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Abstract: The amount of anodically dissolved charge of silver by linear sweep stripping voltammetry
has been observed to be smaller than that of the potentiostatically deposited charge. The imbalance
in the charge is opposite to the participation in the double-layer capacitance. This can be explained
in terms of the negative capacitive current, which is caused by dipoles of generated redox charge
(Ag+) with counterions (NO3

−). Lower concentrations of counterions may suppress the capacitance
to retain the equality of the charge. This prediction is examined in this work by the oxidation of
silver film at various concentrations of NO3

− by anodic stripping voltammetry. The capacitance
decreased with a decrease in the salt concentrations less than 0.05 mol dm−3. Low concentrations
of salts prevent loss of the anodic charge in electroanalysis. This dependence was related with the
lifespan of generated silver nitrate dipoles and is described theoretically.

Keywords: anodic stripping voltammetry of silver ion; negative capacitance associated with redox
reactions; lifespan of dipoles; low concentration of salts

1. Introduction

Supporting electrolyte is often added to a voltammetric solution [1] (143–145) in
order to (i) provide ionic conduction between an anode and a cathode, (ii) to suppress
the electric migration of redox species in solution, and (iii) to facilitate the charge transfer
reactions with the help of charge neutrality. Item (i) can be represented quantitatively as the
Poisson equation for microscopic localization of charge [2–5] and the Laplace equation for
Ohm’s law macroscopically [6–10]. Parameters determining item (ii) are molar conductivity
proper to each ion and its concentration [11]. In contrast, item (iii) is observed as chemical
complications with electrolytes to generate unpredictable species [12–16]. It also causes a
potential shift through the locally electrostatic interaction [17], which is distinguished from
a long-ranged electric field in a cell by microelectrode voltammetry [18,19].

The above behavior has been discussed for voltammograms under a quasi-steady
state. There are some dynamic effects of electrolytes on electrode reactions of which the
classical one is the Frumkin’s effect [20]. This effect involves the dependence of the rates of
the redox reactions on the potential in the double layer by electrolytes [21]. The evaluated
rates depend on the concentrations of electrolytes as well as the adsorbed species [1]
(pp. 571–575), [22]. However, the concentrations of electrolytes vary only slightly the
experimental values of the double-layer capacitances [23–26], which are different from the
prediction by the Gouy-Chapman’s theory. As a result, the Frumkin’s effect is not suitable
for explaining the experimental results. Moreover, no typical redox couple has been found
which proceeds through heterogeneous kinetics such as the Butler–Volmer type [27]. In
spite of these problems, the Frumkin’s model has been used for an explanation of the
concentration effects of the electrolyte [28,29].
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A recently developed double-layer effect on redox reactions was revealed in a dy-
namically observed current, which is less than the diffusion-controlled one [30,31]. This
effect was demonstrated specifically in ac impedance, for example, with the non-negligible
values of the remainders of the real components of the Warburg admittance subtracted
from the imaginary one [1] (pp. 377–380), [27]. It has been considered through the follow-
ing: A redox species just after the charge transfer reaction is coupled with a counterion
for electric neutrality to yield an electric dipole. Since the dipole is oriented in such a
direction that the external field is enhanced, it yields a capacitance with a sign opposite to a
conventional double-layer capacitance [30], called a negative capacitance. A double-layer
capacitance relaxes the applied electric field, while a charge transfer reaction enhances it.
Voltage dynamic techniques make it necessary to decrease diffusion-controlled currents by
the amount of the charging currents of the negative capacitance. Since this effect occurs
entropically toward an energy minimum, it should always be involved in every dynamic
measurement by voltage change.

