrodes

Co-MOF/GCE
[0.1 M NaOH] 2860 1.0–1300.0 0.19 – 2021 [194]

Co-PO-MA/NF
[0.1 M NaOH] 3550 0.001–1.16 1 +0.55 2020 [195]

CoPc-graphene-IL/SPCE
[0.1 M NaOH] – 0.01–1.3 0.67 – 2018 [196]

Co3N NA/TM
[0.1 M NaOH] 3325.6 0.0001–2.5 0.05 +0.54 2018 [197]

Co-phosphate nanostructures/GCE
[0.1 M PBS] 7900 1–30 3 × 10−4 +0.65 2018 [166]

Co4N-NSs/GCE
[0.1 M NaOH] 1137.2 0.6–10 0.1 +0.55 2018 [198]

Co-phosphide NA/TM
[0.1 M NaOH] 5168.6 5 × 10−4–1.5 0.1 +0.54 2017 [199]

Co-MWCNTs nanocomposite/MSPs
[0.1 M NaOH] 727.4 0.005–0.1

0.2–3.6
0.009

0.3 +0.43 2015 [200]

Co NPs/graphene
[0.1 M NaOH] 4700 0.00167–0.47 0.05 +0.54 2015 [201]

Co NPs/ITO
[1 M NaOH] 1720 0.005–0.18 0.25 +0.59 2014 [110]
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Table 3. Cont.

Electrode
[Electrolyte]

Sensitivity
(µA mM−1 cm−2)

Linear
Range (mM)

LOD
(µM)

Working
Potential (V) *

Year
[Reference]

(b) Mono-metallic Cu electrodes

Cu NPs-LIG/PIFs
[0.1 M NaOH] 495 0.001–6 0.39 +0.50 2020 [125]

Cu-MOF/GCE
[0.01 M NaOH] 89 0.01–3.5 0.0105 +0.55 2018 [167]

Cu NPs-N-graphene/GCE
[0.1 M NaOH] 4846.9 1 × 10−5–0.1 0.01 +0.60 2017 [128]

Cu framework/Sandpaper
[0.1 M NaOH] 2165.5 0.001–4.6 0.03 +0.45 2017 [202]

Cu NWs/rGO
[0.1 M NaOH] 1625 Up to 11 0.2 +0.58 2016 [203]

Cu-PSi/CPE
[0.1 M NaOH] – 0.001–0.19

0.19–2.3 0.2 +0.55 2014 [143]

Cu-N-graphene/GCE
[0.1 M NaOH] 48.1 0.004–4.5 1.3 +0.55 2014 [204]

Cu NWs-MWCNTs/GCE
[0.1 M NaOH] 1995 Up to 3 0.26 +0.55 2013 [205]

Cu NWs-Nafion/GCE
[0.05 M NaOH] 420.3 Up to 3 0.035 +0.60 2012 [139]

Cu NPs-graphene/GCE
[0.1 M NaOH] 607 0.005–1.4 0.2 +0.55 2012 [206]

(c) Mono-metallic Ni electrodes

Ni-C/SPCE
[0.1 M KOH] 670 0.02–0.5 8 – 2018 [127]

Ni plasma-modified graphene/GCE
[0.1 M NaOH] 2213 0.1–3 1 +0.60 2017 [207]

Ni3S2/NF
[0.5 M NaOH] 16,460 5 × 10−4–3 0.82 +0.55 2016 [208]

NiS/ITO
[0.1 M NaOH] 7430 0.005–0.045 0.32 +0.50 2015 [209]

CNT-Ni/SiO2
[0.1 M NaOH] 813 0.001–0.11 1 +0.50 2015 [210]

3D Ni3S2 NSs arrays/NF
[0.5 M NaOH] 6148 0.005–3 1.2 +0.49 2014 [211]

Ni3S2/MWCNTs
[0.1 M NaOH] 3345 0.03–0.5 1 +0.54 2014 [212]

3D porous Ni-SPCE/ITO
[0.1 M NaOH] 2900 5 × 10−4–4 0.07 +0.50 2013 [213]

Ni-MWCNTs/GCE
[0.1 M NaOH] 67.2 0.0032–17.5 0.89 +0.60 2012 [132]

Ni NPs-MWCNTs/GCE
[0.1 M NaOH] 1438 0.001–1 0.5 +0.45 2011 [214]

* All potentials are with respect to the Ag/AgCl reference electrode. Abbreviation: CNT: Carbon nanotube; CPE: Carbon paste electrode;
GCE: Glassy carbon electrode; IL: Ionic liquid; ITO: Indium tin oxide; LIG: Laser-induced graphene; MA: Micro-sheet arrays; MOF:
Metal-organic framework; MSPs: Mild steel plates; MWCNTs: Multiwalled carbon nanotubes; NA: Nanowire array; NF: Ni foam; NPs:
Nanoparticles; NSs: Nanosheets; NWs: Nanowires; PBS: Phosphate-buffered saline; Pc: Phthalocyanine; PIFs: Polyimide films; PO:
Phosphate; PSi: Porous silicon; rGO: Reduced graphene oxide; SPCE: Screen-printed carbon electrode; TM: Titanium mesh.
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7. Electroactive Materials of Bi-Metallic Materials (Alloys)

As mentioned in the previous sections, to date, the mono-metallic electrocatalysts
for the electro-oxidation of glucose have been widely investigated due to their relatively
simple fabrication method, time-effective procedures, and proper electrocatalytic activ-
ity for the detection of glucose by the electrochemical technique. However, there still
remains some dilemma in the mono-metallic electrocatalysts for the electro-oxidation of
glucose. For example, Pt performs high electrocatalytic activity to the electro-oxidation of
glucose. Nevertheless, the surface of the Pt active sites would be poisoned by the interme-
diates, which are generated from the electro-oxidation of glucose molecules [105,215,216].
Transition metal-based materials, such as Co, Cu, and Ni, demonstrate high sensitivity.
However, a high detection potential is necessary for triggering the electro-oxidation of
glucose [132,207,208].

