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Abstract: The theoretical model for a packed porous catalytic particle of the slab, cylindrical, and
spherical geometries shape in fixed-bed electrochemical reactors is discussed. These particles have
internal mass concentration and temperature gradients in endothermic or exothermic reactions.
The model is based on a nonlinear reaction–diffusion equation containing a nonlinear term with
an exponential relationship between intrinsic reaction rate and temperature. The porous catalyst
particle’s concentration is obtained by solving the nonlinear equation using Akbari-Ganji’s method.
A simple and closed-form analytical expression of the effectiveness factor for slab, cylindrical, and
spherical geometries was also reported for all values of Thiele modulus, activation energy, and heat
reaction. The accordance with results of a reliable numerical method shows the good accuracy that
their approximate solution yields.

Keywords: mathematical modelling; reaction–diffusion equation; catalyst pellets; Akbari-Ganji’s
method; electrochemical fixed-bed reactors

1. Introduction

Scientists have been inspired to create more effective electrochemical reactors by the
significant contribution of electrochemical engineering in pollution control (in water, air,
and soil) and electrochemical synthesis [1]. Furthermore, due to the fixed bed electrochemi-
cal reactor’s excellent space–time yield, numerous studies have focused on its performance
features, such as mass transfer and current distribution, in recent years [2]. Mass transfer
behaviour in chemical reactor with a mathematical approach is given in the books by
Bird et al. [3] and Treybal [4].

The uniform current distribution in this electrochemical reactor is an advantage widely
desired for electro-organic synthesis, since it results in a high degree of selectivity [1]. In
addition, the inner surface of the inner tubular electrode of the reactor can be employed as
a heat exchanger to remove extra heat produced during electrolysis from the cell. However,
the annular flow electrochemical reactor’s primary drawback is its small area-to-volume
ratio, reducing diffusion-controlled reactions.

By increasing the rate of mass transfer using various methods, such as surface rough-
ness [2], turbulence-promoting screens [5], gas generation at the working electrode [6,7],
gas sparging [8], swirl flow [9,10], and pulsating flow [11], various authors have attempted
to address this defect. In addition, some research has been done on the impact of inert beds
on the mass transfer behaviour of the electrochemical reactors in single-phase flow [12–14]
and two-phase flow. The effectiveness factor for a reaction with arbitrary kinetics occurring
inside a porous catalyst pellet is predicted by Paterson et al. [15] using the orthogonal
collocation method. Tavera [16] calculated the effectiveness factor, expressed in terms
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of special functions and exponential integrals for a porous slab of catalyst pellet under
non-isothermal conditions.

When analyzing chemical reaction kinetics based on externally observable parameters,
the behavior of a porous particle in an electrochemical reactor can differ significantly
from appropriate chemical kinetics. The particle’s mass and heat transfer influence the
overall reaction rate in heterogeneous gas–solid systems. In both isothermal [17] and
non-isothermal systems [18], the influence of diffusion resistance and heat of reaction in
solid-catalyzed processes have been characterized using the effectiveness factor. Depending
on the reaction conditions, the gas–solid interaction has both interfacial and homogeneous
reactions [19–22]. When combined with transient conditions, heat and mass transfer play
an essential role in gas–solid reaction systems [23–25].

Weisz et al. [18] studied the behavior of porous catalyst particles in the presence of
internal mass concentration and temperature gradients. Finally, Lucia and co-workers [26]
present the numerical solution of the non-linear equations for simultaneous mass and heat
diffusion effects. Sevukaperumal and Rajendran [27] developed a mathematical model of
porous catalyst particles in endothermic and exothermic processes.

However, no exact analytical expression for the concentration of a reactant at the cata-
lyst’s surface of general geometries has been reported. Therefore, this communication aims
to derive a simple approximate analytical expression for concentration and effectiveness
factors, for all possible reaction/diffusion parameter values for the slab, cylinder, and
spherical geometries. The approximate analytical results (concentration, and effectiveness
factor) obtained using the Akbari-Ganji’s method (AGM) will help control the operational
variables (heat of the reaction, activation energy, and Thiele modulus) in designing the
components and the scale-up of electrochemical reactors.

2. Mathematical Formulation of the Problem

The nonlinear mass balance equation involving heterogeneous reaction kinetics on
electrochemical fixed-bed reactors of general geometries (slab, cylindrical, and spherical)
can be written as follows (Appendix A):

d2y(x)
d x2 +

n
x

dy(x)
dx

= Φ2 y(x)e(
γβ(1−y(x))

1+β(1−y(x)) ) (1)

The dimensionless boundary conditions are

At x = 1, y = 1, (2)

At x = 0,
dy
dx

= 0, (3)

where y is the dimensionless concentration of reactant, x is the dimensionless pellet radius
and γ is the dimensionless activation energy, β is the dimensionless heat of reaction, and
Φ is the Thiele modulus. The values of the geometrical shape parameter fall n within the
range 0 to 2 for all simply connected regions of the pellet. The limits of these regions are:
the infinite slab (n = 0), cylinder (n = 1), and the sphere (n = 2).