In order to evaluate the negative capacitance associated with redox reactions, it is
necessary to extract the current proper to the redox reaction from the observed current. The
remainder of the extraction should be the capacitive component. For example, diffusion-
controlled currents by linear sweep voltammetry at the scan rate, v, are proportional to
v1/2, whereas those by capacitance are to v. The observed current is represented as a
sum of the two components. The graphical analysis enabled us to evaluate the capacitive
current [32–34]. If adsorption occurs potentiostatically for a long time, the observed charge
is purely the faradaic component without capacitive one. When the subsequent desorption
is made by linear sweep voltammetry, the charge includes both the faradaic and the
capacitive one. Then, the observed charge is imbalanced. The imbalance is caused by
the difference in techniques of time-dependent potential control. The imbalance has been
found in the stripping voltammetry of silver ion [35] and silver chloride [36] to demonstrate
the participation in the negative capacitance.

When concentrations of electrolytes are so low that negative capacitance may be
negligible, the reaction potential subtracting ohmic voltage may be shifted from the ther-
modynamic potential in order to satisfy the energy minimum on the reaction path. This
prediction is close to the apparent behavior of the Frumkin’s effect [29]. In order to demon-
strate the difference of the negative capacitance from the Frumkin’s effect, we will pay
attention to the charge balance between the deposition and dissolution rather than the
curve fitting [29]. Here, we explored concentration dependence on the exhibition of the
negative capacitance, including the potential shift, by carrying out stripping voltammetry
of silver ion. The imbalance of the charge had direct effects on the stripping voltammetry.

2. Experimental Section

Most experimental apparatuses, chemicals, procedures, and conditions were the same
as in a previous report [35]. A noteworthy tool was a working electrode of an oil-penetrated
carbon rod, 0.5 mm in diameter, used for a mechanical pencil, which was inserted into
10 mm of solution. The inserted electrode without insulator was helpful for avoiding
floating capacitance at crevices between an electrode and an insulator. The depth and the
meniscus at the boundary were observed through a microscope. There was no rise or recess
of the meniscus. The rod was renewed at each voltammetric run by cutting off a used part.

The reference electrodes were a Ag|AgCl (sat. KCl) and a Ag|AgxO electrode. The
former was employed for cyclic voltammetry, whereas the latter was used for avoiding leak-
age of chloride in low concentrations of electrolyte (NaNO3) at a series of long experimental
runs of stripping voltammetry. Potentials by the Ag|AgxO electrode was corrected to those
by the Ag|AgCl electrode. The counter electrode was a platinum wire. The values of pH in
the AgNO3 + NaNO3 solutions were adjusted to 3.0 by titration of the HNO3 solution. The
solutions were deaerated with nitrogen gas for 20 min before each voltammetric run.
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3. Results

The deposited silver metal was dissolved anodically to Ag+ with the help of electric
neutralization by NO3

− to temporally form a dipole Ag+-NO3
−, which is dissociated into

Ag+ and NO3
− to be dispersed by diffusion toward the solution. The former step yielded

the capacitive flux, Jc, through the formation of the dipole, whereas the latter step may be
controlled by the diffusion of Ag+ or the flux controlled by the Nernst equation. Cyclic
voltammograms of the AgNO3 solution, including low (a) and high (b) concentrations
of NaNO3, are shown in the inset of Figure 1. The Ag+-free solution showed only a flat
voltammogram, as was demonstrated previously [35]. There was no remarkable difference
in the voltammograms, except for the potential shift, which may be caused by the IR
drop of the solution. We confirmed through the voltammogram, shown in the inset of
Figure 1 and in Figure 2 in [35], that the reduction in H+ and NO3

− had no effect on the
stripping voltammograms. The scan rate (v) dependence of the cathodic peak currents at
−0.17 V vs. AgxO showed proportionality to v1/2 for 0.01 V s−1 < v < 0.12 V s−1. Therefore,
the current should be controlled by the diffusion of Ag+. The proportional constant
provided the diffusion coefficient of Ag+ to be 2.9 × 10−5 cm2 s−1. Figure 1 also shows
the current–time curves responding to the application of the reduction potential for 60 s
and then of the anodic potential scan in a solution of 0.05 mM AgNO3 including two
concentrations of NaNO3. Few differences were noticed at the peak potential and peak
currents, which can be neglected mostly for the conventional stripping analysis.
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Figure 1. Current–time curves by a constant potential of −0.25 V vs. Ag|AgxO for the reduction
and then by the anodic scan at v = 10 mV s−1 in a solution of 0.05 mM AgNO3 including (a) 1 and
(b) 500 mM NaNO3. The inset shows cyclic voltammograms.