Given that there remain some difficulties in the mono-metallic electrocatalysts, the bi-
metallic electrocatalysts have also been studied to solve the aforementioned dilemma [217–228].
Various combinations of the metals are present, such as Ag-Cu [217], Ag-Pd [218], Ag-
Pt [219], Au-Pt [220], Co-Pt [221], Cu-Ni [222,223], Ni-Fe [224], Ni-Pt [225,226], Pd-Pt [227],
and Pt-Ru [228]. According to the references, the integrations of different metals could
be noble-noble, noble-transition, and transition-transition for tailoring each other. An
example is shown in Section 7.1 to reveal the enhancements of the electrocatalytic activity
by taking the advantage of the bi-metallic material. It is necessary to mention that the
term “bi-metallic” indicates the materials, which are composed of more than one metal
regardless of the structures of the materials. For example, the often-seen core-shell structure
is also classified as a bi-metallic electroactive material in this review article.

7.1. Bi-Metallic Pt-Au Alloy Nanomaterials

Bi-metallic Pt-Au nanomaterials have been studied by Lin et al. [229] to overcome
the difficulties in the mono-metallic materials. Again, Pt has been widely practiced in the
non-enzymatic glucose sensor. However, it is well-known that Pt-based electrodes suffer
from the drawbacks of poisoning effect because of the adsorption of the chloride ions from
the human body fluid or blood and also the chemisorption of the intermediates from the
products of electro-oxidation of glucose [230]. These chemical species are unavoidable in
the reactions of the electro-oxidation of glucose. On the other hand, it is also known that the
non-enzymatic glucose sensors possess relatively low selectivity than that of the enzymatic
glucose sensors due to the possible interferences caused by simultaneous oxidation of
various substances [231]. Integration of the Pt element with other materials could be
a facile method to overcome the poisoning drawback of the Pt catalyst to promote the
overall electrocatalytic activity, and also to enhance the selectivity for the non-enzymatic
glucose sensors.

As mentioned in Section 7, the combination variety of the materials could be wide [217–228].
Among them, the bi-metallic Pt-Au nanomaterials are one of the promising candidates
due to the following reasons, firstly, the anti-poisoning effect is realized effectively by
the combination of the Pt-Au binary system. Secondly, the electrocatalytic activity could
also be enhanced by the integration of Pt and Au metals. Thirdly, the performance of the
non-enzymatic glucose sensor could be simply tailored via the fine-tuning of the size [232],
shape [233], chemical composition [234], and structure [235] of the binary materials. Be-
sides the abovementioned advantages, the current response and the selectivity [220] were
reported to be greatly enhanced due to the synergistic effect [236]. Lastly, since Pt and
Au both possess highly electrical conductivity, relatively low applied potential is required
compared to other materials [237]. Based on the aforementioned truths, the electrode com-
posed of the bi-metallic Pt-Au is considered as a potential material for the electro-oxidation
of glucose by the electrochemical technique.
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7.2. Mechanisms of Electro-oxidation of Glucose by Pt and Pt-Au Electrocatalysts

The mechanisms of the electro-oxidation of glucose by different electrocatalysts are
listed in Table 1. Lin et al. [229] also illustrated the reaction mechanisms, which are shown
in Figure 9, and the descriptions for the overall electro-oxidation of glucose are elucidated
and summarized in the following steps.
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Step 1: The chemisorption of the C-OH functional group to the surface of the Pt
electrocatalyst and the C-OH functional group produces the C-OHads-Pt showing a weak
bonding between the C-OH functional group and the Pt surface.

Step 2: The adsorbed C-OH functional group on the Pt electrode is oxidized on the Pt
surface while the potential is raised. After electro-oxidation, glucose thus turns into the
intermediate of gluconolactone and remains adsorbed on the Pt surface.

Step 3: The desorption of the adsorbed gluconolactone molecule takes place, and
more or less, the surface of the Pt electrode is freed from the adsorption of the intermedi-
ate molecules.

Step 4: Gluconolactone, which is one of the products from the electro-oxidation of the
glucose, could further react with OH− in the electrolyte and turn into its ionic state, such
as the C-OOR− species.

There is a small difference between the mechanism described by Lin et al. [229] and
Table 1. In Table 1, the active site of the Pt-OHads is generated by the adsorption of the
OH− ion in the electrolyte, while the Pt-OHads is generated by the adsorption of the C-OH
functional group in the glucose to the Pt surface. The critical step for the formation of the
Pt-OHads active site is well explained in both Table 1 and Figure 9.

It is known that Pt is a promising material for the electro-oxidation of glucose due
to its high electroactivity. However, some conventional problems still remain. There are
a few reasons for the explanation of the inactivated Pt electrode. Firstly, since a certain
potential should be applied to the working electrode, the formation of the Pt metallic
oxide layer could bring the inactivation to the working electrode. Secondly, since the C=O
functional group shows high affinity to the Pt electrode, the Pt active sites are blocked by
the intermediates and lose their electrocatalytic activity. The (1) passivation phenomenon
caused by the formation of metal oxides on the electroactive sites at certain potential and
the (2) poisoning effect from the aforementioned adsorption of the C=O functional group
on the electroactive sites resulted in the deteriorated performance of the electrocatalytic
activity in the electro-oxidation of glucose. Therefore, a solution to the dilemma should
be found.

In contrast with the Pt catalyst, although Au shows less electrocatalytic activity to the
electro-oxidation of glucose than Pt [238], the anti-poisoning effect of Au is known to be
outstanding [61,239]. With the introduction of Au into the Pt electrode as the secondary
element, the surface energy could be effectively regulated and a remarkable anti-poisoning
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effect could be realized [230,240]. Hence, the overall electrocatalytic activity to the electro-
oxidation of glucose was promoted. In addition, due to the enhanced electrocatalytic
activity of the electrode, the detection potential for glucose could be lowered and the
undesired oxidation of the electrode thereby suppressed. The performances of the elec-
trocatalytic activity and the resistance to the poisoning are greatly affected by the surface
energy of the electrode, which could be further tuned by tailoring the chemical composi-
tion [220,234], the atomic ratio between Pt and Au [234,241], and structure [235,242]. Based
on the abovementioned premise, the performances of the electro-oxidation of glucose,
such as the electrocatalytic activity, sensitivity, and detection potential, are foreseen to be
promoted by the integration of Au into Pt electrode.