The effectiveness factor is

η =
(n + 1)

Φ2

(
dy
dx

)
x=1

, (4)
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3. Approximate Analytical Expression of the Concentration and Effectiveness Factor
Using Akbari-Ganji’s Method

Solving nonlinear differential equations analytically is more complicated than solv-
ing linear differential equations. Recently, many asymptotic methods for solving non-
linear differential equations have been developed, such as the homotopy perturbation
method [28–30], Adomian decomposition method [31–33], Variational iteration
method [34–36], Taylor series method [37,38], Akbari-Ganji method [39–44], and Rajendran–
Joy method [45]. The AGM may be considered a powerful algebraic (semi-analytic) ap-
proach for solving such problems. The approximate analytical expression of a reactant
concentration for all dimensionless parameters is obtained using this method (Appendix B)
as follows:

y(x) =
cosh(mx)

cosh m
(5)

where m is obtained by solving the equation

m2 +
( n

0.5

)
mtanh(0.5m)−Φ2e(

γβ(1−cosh (0.5 m)sec hm)
1+β(1−cosh (0.5 m)sec hm)

)
= 0 (6)

Equation (5) is the new analytical expression of a reactant concentration for all values
of dimensionless parameters γ, β and Φ. The Ying Buzu algorithm [46,47] can be used to
find the unknown parameter m. The numerical value of m for the given values of γ, n, β,
and Φ can be obtained by solving Equation (6) by any mathematical software. Additionally,
when m is small, Equation (6) becomes (Appendix C):

m '

√
2Φ2

2(1 + n)−Φ2γβ
(7)

and for large values of m, we have

m '
√

n2 + Φ2e(
γβ

1+β ) − n (8)

Substituting the value of m in Equation (5) gives the closed-form of approximate
analytical expression of a reactant concentration, y(x), for all dimensionless parameters.

The regular false method and the secant algorithm were also used to determine this
parameter. The Ying Buzu algorithm method offers an extremely fast convergent result.
The effectiveness factor response can be obtained as follows:

η =
(n + 1)

Φ2

(
dy
dx

)
x=1

=
(n + 1)

Φ2 m tan h(m) (9)

4. Numerical Simulation

The nonlinear diffusion Equation (1) for the boundary conditions (Equations (2)
and (3)) is also solved numerically. We have used the function pdex1 in MATLAB software
to numerically solve the initial-boundary value problems for the nonlinear differential
equations (Appendix D).

The simulation results are compared with our approximate analytical results in
Tables 1–4 for spherical catalyst pellets. The maximum average error percentage between
numerical and our approximate analytical results is 3.6% for all values of the activation
energy, heat of reaction, and Thiele modulus.
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Table 1. Comparison of dimensionless concentration of species y(x) for spherical catalyst pellets with
simulation results for various values of parameter Φ when β = 0.01 and γ = 1.

x

Φ = 0.1, m = 0.057741 Φ = 5, m = 3.48049 Φ = 10, m = 8.24677

Num
Approximate

Analytical
Equation (5)

Error%
Equation

(5)
Num

Approximate
Analytical

Equation (5)

Error%
Equation

(5)
Num

Approximate
Analytical

Equation (5)

Error%
Equation (5)

0 0.9983 0.9983 0.0000 0.0663 0.0625 5.7315 0.0007 0.0007 0.0000

0.2 0.9984 0.9984 0.0000 0.0783 0.0774 1.1494 0.0016 0.0016 0.0000

0.4 0.9986 0.9986 0.0000 0.1222 0.1290 5.2713 0.0062 0.0062 0.0000

0.6 0.9989 0.9989 0.0000 0.2282 0.2246 1.5776 0.0315 0.0302 4.1269

0.8 0.9994 0.9994 0.0000 0.4727 0.4795 1.4385 0.1802 0.1739 3.4961

1 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000

Average error (%) 0.0000 Average error (%) 2.5280 Average error (%) 1.2705

Num represents numerical results.