Our aim was to compare the deposited reduction charge, qr, and the dissolved oxida-
tion charge, qo, rather than the curve fitting of the voltammetric shapes [29]. The currents
were integrated with respect to time over the effective reacting periods to yield the charge
numbers of qr and qo. The experimental results were |qr| < qo at high concentration of
NaNO3 [35]. The inequality was inconsistent with Faraday’s law for electrolysis, qo = |qr|.
Figure 2 shows variations of qo/|qr| with |qr| for some values of concentrations of elec-
trolyte, NaNO3, exhibiting 0.8 < qo/|qr| < 1.0. This ratio of the charge loss has always been
neglected in electroanalytical chemistry as a contribution of double-layer charge and/or
impurity. Especially, lower values of qo/|qr| were found at higher concentrations as well
as higher values of |qr|. We discuss, here, some possibilities of the unequal charge at
the cathodic and the anodic process. The unequal amount, |qr| > q0, means whether the
|qr| is overestimated from the diffusion-controlled charge or q0 is underestimated from
the net charge of the deposition. The deposited charge, qr, was provided quantitatively
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by diffusion-controlled current of Ag+ in the controlled concentration without any side
reaction through the analysis of scan-rate-dependent voltammograms. It did not include
the charging current because of a constant voltage control. Therefore, qr represents the
amount of deposited charge. The unequal charge should be attributed to underestimation
of the anodic charge. The anodic current obtained by the anodic scan necessarily includes a
capacitive component. Nevertheless, Figure 2 shows that the anodic charge was smaller
than the deposited one. Another possibility is the dispersion of silver metal as small
particles in solution such as the automatic dispersion of mercury metal [37]. The silver
deposited from the Ag+ solution at concentrations over 1 mM was found to be lost by 10%
when the deposition was left in an open circuit for periods over 60 s. No loss was found for
the silver deposited in the present solutions of 0.05 mM AgNO3.
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Figure 2. Dependence of the difference in the charges, qo and |qr|, on the reduction charge in the
solutions of (a) 200; (b) 50; (c) 1 mM NaNO3 at v = 10 mV s−1.

The imbalance of the charge was caused by the capacitive current responsible for the
formation of the dipoles of electrochemically generated Ag+ coupled with the counterion
(NO3

−). The dipoles were oriented from the electrode to the solution such that the externally
applied field may be enhanced rather than be relaxed. The direction of the orientation
was opposite to that of the solvent dipoles, which take part in double-layer capacitances.
Therefore, a part of the oxidation charge was suppressed by the capacitive currents for
Ag+-NO3 dipoles during the anodic scan to yield qo < |qr| [26]. In other words, a decrease
in [NO3

−] prevents the formation of the dipoles to make qo approach |qr|. This was one of
the aims of the present work.

The contribution of NO3
− to qo < |qr| can be justified with forced supply of NO3

−

to the electrode. We stirred the solution with a magnetic stirrer during the stripping
voltammetry. Figure 3 shows the variations of qo/|qr| with log|qr| at several rotation
rates of the magnetic stirrer. With the rotation rates, the ratios decreased or the consumption
ratios increased. Therefore, the convective supply of NO3

− should be responsible for the
imbalance of the charges.

