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Abstract: The impact of doping concentration and thickness of n-InGaN and p-InGaN regions on the
power conversion efficiency of single junction-based InGaN solar cells was studied by the Silvaco
ATLAS simulation software. The doping concentration 5 x 10! cm~3 and 1 x 10'® cm ™3 were
optimized for n-InGaN and p-InGaN regions, respectively. The thickness of 300 nm was optimized
for both n-InGaN and p-InGaN regions. The highest efficiency of 22.17% with Jsc = 37.68 mA /cm?,
Voe = 0.729 V, and FF = 80.61% was achieved at optimized values of doping concentration and
thickness of n-InGaN and p-InGaN regions of InGaN solar cells. The simulation study shows the
relevance of the Silvaco ATLAS simulation tool, as well as the optimization of doping concentration
and thickness of n- and p-InGaN regions for solar cells, which would make the development of
high-performance InGaN solar cells low-cost and efficient.

Keywords: InGaN solar cell; doping concentration; thickness; single junction; efficiency; Silvaco
ATLAS simulation

1. Introduction

The necessity for low-cost, reliable, and sustainable energy is increasing day by
day [1,2]. The aim is to determine how best to drive down the cost of using solar cells [3-5].
It should be conservative to the environment, as well as economically sustainable to do
s0. Solar energy is also much safer for humans and the environment since it is a lot easier
to generate and transport [6-8]. Solar cells using IlI-nitride semiconductors with indium
gallium nitride (InGaN) alloy are extensively studied due to their attractive photovoltaic
properties such as high tolerance to radiation, high mobility, and large absorption coef-
ficient, allowing thinner layers of material to absorb most of the solar spectrum [9]. The
most important advantage of InGaN alloy might be the direct bandgap energy, which can
be adjusted according to the indium composition. Thus, InGaN’s energy bandgap can be
tuned from 0.7 eV to 3.42 eV, covering approximately the total solar spectrum [10,11], with
absorption coefficients of ~10°> cm~! [12]. The tunability of the InGaN bandgap energy
over a wide range provides a good spectral match to sunlight, making it a suitable material
for photovoltaic solar cells [13-15]. The simulated-based single-junction solar cell has an
optimum bandgap energy of 1.39 eV.
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Indium gallium nitride (InGaN) alloys offer great potential for high-efficiency photo-
voltaics, yet theoretical promise has not been experimentally demonstrated [16]. Several
major challenges remain, including polarization effects, appropriate thickness of the layer,
suitable p-type doping, improved surface passivation, and growth of thick, high-quality
InGaN layers [17]. Zhang et al. studied the doping densities and thickness of several layers
of In0.65Ga0.35N single-junction solar cells for the identification of their performance and
found that 20.28% have front and basic regions with a carrier concentration of 5 x 107 cm 3
in between the n- and p-layers, with a thickness of 270 nm and 130 nm, respectively [18].
Shen et al. studied the properties of an InyGaj«N (x = 0.04~0.05) tandem solar cell with
an AMPS solar cell simulation tool and presented an efficiency of 24.95% [19]. Bellal et al.
described the role of the concentrator in an InGaN dual-junction solar cell using the top cell
of InGaN (1.64 eV) and the bottom cell of InGaN (0.94 eV) and exhibited an improvement
in the efficiency from 23.87% for a tandem solar cell with a concentration rate (X) of 1 sun
to 25.72% for the same solar cell device with 30 suns under AM 1.5 illumination and room
temperature [20]. Hussain et al. simulated the maximum efficiency of 29.21% for p-i-n (L is
intrinsic, 3-0.5-16 um thickness) layers with doping concentrations of 1 x 10 cm~2 and
1 x 10 cm~3 for the n- and p-region, respectively, and presented values of short-circuit
current density (Jsc) of 33.15 mA/ cm?, Voo of 1.0 V, and FF of 88.03% [21].

Several simulation tools are available for the characterization of the parameters of
the solar cells, such as Silvaco ATLAS, SCAPS, TCAD, Sentaurus, TCAD, AFORS-HET,
PC1D, etc. [22-24]. Khettou et al. studied an InGaN/GaN Schottky solar cell with AM
1.5 illuminations using Silvaco ATLAS and found the efficiency improved from 2.25% to
18.48% and achieved the optimized composition (xIn) of 54%, work function (wy) of 6.3 €V,
doping concentration (Ng) of 2 x 10" em~3, and InGaN layer thickness of 0.18 um [25].