7.3. Characterizations of the Bi-Metallic Pt-Au Electrocatalysts

The microstructure images of the bi-metallic Pt-Au electrocatalysts are shown in
Figure 10. The SEM micrograph of the PtAu (1:1)/C electrode is shown in Figure 10a and the
TEM image is inserted into the upper-right corner. Judging from the SEM and TEM images,
the spherical nanoparticles of the bi-metallic Pt-Au alloy, which were homogeneously
dispersed, possessed an average diameter of 3–5 nm. The d-spacing of the adjacent fringes
for the cores of the spherical Pt-Au alloy NPs, which were 2.3 Å and 2.0 Å, respectively,
corresponded to the (111) and (200) planes of the face-centered cubic (fcc) PtAu (1:1) alloy
(Figure 10b) [243–245].
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Figure 10. (a) SEM micrograph of the PtAu (1:1)/C modified electrode surface (Inserted figure at the
upper-right corner: TEM image of the PtAu (1:1) alloy nanoparticle.) and (b) corresponding high-
resolution transmission electron microscopy (HRTEM). (Reproduced with permission from [229].
Copyright Elsevier, 2020).

The electro-oxidation of glucose analyzed by the LSV method on the (a) Pt/C, (b) Au/C,
and (c) PtAu (1:1)/C electrodes are shown in Figure 11. In the Pt/C electrode (Figure 11a),
two oxidation peaks, which indicated the electro-oxidation of glucose at −0.13 V and
+0.12 V, were observed as the glucose was introduced into the alkaline electrolyte (i.e., blue
and red curves). In the case of the Au/C electrode (Figure 11b), two similar oxidation
peaks were also observed at approximately −0.13 V and +0.27 V, possessing a relatively
high current response. On the other hand, different from these two pure Pt and Au metallic
electrodes, the PtAu (1:1)/C electrode exhibited a significantly enhanced current response
to the electro-oxidation of glucose (Figure 11c). The well-defined two oxidation peaks were
observed at relatively negative potentials of −0.33 V and +0.06 V, respectively. The signifi-
cant enhancement of the current response could be attributed to the promoted catalytic
properties and the anti-poisoning effect of this bi-metallic Pt-Au alloy electrode during the
process of the electro-oxidation of glucose.
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Figure 11. LSV measurements of the (a) Pt/C, (b) Au/C, and (c) PtAu (1:1)/C in 0.08 M NaOH with absence (black
curve) and presence (blue, red, and pink curves) of 10 mM glucose. (Reproduced with permission from [229]. Copyright
Elsevier, 2015).

An illustration of the synergistic effect of metallic Pt and Au was shown in Figure 12.
In the bi-metallic Pt-Au electrode, Pt plays a role in the dehydrogenation of glucose (step
1 in Figure 9), which leads to a strong electrocatalytic activity for the electro-oxidation of
glucose. With the integration of Au to Pt, Au shifted the d-band center of Pt outward to the
Fermi level [246]. Therefore, the surface energy of Pt was reduced [247,248]. The lowered
surface energy of Pt could weaken the adsorption strength between Pt and gluconolactone.
Hence, the anti-poisoning effect was achieved.
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The bi-metallic Pt-Au in different ratios of Pt:Au = 1:2, 1:1, 1:0.5, and 1:0.25 on the
nano-carbon carrier were also examined (Figure 13a). The well-defined two oxidation
peaks at approximately −0.10 and +0.27 V were found in all LSV curves in Figure 13a. The
current response increased with the augmentation of the Au ratio and the results agreed
well with those examinations in Figure 11. The oxidation peak at around +0.27 V shifted
positively with the increment of the Au ratio due to the weaker electrocatalytic activity
of Au than that of Pt to the electro-oxidation of glucose. These results also followed the
analysis in Figure 11 well. On the other hand, the oxidation peak at approximately −0.10 V
increased as the Au amount increased, reached its maximum current response as the Pt:Au
ratio was 1:1, and decreased again with further augmentation of the Au concentration. The
maximum current response of this oxidation peak at −0.10 V of the PtAu (1:1) electrode
was due to the balance between the Pt and Au. Therefore, the PtAu (1:1)/C electrode was
considered to be the optimized one.
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Figure 13. (a) LSV measurements for the PtAu (1:x)/C electrodes with different Pt:Au ratios (i.e., x = 2,
1, 0.5, and 0.25) recorded in the 0.08 M NaOH containing 10 mM glucose. (b) LSV measurements
for the PtAu (1:1)/C with different metal loading in 0.08 M NaOH containing 10 mM glucose.
(Reproduced with permission from [229]. Copyright Elsevier, 2020).

Different loading amounts of metals at the ratio of Pt:Au = 1:1 were also examined
for further optimization of the electrocatalytic activity of the electrode by similar LSV
measurements (Figure 13b). The loading amounts of 0.1, 0.4, 0.7, 1, 3, and 4 wt.% Pt
were conducted.

7.4. Comparison of the Mono-Metallic and the Bi-Metallic Electrodes

The comparison amongst the bi-metallic materials is shown in Table 4. It was found
that, with the integration of the noble metals, the average detection potential of the (b) noble-
transition bi-metallic electrodes at +0.38 V was lower than that of the (c) transition-transition
bi-metallic electrodes at +0.48 V, while the (a) noble-noble bi-metallic electrodes demon-
strate the lowest average detection potential at +0.04 V. The average sensitivity of the
(c) transition-transition bi-metallic electrodes was also enhanced compared to those in
Table 3. The LOD was greatly enhanced by integrating the mono-noble metals (Table 2)
into the (a) noble-noble bi-metallic electrodes (Table 4a). To conclude, the performances
of the electrodes were generally enhanced by the integration of mono-metallic materials
(Tables 2 and 3) into the bi-metallic materials (Table 4). On the other hand, since the mecha-
nisms for the electro-oxidation of glucose are similar to those in the mono-metallic ones
(Tables 2 and 3), they are not explained in this section.

Table 4. The electrodes for the sensing of glucose by the (a) noble-noble, (b) noble-transition, and (c) transition-transition
bi-metallic materials within this decade. The performances are compared in terms of sensitivity, linear range, limit of
detection (LOD), and working potential. The working potentials are based on the reference electrode of Ag/AgCl.