We conducted stripping voltammetry of CuSO4 and Pb(NO3)2. Dissolution of Cu into
two forms, Cu+ and Cu2+, made the analysis complicated. Lead ion generated insoluble
lead hydroxide in the pH domain avoiding the reduction of H+. At present, the simplest
system is the present one, AgNO3.
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4. Theory for Anodic Charge

The present theory describes the contribution of salt concentration to the negative
capacitance associated with the oxidation of silver. The deposited silver metal is dissolved
anodically in the form of Ag+ together with electric neutralization by NO3

− to generate
temporally a dipole Ag+-NO3

−, which is followed by dissociation into Ag+ and NO3
− to

be dispersed by diffusion toward the solution. The former step yields the capacitive current
density, jc, through the formation of the dipole, whereas the latter step may be controlled
by the flux, jN, from the deposited charge amount, qr. If the two steps occur in a series, the
total impedance is the sum of two impedances, or the inverse of the total current density j
is the sum of 1/jc and 1/jN:

j = jcjN/(jc + jN) (1)

When the capacitive impedance is inferior to the impedance of the Nernstian disper-
sion, jc > jN, the observed current can be approximated as j ≈ jN(1 − jN/jc) by the Taylor
expansion. The time integral of j is qo, whereas that of jN is −qr. Then, we have:

qo = −qr −
∫

(jN2/jc)dt ≡ |qr| − qc (2)

where qc =
∫

(jN2/jc)dt is the capacitive charge by the dipole.
Under the assumption of the reversible oxidation of Ag, the surface concentration of

Ag+ at potential E, denoted by Γ(E), is obeyed with the Nernst equation [1] (pp. 591–592):

Γ(E)/Γ o = exp[(E−Eo)F/RT] (3)

where Γ o is the standard amount at the standard potential, Eo. The time derivative of
FΓ(E) yields jN:

jN = d{FΓ(E)}/dt = (Γ oF2v/RT) exp[(E−Eo)F/RT] (4)

for the linearly potential scan rate, v. In contrast, jc is caused by the dipole Ag+-NO3
−,

which is generated at the electrode as an intermediate through the anodic dissolution of
Ag. The dipole is soon dissociated to Ag+ and NO3

− to be dispersed to the solution by
diffusion after a lifespan, τ [38]. Since it can work as a capacitance during τ, jc should be
proportional to τ. The surface concentration of dipole is equivalent to Γ(E). As a result,
we have jc = k′vτ Γ oexp(F(E−Eo)/RT) for a proportional constant, k′. Since the lifespan
is a stagnation period for the dipole at a given location, it is inversely proportional to the
transferring velocity, utr, for a random walk through τ = k′′/utr. The effect of τ on the
current has been justified by the convection of the solution in Figure 3. The transferring
velocity can be represented as the square root of the kinetic (motional) energy or a part
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of free energy, U = U0 + RT ln(c-/co) of the dipole through utr = k′′′U1/2, where c- is the
concentration of NO3

−. The series of τ, vtr, U and c- provides:

τ = (k′′/k′′′)U−1/2 = τo{1 + (RT/U0) ln(c-/co)}−1/2 (5)

where τo is the lifespan at the standard concentration, co. The Gibbs free energy of solvation
for anions is of the order of Uo = −300 kJ mol−1 [39], whereas RT= 2.5 kJ mol−1. The Taylor
expansion of the power −1/2 yields:

jc = k′vτo{1 − (RT/2U0) ln(c-/co)}Γ oexp(F(E-Eo)/RT) (6)

This implies that the capacitive current by the dipole should increase exponentially
with the voltage and that it decrease with concentration of NO3

− in the logarithmic form.
Insertion of Equations (4) and (6) into the integrand of Equation (2), we obtain:

jN2/jc = k1v exp(F(E−Eo)/RT) {1 + (RT/U0) ln(c-/co)}1/2 (7)

where k1 = (Γ o/k′τo)(F2/RT)2. The time integration yields:

qc = (k1RT/F) exp(F(E−Eo)/RT) {1 − (RT/2U0) ln(c-/co)} (8)

It varies with the salt concentration logarithmically with the independence of the scan
rates. There is a limitation of the theory in Equation (5), because the free energy of salt may
take part in the lifespan in a complicated form.