In this work, we used the Silvaco ATLAS simulation software to study the performance
of InGaN single-junction solar cells by varying doping concentrations and thicknesses of
n- and p-regions. Furthermore, we analyzed the short-circuit current density, open-circuit
voltage, fill factor, and conversion efficiency of a single junction-based InGaN solar cell.
In addition, indium tin oxide (ITO) was used as an ARC layer with a thickness of 100 nm
determined at a wavelength of 700 nm [26]. The highest values of J;; of 37.68 mA/ cm?, Ve
of 0.729 V, FF of 80.61%, and efficiency of 22.17% were achieved at optimized parameters of
doping concentration and thickness of the n- and p-regions of the InGaN solar cell.

2. Materials and Methods

The schematic device structure of the InGaN single-junction solar cell for investiga-
tion is shown in Figure 1. The solar cell configuration consisted of Al/ITO/p-InGaN/n-
InGaN/Ag layers where ITO is used as an anti-reflection coating (ARC) layer, aluminum
(Al) is a front electrode, and silver (Ag) is in the back contact electrode of the InGaN solar
cell. Silvaco ATLAS is a software package used to simulate semiconductor devices. Silvaco
software is a simulation that predicts the optical and electrical characteristics related to
physical structures and bias conditions.

The operation of a device depends on two- or three-dimensional grid points called
nodes [27]. In this work, we made a simulation using Silvaco ATLAS TCAD in 2D. All
the parameters of the proposed solar cell in the device structure were carefully selected
from the reported works of literature [28-30]. Different restrictions were imposed in the
calculations, such as incident beam AM1.5G being perpendicular with a certain distance,
the propagation of light through every material being identified with the refractive index
file, and the surface recombination velocity being taken as 10°> m/s for the electron and hole
in the interface between the p-InGaN and n-InGaN layer. Simulation software can simulate
model semiconductor devices but cannot capture crystalline damage in duckbuild. The
calibrated material parameters of the InGaN structure are listed in Table 1.
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Figure 1. Structural diagram of an InGaN solar cell.

Table 1. Calibrated InGaN structure of material parameters.

Parameters n-InGaN p-InGaN
Thickness (um) 0.3 0.3
Relative permittivity (er) 13.1 13.1
Bandgap Eg (eV) 1.39 1.39
Electron affinity x (eV) 5.4 5.4
Effective conduction band density N (cm~2) 1x 108 1 x 1018
Effective valence band density Ny (cm~3) 4 % 101 4 x 101
Electron mobility (1, (em?. v-1.8°1) 800 800
Hole mobility pp, (cm?. V-1.571) 450 450
Donor concentration Ng (cm~3) 5 x 1017 -
Acceptor concentration Na (cm—3) - 1 x 101°

3. Results and Discussions
3.1. Optimization of the Doping Concentration in the n- and p-Regions

The doping concentration controls the amount of light absorption on the surface and
affects the efficiency of solar cells [31,32]. The impact of the doping concentration for the
n-InGaN as well as the p-InGaN region was analyzed for optimization of the photovoltaic
(PV) parameters. It was found that the recombination was higher at the lower doping
p-type InGaN and the n-type InGaN. Furthermore, an increase in p-type doping would
increase the rate more towards the interface, thereby decreasing the efficiency. The increase
in p-type beyond doping takes place beyond 10 [33]. The doping concentration varied
from 5 x 10" to 5 x 102! cm~ for the n-InGaN region, as shown in Figure 2a,b. The
short-circuit current density and open-circuit voltage started decreasing when doping
concentration increased from 5 x 101 to 5 x 10! em 3, and both parameters remained
constant till 5 x 10! cm ™3, as shown in Figure 2a. On the other hand, the efficiency and fill
factor increased with increasing doping concentration, as shown in Figure 2b. The excess
doping density damaged the crystal structure by creating a shunt path in the solar cell,
thereby decreasing the efficiency of the solar cells [34]. Therefore, the doping concentration

of the n-InGaN region was optimized as 5 x 10* cm=3.
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and (b) efficiency and fill factor for THE n-type region.