Electrode
[Electrolyte]

Sensitivity
(µA mM−1 cm−2) Linear Range (mM) LOD

(µM)
Working

Potential (V) *
Year

[Reference]

(a) Noble-noble bi-metallic electrodes

Pt-Au-Carbon/GCE
[0.08 M NaOH] – 0.01–10 3 −0.28 2020 [229]

Pd@Pt CINPs
[0.1 M PB] 15.14 1–8.5 1.92 −0.10 2019 [249]

Honeycomb-like Au-Pt films/Si
[0.5 M KOH] 109.3 0.02–10 12.9 −0.01 2016 [250]

Ag-Pt hollow NPs/rGO
[0.2 M PBS] 129.3 0.003–7.72 1.8 +0.30 2016 [251]

Pd-Pt NCbs-rGO/GCE
[0.1 M NaOH] 170 0.3–6.8 41.1 −0.05 2016 [252]

Hollow Ag-Pt NPs/Carbon
[0.2 M PBS] 7 1–12 13 +0.30 2015 [219]
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Electrode
[Electrolyte]

Sensitivity
(µA mM−1 cm−2) Linear Range (mM) LOD

(µM)
Working

Potential (V) *
Year

[Reference]

Mesoporous Au-Pt NDs/GCE
[0.1 M NaOH] – 1 × 10−5–0.1 0.001 −0.35 2015 [253]

Pt3Pd NPs-rGO/GCE
[0.5 M H2SO4] 1.52 0.03–3 0.002 +0.11 2015 [254]

Pt-Pd NCbs-GNSs/GCE
[0.05 M PBS] 1.4 0.5–24.5 – +0.30 2014 [227]

Pt-Pd NTAs/Au electrode
[0.1 M PBS] 41.5 Up to 10 – +0.20 2014 [255]

(b) Noble-transition bi-metallic electrodes

Cu-Ag NCs/GCE
[0.1 M NaOH] 1340 0.01–30 0.6 +0.40 2020 [217]

Pd-Mn NPs-rGO/GCE
[0.1 M NaOH]

52.2
22.6

0.02–1.15
1.15–4.88 1.25 −0.05 2020 [256]

Pt-Ni@AC/GCE
[0.1 M NaOH] 40,900 0.025–12 0.052 – 2020 [257]

Pd-Ni NPs-rGO/GCE
[0.1 M NaOH] 37,500 0.05–1.1 0.15 – 2019 [258]

Ni@Pt-rGO/GCE
[0.1 M NaOH] – 0.008–10 8 +0.60 2018 [226]

Stone-like Pt-Ni NPs/GCE
[0.01 M PB] 40.17 0.5–40 0.35 +0.48 2018 [259]

Au-Ni multilayer NWA/ITO
[0.2 M NaOH]

3372
1906

2.5 × 10−4–2
2–5.5

0.1 +0.60 2017 [260]

Cu-Ag/NF
[0.5 M NaOH] 7745.7 0.005–3.5 0.08 +0.49 2015 [37]

Co@Pt core-shell NPs/GCE
[0.1 M PB] 2.26 1–30 300 0 2015 [261]

Pt-Ni NWs-PC/GCE
[0.1 M NaOH] 920 0.002–2 1.5 +0.50 2011 [225]

(c) Transition-transition bi-metallic electrodes

Ni-Fe NPs-PANI/FTO
[0.1 M NaOH] 1050 0.02–1 0.5 +0.55 2021 [224]

Ni@Cu-MOF/GCE
[0.1 M NaOH] 1703.3 0.005–2.5 1.67 – 2020 [262]

Cu-Ni/graphene sheets
[0.1 M NaOH]

314,285
17,857
1678

5 × 10−5–2.4 × 10−4

2.4 × 10−4–0.00233
0.00233–2.174

0.003 +0.66 2019 [263]

Ni-Co-MOF-NSA/Au electrode
[0.1 M NaOH] 684.4 0.001–8 0.29 +0.55 2019 [264]

Cu-Ni-NF/CNSA
[0.1 M NaOH] 17,120 0.2–2.72 0.067 +0.54 2018 [126]

PANI@Cu-Ni NCs/GCE
[0.1 M NaOH] 1030 0.1–5.6 0.2 +0.55 2018 [222]

Cu-Ni bi-metallic NCs/GCE
[0.1 M NaOH] 63.87 0.01–18 8 +0.51 2017 [223]
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Electrode
[Electrolyte]

Sensitivity
(µA mM−1 cm−2) Linear Range (mM) LOD

(µM)
Working

Potential (V) *
Year

[Reference]

(c) Transition-transition bi-metallic electrodes

Cu-Ni thin film/Cu substrate
[0.1 M NaOH] 240.1 0–10 – +0.50 2017 [265]

Ni-Co NWs-MWCNTs/GCE
[0.1 M NaOH] 695 0.005–10 1.2 +0.45 2016 [129]

Ni-Co-MSN/GCE
[0.1 M NaOH] 536.6 0.001–5 0.39 +0.50 2015 [142]

* All potentials are with respect to the Ag/AgCl reference electrode. Abbreviation: AC: Activated carbon; CINPs: Concave island
nanoparticles; CNSA: Carbon nanosheet array; FTO: Fluorine tin oxide; GCE: Glassy carbon electrode; GNSs: Graphene nanosheets; ITO:
Indium tin oxide; MOF: Metal-organic frameworks; MSN: Mesoporous silica nanoparticles; NCbs: Nanocubes; NCs:Nanocomposites; NDs:
Nanodendrites; NF: Nickel foam; NPs: Nanoparticles; NSA: Nanosheets array; NTAs: Nanotube arrays; NWA: Nanowire array; NWs:
Nanowires; PANI: Polyaniline; PB: Phosphate-buffer; PBS: Phosphate-buffered saline; PC: Polycarbonate; rGO: reduced graphene oxide.