5. Discussion

Experimentally available variables for the negative capacitance were (A) the amount
of the deposit, (B) scan rates, and (C) concentrations of salt. Item (A) can be represented
by the dependence of qc on qr, exhibiting an approximately linear relationship in Figure 2.
Deviation came into prominence for large values of |qr|, probably because thicker Ag
films at large values of |qr| make the flow stagnant near the dipoles to extend the lifespan,
which can be predicted from Equation (8). On the other hand, the scan rate dependence of
qc, item (B), is shown in Figure 4, keeping almost constant, as supported by Equation (8).
The constant implies that qc should be independent of any operation of the dissolution.
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Figure 4. Variations of qc with the scan rates for the deposition times of (a) 40; (b) 70; (c) 100 s.

Item (C) is roughly shown in Figure 2 as the increase in the slopes with an increase in
the concentrations of NaNO3. The imbalance in the charge becomes conspicuous at high
concentrations of salt. The values of the slope were plotted against logarithmic concentra-
tions of NaNO3 in Figure 5. They increased linearly with the logarithmic concentration, as
expected from Equation (8). The increase in qc with an increase in [NO3

−] points to our aim
that the negative capacitance was caused by the formation of dipoles of Ag+ with NO3

−.
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The logarithmic variation with [NO3
−] can be understood to be due to the entropic

effect of the concentration as follows: When concentrations are high, a newborn Ag+ on
the electrode can catch specifically a neighboring NO3

− ion to form a dipole as illustrated
in Figure 6a. In contrast, a dope in low concentrations does not consist of one NO3

− but
statistically of several or many NO3

− as shown in Figure 6b. As a result, the entropic effect
is exhibited in the logarithmic form.
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The decrease in the anodic current with an increase in [NO3
−], demonstrated in

Figures 2 and 5, implies that lower concentrations of supporting electrolytes would be
desirable for the analytical sensitivity of stripped species. We examined the salt effect on the
stripping analysis for practical electrochemical detection. Figure 7 shows the dependence
of the peak currents of stripped anodic voltammograms on |qr| at two concentrations
of NaNO3. The current values were almost independent of the salt concentrations. This
fact seems to be inconsistent with the concentration dependence of the charge in Figure 2.
Low concentrations of salts often caused the peak potential to shift, associated with a
decrease in peak currents due to the IR drop. Therefore, the decrease in the peak current
was compensated with the loss of the charge at low concentrations of the salt.
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6. Conclusions

Charges measured using time variations were observed to be smaller than the latent
redox charge by the amount of the current generating dipoles of the redox species. The
direction of the current was opposite to that of the double-layer capacitance because of
the difference in the directions of the oriented dipoles. As a result, the dissolution charge by
linear sweep voltammetry was smaller than that of the potentiostatically deposited one in
magnitude, exhibiting a charge imbalance. This phenomenon can be generalized to induce that
time-dependent electrolysis should necessarily cause capacitive currents such that the faradaic
charge may be underestimated. This is the result of an energetic phenomenon of nature.

Although the imbalanced charge can be minimized at low concentrations of coun-
terions, this effect is not conspicuous at concentrations less than 50 mM. Therefore, it
is desirable to maintain concentrations of electrolyte to be low. The imbalance of the
charge was not reflected to the peak currents of stripped voltammograms, because the peak
currents were observed to be smaller owing to the IR drop of the solution.
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List of Variables
c- concentration of NO3

−, mol m−3

F Faraday’s constant, C mol−1

j total current density, A m−2

jc capacitive current density, A m−2

jN current density for Nernstian dispersion, A m−2

qo charge of dissolved Ag, C
qr deposited charge, C
qc capacitive charge by the dipole, given by

∫
(jN2/jc)dt, C

R gas constant, J mol−1 K−1

T temperature, K
t time, s
U kinetic (motional) energy of a dipole, J
utr transferring velocity of a dipole for random walk, m s−1

v potential scan rate, V s−1

Γ surface concentration of Ag+, mol m−2

Γ o standard amount at the standard potential, Eo, mol m−2

τ lifespan, of a dipole before dispersion by diffusion, s
τo lifespan at the standard concentration, co, s
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