Likewise, the doping concentration varied from 1 x 102 to 1 x 10'® cm~3 for the
p-InGaN region (Figure 3a,b). The open circuit voltage Voc increased with the acceptor
doping concentration [35].

L

oc — T 1 1
i +1) 1)

)
Jo = qn%ln(LnNa + LpII\JId) )

where Ny and N, are the donor and acceptor doping concentrations, respectively, and ], is
the current saturation density. With increasing doping of N, and Ny, the ], decreases from
Equation (2) and the Voc increases according to Equation (1).
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Figure 3. Impact of doping concentration on (a) short-circuit current density and open-circuit voltage,
and (b) efficiency and fill factor for THE p-type region.

The short-circuit current density increased when doping concentration increased from
1 x 102 to 1 x 10'® cm~3 and then started decreasing, whereas the open-circuit voltage
increased with increasing doping concentration from 1 x 10'? to 1 x 10'® cm~3, as shown
in Figure 3a. The highest Js. of 37.68 mA/ cm? was observed at a doping concentration of
1 x 10" em~3. The maximum efficiency of 22.21% and fill factor of 80.75% of solar cells
were detected at a doping concentration of 1 x 10'> cm~3, as shown in Figure 3b. Therefore,
the optimized doping concentration of the p-InGaN region was chosen as 1 x 10! em 3.

3.2. Optimization of the Thickness of the n- and p-Regions

The front layer thickness plays a vital role in enhancing the generation of photocurrent,
which causes the efficiency of the solar cell. The thickness of the sensitizer or absorber
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layer also affects Jsc, Vo, FF, and efficiency, as well as the overall performance of the single
junction-based InGaN solar cell [36]. When the front layer thickness decreases, the distance
between the space charge region and the surface decreases, which improves the effective
collection efficiency, inducing the enhancement of the short-circuit current density. At
the same time, if the surface recombination is considered, the collection efficiency of the
depletion region is weakened, as this last is too close to the surface [37]. The thickness of
the n-type region varied from 200 to 400 nm at an optimized doping concentration of the
n- and p-type regions at 5 x 10! em~2 and 1 x 10'> cm~3, respectively. The maximum
values of Ji of 37.68 mA /cm? and V. of 0.729 V were obtained at a 300 nm thickness of the
n-type region, as shown in Figure 4a.
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Figure 4. Impact of the thickness of the n-InGaN region on (a) short-circuit current density and
open-circuit voltage, and (b) efficiency and fill factor.

Similarly, the efficiency of 22.17% and FF of 80.61% were obtained at the same opti-
mized conditions for the solar cell, as shown in Figure 4b. As the thickness of the n-InGaN
region increased, the recombination process became faster. The short-circuit current density
and open-circuit voltage increased by increasing the thickness of the n-type region, obeying
the nature or characteristics of the solar cell.

Like the n-type region, the thickness of the p-type region varied from 200 to 400 nm
at the same optimized doping concentrations. The highest values of J;. of 37.68 mA /cm?
and V. of 0.729 V were obtained at 300 nm thickness of the p-type region with optimized
doping concentrations and optimized thickness, as shown in Figure 5a. Similarly, the
efficiency of 22.17% and FF of 80.61% were obtained at the same optimized conditions for
the InGaN solar cell, as shown in Figure 5b. Therefore, the maximum value of [s¢c and Vo,
FF, and efficiency were optimized at a 300 nm thickness of both n- and p-type regions.
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3.3. Photogeneration and Recombination Rate in InGaN Solar Cell

The phenomena of the absorption of light by the surface producing electrons is photo-
generation and recombination [38]. The photogeneration rate of the solar cell is important
for the extraction and collection of charge [39,40], as well as for boosting the performance of
the solar cell. The photogeneration profile in deeply etched, two-dimensional patterns is in
interdigitated back-contact solar cells. The photogeneration rate across the device is given
by the vertical cutline, which started from the edge of ITO/p-InGaN, reached maximum at
1022 /cm3.s, and slightly dropped at the n-InGaN edge, as shown in Figure 6a. This is due
to the larger number of photons on the p-InGaN side than that on the n-region.
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Figure 6. Analysis of (a) photogeneration and (b) recombination rate of the InGaN solar cell.