7.5. A Prospective Approach to the Bi-Metallic Electrodes

Jonke et al. [266,267] and Schwartz et al. [268] have reported that the deposition of the
bi-metallic Au-Pd on the polyaniline (PANI) supporting material could be controlled at the
atomic level. In addition, the deposition sequence of the Au and Pd elements could also
be manipulated by the flow cell system, which was controlled by the flow regulator and
the potentiostat. It is further presented that the current response of the electro-oxidation
of the 2-propanol (C3H7OH) altered with the different configurations of the atomic Au-
Pd clusters [266,267]. The discrimination between the alcohol series, such as methanol,
ethanol, propanol, and butanol, has also been reported [269–272]. Although the articles
were concerned with the electro-oxidation of the alcohol series in the alkaline solution, the
reaction mechanisms are very similar to those of the electro-oxidation of glucose and the
interfering molecules, such as ascorbic acid (AA), uric acid (UA), dopamine (DA), fructose,
and so on. Therefore, it is considered that the atomic bi-metallic catalysts deposited
supporting material of PANI could be a promising material for the electro-oxidation of
glucose in the alkaline solution. In addition, according to the literature [266–272], the
isomers of the propanol, such as 1-propanol and 2-propanol, could also be recognized by
the atomic metal and/or alloy electrodes. It is thus deduced that the isomers of the glucose,
such as the α-D-glucose and the β-D-glucose are also expected to be recognized by the
atomic metal and/or alloy electrodes.

According to the aforementioned results, it is highly possible to enhance the elec-
trocatalytic activity, promote the anti-poisoning effect, and improve the selectivity of the
electrode materials for the electro-oxidation of glucose by combining the atomic deposition
of alloy systems via the flow cell system [266–272]. In addition, a great variety of the metals,
similar to those in Table 4, is considered to be realized by simply altering the compounds of
the metal salts in the electrolyte, such as KAuCl4, K2PdCl4, K2PtCl4, K2CoCl4, and KNiCl4.
Based on the abovementioned techniques, it cannot only reduce the usage of the metal
salts but also increase the electroactive surface area by shrinking down the size of the
electroactive catalysts.

A flow chart for the proposed research and the foreseen outcomes is shown in
Figure 14. The flow cell (transparent, light gray, and disk-shaped container), which is
connected to the flow rate controller and the potentiostat, is used for the deposition of
the atomic clusters of the metals or alloys (Figure 14a). The metal salt, such as KAuCl4,
K2PdCl4, K2PtCl4, K2CoCl4, and KNiCl4, flows in from the left-hand side inlet and the
remaining unconsumed metal salt flows out from the right-hand side outlet (light gray
tubes represent the inlet and outlet). The reference electrode (green bar) is inserted into the
flow cell from the top. The Pt counter electrode (dark gray square sheet) is clamped into the
flow cell. The glassy carbon electrode (GCE) is used as the working electrode (yellow stick
in the front), which is inserted from the front side of the flow cell. Prior to the deposition
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of the atomic clusters of the metals or alloys, a thin PANI film (blue network structure) is
electro-polymerized on the surface of GCE (Figure 14b). The aforementioned components
describe the flow cell system.
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Figure 14. (a) The flow cell system, which is connected to the flow controller and the potentiostat, is for the atomic deposition
of metal or alloy. (b) The glassy carbon electrode (GCE) (yellow color) is inserted into the front side of the flow cell and
the PANI (network structure and blue color) is deposited on the surface of GCE prior to the atomic deposition of metal
or alloy. (c) After the atomic deposition of metal or alloy on the PANI/GCE. (d) Illustration of the metal or alloy around
the functional group of PANI. (e) Close-up image of the metal or alloy around the functional group of PANI. (Au (golden
color) and Pd (gray color) are used as an example) (f) LSV curves of the electro-oxidation of glucose (light green color)
and interfering molecules (dark green color), such as AA, DA, and UA. (g) Current responses from the glucose and the
interfering molecules. (h) The choice of various elements and the possible outcomes from the different integration of
chemical composition and different configurations of the atomic clusters.

After the electro-deposition of PANI on GCE, the atomic clusters of metals or alloys
are deposited on the surface of PANI/GCE by the flow cell system ((Figure 14c). A close-up
figure around the functional group of PANI is shown in Figure 14d. A further close-up
figure at the functional group of PANI and the atomic cluster is shown in Figure 14e. The
atomic clusters of metals or alloys are bonded to the functional group of PANI. Here, two
atoms of Au (golden sphere) and Pd (gray sphere) were used as an example. Some expected
LSV curves of the glucose (light green curve) and the interfering molecules (dark green
curves), such as AA, DA, and UA, are shown in Figure 14f. The current responses from the
glucose (light green bar) and the interfering molecules (dark green bars), which are read
and quantified into numbers from the LSV curves of Figure 14f, are shown in Figure 14g.
High selectivity could be expected from the combination of the atomic Au-Pd clusters.
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Finally, by integrating different elements, the promoted performances (i.e., low detection
potential and high sensitivity) are foreseen to be realized (Figure 14h).

8. Electroactive Materials of Oxide Compounds

In Section 6, some of the transition metals are listed and elaborated. However, the long-
term stability of transition metals is considered to be low while the transition metals are
in their metallic states. This could be ascribed to the oxidation reaction of these transition
metals. Therefore, the electrocatalysts, which are composed of transition metals, are
usually coupled with carbon, nitrogen, sulfur, phosphorus, and so forth. For example, the
electrocatalysts of the Co3N [197], Co4N [198], Co-P [166,199], Cu-N [128,204], Ni-C [127],
Ni3S2 [207,211,212], and NiS [209] are often investigated compounds. Hence, transition
metals are usually utilized in their oxidized states such as Co3O4, CuO, NiO, and Fe2O3,
for solving the long-term stability difficulty. According to the mechanisms in Table 1, it
is also found that the metal-oxides are the necessary media for the electro-oxidation of
glucose. The mechanisms for the electro-oxidation of glucose by the transition metals have
been already discussed in Section 6.2. Therefore, the explanation was left out in this section.
Some of the literature concerning transition metal oxides within this decade are listed and
compared in Table 5.

Table 5. The electrodes for the sensing of glucose by the transition metal oxides of (a) Co, (b) Cu, and (c) Ni materials within
this decade. The performances are compared in terms of sensitivity, linear range, limit of detection (LOD), and working
potential. The working potentials are based on the reference electrode of Ag/AgCl.

Electrode
[Electrolyte]

Sensitivity
(µA mM−1 cm−2)

Linear Range
(mM)

LOD
(µM)

Working
Potential (V) *

Year
[Reference]

(a) Electrodes containing Co oxides

Co3O4 HAA/GCE
[0.1 M NaOH] 839.3 5.3 × 10−4–19 0.53 +0.60 2018 [273]

Co3O4-rGO/SPCE
[0.1 M KOH] 1315 0.001–0.5 0.4 +0.35 2018 [274]

Co3O4@graphene/GCE
[0.1 M NaOH] 628 0.02–8 0.04 +0.55 2017 [275]

Co3O4 porous film/GCE
[0.1 M NaOH] 366 Up to 3 1.0 +0.60 2016 [276]

Co3O4-HND/GCE
[0.1 M KOH] 708.4 2–6.06 0.58 +0.55 2016 [277]

Co3O4 NFs-GOH/GCE
[0.1 M NaOH] 492.8 0.25–10 – +0.62 2016 [278]

Co3O4/GCE-Nafion
[0.1 M NaOH] 1618.7 0.1–50 0.1 +0.5 2015 [279]

Co3O4 OMC/GCE
[0.1 M NaOH] 955.9 0.9–7 1.0 +0.55 2015 [280]

Co3O4 NWs/GCE
[0.1 M NaOH] 45.8 0.001–12 0.27 +0.20 2015 [281]

Co3O4 NFs/GCE
[0.5 M NaOH] 1440 0.005–12 0.08 +0.47 2013 [40]

(b) Electrodes containing Cu oxides

CuO MTs/GCE
[0.05 M NaOH]

992.1
541.8

0.001–1.164
1.164–5.664 0.31 +0.70 2019 [282]

CuO nanodisk/SPCE
[0.1 M KOH] 627.3 0.002–2.5 0.2 +0.60 2019 [283]
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Table 5. Cont.

Electrode
[Electrolyte]

Sensitivity
(µA mM−1 cm−2)

Linear Range
(mM)

LOD
(µM)

Working
Potential (V) *

Year
[Reference]

Cu3(BTC)2-derived CuO
nanorod/GCE
[0.1 M NaOH]

1523.5 Up to 1.25 1 +0.60 2019 [62]

Petal-like nano CuO/GCE
[0.05 M NaOH] 2634.4 5 × 10−4–2.67 0.26 +0.65 2018 [284]

CuO-PANI-NF/FTO
[0.1 M NaOH]

2800
1359

2.5 × 10−4–0.28
0.28–4.6

0.24 +0.6 2018 [120]

CuO biscuits/SPCE
[0.1 M NaOH] 308.7 Up to 4.03 0.1 +0.50 2017 [285]

CuO NWs/GCE
[0.05 M NaOH] 648.2 – 2 +0.55 2014 [286]

CuO-Cu2O/GCE
[0.1 M NaOH] 830 0.5–10 0.7 +0.60 2014 [287]

Dandelion-like CuO film/Cu foils
[0.1 M NaOH] 5368 0.005–1.6 1.2 +0.60 2014 [55]

CuO NSs/Au-coated glass
[0.1 M NaOH] 520 0.1–10 – +0.50 2013 [288]

(c) Electrodes containing Ni oxides

NiO nanostructures/Ni sheets
[0.1 M KCl + 0.5 M NaOH] 206.9 0.1–10 1.16 +0.55 2019 [134]

NiO-HAC/GCE
[0.1 M NaOH] 199.9 0.01–3.3 1.0 +0.55 2017 [289]

NiO NPs graphene NSs/GCE
[0.1 M NaOH] 666.7 0.005–4.2 5 +0.50 2016 [54]

Mesoporous NWas NiO/3D NF-G
[0.1 M NaOH] 3230 0.01–0.2 1 × 10−4 +0.55 2016 [290]

NiO-PPy/GCE
[0.1 M PBS]

1094.8
62.9

0.01–0.5
1–20 5.8 +0.58 2015 [122]

NiO NSks/GCE
[0.1 M NaOH] 1915 0.1–5.0 0.7 +0.48 2015 [291]

NiO HCs/GCE
[0.1 M NaOH] 2476.4 0.1–5.0 0.1 – 2015 [292]

3D NiO/NF
[0.5 M NaOH] 6657.5 0.005–5.5 0.46 +0.47 2013 [293]

NiO-SWCNT/ITO
[0.1 M NaOH] 907 0.001–0.9 0.3 +0.55 2013 [294]

NiO NF-GO/GCE
[0.1 M NaOH] 1100 0.002–0.6 0.77 +0.60 2012 [295]

* All potentials are with respect to the Ag/AgCl reference electrode. Abbreviation: 3D NF-G: reduced graphene oxide nanosheets coated
3D nickel foams; BTC: Benzene tricarboxylate; GCE: Glassy carbon electrode; GOH: graphene oxide hydrogels; HAA: Hollow hierarchical
architecture; HAC: Heteroatom-enriched activated carbon; HCs: Hollow cage-like nanostructures; HND: Hollow nanododecahedra; ITO:
Indium tin oxide; MTs: Microtubes; NF: Nickel foam; NFs: Nanofibers; NPs: Nanoparticles; NSk: Nanoskein; NSs: Nanosheets; NWas:
Nanowalls; NWs: Nanowires; PANI: Polyaniline; PBS: Phosphate-buffered saline; PPy: Polypyrrole; OMC: Ordered mesoporous carbon;
SPCE: Screen-printed carbon electrode; SWCNT: Single-walled carbon nanotubes.

According to Table 5, generally, Co3O4, CuO, and NiO compounds were used due to
the stability issue and these three compounds are the necessary media as the electroactive
sites for the electro-oxidation of glucose (please refer to the mechanisms in Table 1). In
addition to the aforementioned three most-seen major compounds, other compounds, such
as Fe2O3 and SnO2, are also used as the electrocatalysts for the electro-oxidation of glucose.
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Moreover, some of the studies integrated various metallic oxides, such as the CuO-NiO
compound [296] and the Co3O4-NiCo2O4 [297] compound, which are used for further
enhancing the performance of the electrodes for the electro-oxidation of glucose.