The vertical cutline in Figure 6b shows the recombination of charge carriers across
the device. The recombination appeared to be at maximum near the edges of ITO/p-
InGaN, started decreasing sharply, and was almost constant near the edge of p-type
InGaN. This is due to the lower mobility rate of holes than electrons. Furthermore, the
doping of p-InGaN is lower compared to n-InGaN, indicating a higher number of carrier
concentrations in n-InGaN than in p-InGaN. Therefore, the recombination is nearer p-
InGaN. The recombination near n-InGaN is due to an intrinsic carrier present inside the
semiconductor. The results obtained are impressive for efficient InGaN solar cells, as
reported in previous work [41].

3.4. Photovoltaic Properties of the InGaN Solar Cell

After impact analysis of the doping concentration and the thickness of both the n-
and p-InGaN regions of the proposed solar cell, the optimized values were used for the
determination of PV properties of the InGaN solar cell temperature at 25 °C. Figure 7 shows
the simulated ], P-V, and EQE characteristics of an optimized single junction-based InGaN
solar cell. The highest values of the short-circuit current density of ;. = 37.68 mA/ cm?,
Ve =0.729 V, power density of 22.29 mW/ cm?, [,y = 34.72 mA/cm?, and V,,, = 0.642 V were
obtained, as shown in Figure 7a.

The optimized parameters and recommended PV properties for InGaN solar cells are
summarized in Table 2. EQE is another key indicator of solar cell performance, which
connects the optical and electrical parameters. EQE is the ratio of the collected carrier’s
number to the incident photons on the solar cell. The highest value of EQE = 70.81% was
detected at a wavelength of 550 nm and an average of 60% was observed in the range of a
400-900 nm wavelength, as shown in Figure 7b, which is also appropriate for efficient single
junction-based InGaN solar cells. Furthermore, the PV properties of reported InGaN solar
cells are summarized in Table 3. By comparing these properties, the proposed solar cells
exhibited comparable results compared to others and might be suitable for manufacturing
proposed solar cells. This comparative study of the proposed solar cell also validates the
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simulated parameters of a single junction-based InGalN solar cell by the Silvaco ATLAS

simulation software.
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Figure 7. Analysis of (a) I, P-V curve and (b) EQE of the InGaN solar cell.
Table 2. Summary of optimized parameters of the InGaN solar cell.
Optimized Values
Cell Parameters
n-InGaN p-InGaN
Doping concentration 5 x 101 em™—3 1 x 105 em—3
Thickness of region 300 nm 300 nm
PV properties Jse = 37.68 mA /cm?, Vo = 0.729 V, FF = 80.61%, 1 = 22.17%

Table 3. Reported electrical properties of InGaN solar cells.

Isc Voc Efficiency
Solar Cell (mA/cm?) W) %) References
In0.7Ga0.3N 33.15 1.0 29.21 [21]
In0.622Ga0.378N 32.67 0.94 26.50 [13]
InGaN 32.80 0.57 15.20 [29]
InGaN 37.68 0.729 2217 This work

4. Conclusions

The influence of doping concentration and thickness of n-InGaN and p-InGaN regions
on the PCE of the single junction-based InGaN solar cells was successfully studied by the
Silvaco ATLAS simulation software. The optimized values of doping concentrations of
5 x 10" ecm~3 and 1 x 10'® cm 3 were observed for the n-InGaN and p-InGaN regions,
respectively. The value of the optimized thickness of 300 nm was observed for both the
n-InGaN and p-InGaN regions. The highest efficiency of 22.17% with Js. = 37.68 mA/ cm?,
Ve =0.729 V, and FF = 80.61% were observed at optimized values of doping concentration
and thickness of the n- and p-InGaN regions of solar cell. The EQE of 70.81% was observed
at a 550 nm wavelength. The simulation study shows the relevance of the Silvaco ATLAS
simulation tool for the optimization of doping concentration and thickness of n- and p-
InGaN regions for solar cells and would provide information for the fabrication of efficient,

low-cost, and high-performance InGaN solar cells.
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