9. Electroactive Materials of Hydroxide Compounds

Not only the aforementioned metallic oxides widely were used for the electro-oxidation
of glucose, but also the metallic hydroxide compounds. According to the reaction mecha-
nisms in Table 1, it could be found that the metallic hydroxide compounds are also crucial
media for the electro-oxidation of glucose by the electrochemical technique. The metallic
hydroxide compounds are therefore utilized directly as the electrocatalysts for the electro-
oxidation of glucose. Since the reaction mechanisms are already shown and explained in
Table 1, the explanations for the reaction mechanisms are left out in this section. Some of
the literature concerning the metallic hydroxide compounds within this decade are listed
and compared in Table 6.

Table 6. The electrodes for the sensing of glucose by the transition metal hydroxides. The performances are compared in
terms of sensitivity, linear range, limit of detection (LOD), and working potential. The working potentials are based on the
reference electrode of Ag/AgCl.

Electrode
[Electrolyte]

Sensitivity
(µA mM−1 cm−2)

Linear
Range (mM)

LOD
(µM)

Working
Potential (V) *

Year
[Reference]

Co(OH)2 NTAs/CC
[0.1 M NaOH] 2770 0.001–0.6 0.5 +0.50 2017 [298]

CoOOH NSAs/GCE
[0.1 M NaOH] 526.8 0.003–1.11 1.37 +0.52 2015 [299]

CoOOH NSs/Co foil
[0.1 M NaOH]

967
341

0.01–0.5
0.03–0.7

10.6
30.9

+0.50
+0.40 2012 [124]

Cu(OH)2 NTs
[0.1 M NaOH] 418 Up to 3.0 0.5 +0.45 2013 [300]

Cu(OH)2 NFs/Cu foil
[0.1 M NaOH] 2159.2 0–6.0 9.0 +0.50 2012 [301]

Ni(OH)2/3DGF
[0.2 M NaOH] 2366 Up to 2.2 0.32 +0.46 2019 [302]

Ni(OH)2 NSs-NF/GCE
[0.2 M NaOH]

1097
1130

0.1–2.5
2–40 1.0 +0.51 2015 [303]

Ni(OH)2 NFks@oPPyNW/Graphite
[0.1 M NaOH] 1049 0.001–3.86 0.3 +0.54 2015 [304]

Ni(OH)2 NPs/graphene
[0.1 M NaOH] 2400 0.001–15 0.53 +0.53 2014 [305]

Ni(OH)2 NPs/NF
[0.2 M NaOH] 1950.3 Up to 6.0 0.16 +0.45 2014 [41]

* All potentials are with respect to the Ag/AgCl reference electrode. Abbreviation: 3DGF: Three-dimensional graphene@nickel foam; NF:
Nickel foam; NFs: Nanoflowers; NFks: Nanoflakes; NPs: Nanoparticles; NSAs: Nanosheet arrays; NSs: Nanosheets; NTAs/CC: Nanotube
arrays grown on carbon cloth; NTs: Nanotubes; oPPyNW: Over-oxidized polypyrrole nanowires.

Metallic hydroxides, such as Co(OH)2, CoOOH, Cu(OH)2, and Ni(OH)2, are frequently
used materials. Similar to the transition metals and the transition metallic oxides, the
transition metallic hydroxide compounds (i.e., M(OH)2 and MOOH) also possess high
sensitivity. However, the operation potential is higher than that of the noble metal ones
(Table 2) due to the low electrical conductivity of these materials. In addition to the
single-phase of the transition metallic hydroxides, some dual-phase compounds, such
as Ni(OH)2-NiO [306], Ni(OH)2-TiO2 [307], CuO-Ni(OH)2 [308], Co3O4-Ni(OH)2 [309],
and so forth, have also been studied. The variety of the electroactive catalysts for the
electro-oxidation of glucose could be greatly enhanced by integrating the (1) mono-metallic
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materials (Section 6), (2) bi-metallic materials (Section 7), (3) metallic oxides (Section 8),
and (4) metallic hydroxides (Section 9). Therefore, the performances of the electroactive
catalysts could be balanced by different synergistic effects (i.e., anti-poisoning effect) among
the materials.

10. Electroactive Materials of Metals and Their Derivatives

As mentioned in the previous sections, there are a great variety of combinations of
electro-catalytic active materials for enhancing the detection performances of glucose. The
metallic materials and the metallic derivatives have been discussed in the previous sections.
In this section, the issue presented by the metal-metallic oxide is discussed. Some of the
metal-metal derivative composites have been studied, such as Ag-NiO [46,57], Cu-CuO [38],
Ag-CuO [44], Cu-CuO-ZnO [45], and Co-CoOOH [124]. However, in the following section,
a less studied composite of the Au-TiO2 composite [42,47], which was synthesized on the
polyaniline (PANI) supporting material, is discussed.

10.1. Electrocatalysts of the Au Nanoparticles-TiO2

In the previous sections, the topics of (1) mono-metallic materials, (2) bi-metallic
materials, (3) metallic oxides, and (4) metallic hydroxides have been reviewed. As men-
tioned previously, with the combination of the materials, property balance among different
materials could result in a constructive synergistic effect and bring about the enhanced
performances for the electro-oxidation of glucose. The Au nanoparticle (NP)-TiO2, which
is the combination between the mono-metallic material and the metallic oxide, is discussed
in this section and the following sections.

As explained in Section 6, metallic Au, which is considered a promising material
for the electro-oxidation of glucose, has been widely used as the electrocatalyst. On the
other hand, TiO2 is not a frequently used material for the electro-oxidation of glucose.
However, by combining these two materials, the performances of the electro-oxidation of
glucose have been greatly improved [42,47]. The enhanced behavior could be ascribed to
the following two reasons.

Firstly, with the decoration of TiO2, a spill-over effect of the OH− ions from the TiO2
surface to the Au NPs was proposed since TiO2 is known as a hydrophilic material [310].
High concentration of OH− diffused from the surface of TiO2 to the surface of Au NPs.
Hence, a great amount of the crucial media AuOHads could be generated on the surface of
the metallic Au NPs [42,47]. Secondly, it was further found that, while the TiO2 amount
went beyond its saturation concentration on the electrode surface, the redistribution of the
TiO2 particles took place on the electrode surface, revealing the electroactive sites to the
glucose, and resulting in a large surface area of the electroactive catalyst. The redistribution
could be ascribed to the famous coffee ring effect [311], which occurs during the drying
process. Eventually, the high surface area of the electroactive sites led to the efficient usage
of the noble metals by the facile immersion-drying process and brought about cost-effective
processes. The abovementioned two mechanisms are illustrated and shown in Figure 15.

Since TiO2 is known as a hydrophilic material, it could attract the OH− and/or the
H2O molecules in the electrolyte (left-hand side illustration of Figure 15a). Due to the
high concentration of the OH− on the TiO2 surface, the OH− diffuses to the surface of the
adjacent Au NPs (right-hand side illustration of Figure 15a). Hence, the amount of the
crucial electroactive site AuOHads for the electro-oxidation of glucose could be promoted.
The redistribution phenomenon of the oxide particles is illustrated in Figure 15b. Prior to
the redistribution, there was an aggregation of the TiO2 particles and the clustered TiO2
impeded the electrochemical reactions between Au NPs and the glucose (left-hand side
illustration of Figure 15b). The red cross symbols indicate the unavailable electroactive
sites due to the hindrance of the TiO2 particles. With the assistance of the redistribution,
the Au NPs could be revealed to the glucose molecule in the electrolyte (right-hand side
illustration of Figure 15b). The efficiency for the usage of the Au NPs could be enhanced
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accordingly. The aforementioned mechanisms are the possible reasons for the enhancement
of the performance of the electro-oxidation of glucose.
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10.2. Strategies for Enhancement of Performances of the Electrodes

To enhance the hydrophilicity of oxides and also to figure out the mechanisms, ma-
nipulating the hydrophilicity of oxides could be a practical method. It has been reported
that the hydrophilicity of TiO2 particles could be tuned by the sol-gel method [310], UV
illumination [312], and ultrasonic treatment [313]. A high amount of the AuOHads is
expected to be generated by enhancing the hydrophilicity of the adjacent TiO2 particles.
While lowering down the hydrophilicity of the TiO2 particles, the current response from
the electro-oxidation of glucose could be diminished. Hence, the mechanism could be
clarified via the manipulation of the hydrophilicity of the TiO2 particles. An illustration for
elucidating the aforementioned methodology is shown in Figure 16a.

On the other hand, concerning the issue of the redistribution of the oxide particles,
another strategy has been discussed in the following to enlarge the surface area of the
electroactive sites by taking the advantage of the redistribution phenomenon of the oxide
particles. It has been reported that the flower-like structured ZnO could be synthesized by
the electrochemical deposition and its morphology could be controlled by the additives,
such as the H2O2 and the Cl− ion [314]. The methodologies used in this literature for the
manipulation of the morphologies could also be applied to other oxides, such as TiO2. By
taking the advantage of the flower-like oxides, it is believed that the surface area of the
electroactive sites could be promoted due to the enhanced stability and surface area of the
metallic NPs on the flower-like oxides. An illustration for elucidating the mechanism is
shown in Figure 16b.

The integrations of the Au NPs/ball-like oxide particles and the Au NPs/flower-like
oxide particles are shown in Figure 16b. In the case of the Au NPs/ball-like particle
(left-hand side illustration of Figure 16b), there is some loss of the Au NPs during the
aforementioned redistribution process and the measurement processes for the electro-
oxidation of glucose. The yellow arrows indicate the loss of the Au NPs from the oxide
to the environment. In other words, the stability of Au NPs on the ball-like particle is
insufficient. On the other hand, by manipulating the morphologies of the oxides into the
flower-like structure, it is possible that the Au NPs could be stabilized between the “flower
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petals” (right-hand side illustration of Figure 16b). Accordingly, the loss of the Au NPs
during the redistribution process and the measurement processes for the electro-oxidation
of glucose could be reduced.
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In addition to the aforementioned enhancement in the stabilization of the Au NPs
electrocatalyst, there is a further advantage, which could be brought along with the usage
of the flower-like structured oxides. Since the porosity of the flower-like oxide is higher
than that of the ball-like oxide, the diffusion of glucose into the composite materials could
be less interfered with. That is to say, the hindrance for the electro-oxidation of glucose
from the oxide could be reduced by using flower-like oxide particles. Therefore, controlling
the morphology of the oxide particles could be a promising method for the enhancement of
electrode stability, reduction of the usage of noble metal, and enhancement of the current
response from the electro-oxidation of glucose.

In this section, two possible strategies for the enhancement of the performances of the
electro-oxidation of glucose and for the clarification of mechanisms involved have been
proposed. The less-studied yet promising Au NPs-TiO2 composites for the electro-oxidation
of glucose have shown great potential in the glucose detection community.

11. Conclusions

In this article, a comprehensive review concerning the electroactive materials for the
electro-oxidation of glucose has been conducted. General introductions and comparisons
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to the electro-oxidation of glucose in an enzymatic manner and the non-enzymatic manner
were presented, and the fundamentals of the promising electrochemical technique for
glucose detection have also been explained.

The classification of the electrocatalysts has been divided into five different mate-
rials, namely the (1) most fundamental materials of the prototype mono-metallic elec-
trocatalyst (i.e., Au, Pt, Ni, and Cu), the (2) bi-metallic materials (i.e., Au-Pt, Pt-Ni, and
Cu-Ni), the (3) metallic-oxide compounds (i.e., Co3O4, CuO, and NiO), the (4) metallic-
hydroxide compounds (CoOOH, Cu(OH)2, and Ni(OH)2), and the (5) combinations of the
metallic materials/metallic-derivative compounds (i.e., Au-TiO2, Ag-NiO, Cu-CuO, and
Co-CoOOH) have been reviewed through in this article.

Based on the different materials, the mechanisms for the electro-oxidation of glucose
have been explained and compared. The performances of the aforementioned five material
systems within this decade have been compared in terms of sensitivity, linear range, the
limit of detection (LOD), and operation potential.

In addition, some practicable strategies and ideas have been proposed, such as (1) the
atomic deposition of the metals or alloys for trading-off the various properties in the
electroactive materials, (2) the manipulation of hydrophilicity and the redistribution phe-
nomenon of oxide particles, and (3) the morphology controlling of the oxide particles for
the improvement of the long-term stability of the electrodes for the electro-oxidation of
glucose. In addition to the aforementioned general introductions, mechanisms, materials,
and strategies, a comprehensive review of the glucose sensor devices within this decade
has also been conducted.
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