Table 2. Comparison of dimensionless concentration of species y(x) for spherical catalyst pellets with
simulation results for various values of parameter Φ when β = 100 and γ = 1.

x

Φ = 0.1, m = 0.061428 Φ = 5, m = 6.46641 Φ = 10, m = 14.5272

Num
Approximate

Analytical
Equation (5)

Error%
Equation

(5)
Num

Approximate
Analytical

Equation (5)

Error%
Equation

(5)
Num

Approximate
Analytical

Equation (5)

Error%
Equation (5)

0 0.9981 0.9981 0.0000 0.0045 0.0040 11.111 0.0000 0.0000 0.0000

0.2 0.9982 0.9982 0.0000 0.0069 0.0068 1.4493 0.0000 0.0000 0.0000

0.4 0.9985 0.9984 0.0100 0.0187 0.0189 1.0695 0.0001 0.0001 0.0000

0.6 0.9988 0.9988 0.0000 0.0656 0.0649 1.0671 0.0026 0.0024 7.6923

0.8 0.9994 0.9993 0.0100 0.2581 0.2548 1.2786 0.0532 0.0531 0.1880

1 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000

Average error (%) 0.0033 Average error (%) 2.6626 Average error (%) 1.3134

Table 3. Comparison of dimensionless concentration of species y(x) for spherical catalyst pellets with
simulation results for various values of parameter Φ when γ = 0.01 and β = 0.01.

x

Φ = 0.1, m = 0.057740 Φ = 5, m = 3.462948 Φ = 10, m = 8.199400

Num
Approximate

Analytical
Equation (5)

Error%
Equation (5) Num

Approximate
Analytical

Equation (5)

Error%
Equation (5) Num

Approximate
Analytical

Equation (5)

Error%
Equation (5)

0 0.9983 0.9983 0.0000 0.0673 0.0651 3.2689 0.0000 0.0000 0.0000

0.2 0.9984 0.9984 0.0000 0.0794 0.0802 1.0075 0.0017 0.0017 0.0000

0.4 0.9986 0.9986 0.0000 0.1235 0.1228 0.5668 0.0064 0.0064 0.0000

0.6 0.9989 0.9989 0.0000 0.2296 0.2264 1.3937 0.0320 0.0335 4.6875

0.8 0.9994 0.9994 0.0000 0.4738 0.4649 1.8784 0.1813 0.1908 5.2399

1 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000

Average error (%) 0.0000 Average error (%) 1.3525 Average error (%) 1.6546
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Table 4. Comparison of dimensionless concentration of species y(x) for spherical catalyst pellets with
simulation results for various values of parameter Φ when γ = 100 and β = 0.01.

x

Φ = 0.1, m = 0.057776 Φ = 5, m = 6.28141 Φ = 10, m = 14.5216

Num.
Approximate

Analytical
Equation (5)

Error%
Equation (5) Num

Approximate
Analytical

Equation (5)

Error%
Equation (5) Num

Approximate
Analytical

Equation (5)

Error%
Equation (5)

0 0.9983 0.9983 0.0000 0.0071 0.0068 4.2253 0.0000 0.0000 0.0000

0.2 0.9984 0.9984 0.0000 0.0108 0.0101 6.4615 0.0000 0.0000 0.0000

0.4 0.9986 0.9986 0.0000 0.0289 0.0289 0.0000 0.0002 0.0002 0.0000

0.6 0.9989 0.9989 0.0000 0.0981 0.0956 2.5484 0.0038 0.0033 13.158

0.8 0.9994 0.9994 0.0000 0.3460 0.3401 1.7052 0.0780 0.0713 8.5874

1 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000

Average error (%) 0.0000 Average error (%) 2.4906 Average error (%) 3.6242

5. Discussion

Equation (5) is the new closed and simple new approximate analytical expressions’
concentration of reactant. The concentration depends on the parameters γ (dimensionless
activation energy), β (dimensionless heat of reaction), and Φ (Thiele modulus).

5.1. Influence of the Parameters (Thiele Modulus, Heat of the Reaction, and Activation Energy) on
the Concentration Profile

The Thiele modulus is the ratio of reaction to diffusion rates. Figure 1a–c represent the
concentration of species for various value parameters. Figure 1a illustrates the concentration
profile for various values of the Thiele modulus. When Φ is low, the diffusional resistance
is inadequate to limit the reaction rate. Therefore, uniform concentration CA/CAS can
be maintained. However, when Φ is large, a significant diffusional resistance prevents
a constant concentration profile of A within the catalyst particle and thus lowers the
observed rate. From the figure, it is observed that the concentration increases when the
Thiele modulus decreases. Additionally, the concentration is uniform when Φ� 0.1. From
Figure 1b,c, it is inferred that concentration decreases when the heat of the reaction (β) and
activation energy (E) decreases.

Electrochem 2022, 3, FOR PEER REVIEW 5 
 

0.2 0.9984 0.9984 0.0000 0.0108 0.0101 6.4615 0.0000 0.0000 0.0000 
0.4 0.9986 0.9986 0.0000 0.0289 0.0289 0.0000 0.0002 0.0002 0.0000 
0.6 0.9989 0.9989 0.0000 0.0981 0.0956 2.5484 0.0038 0.0033 13.158 
0.8 0.9994 0.9994 0.0000 0.3460 0.3401 1.7052 0.0780 0.0713 8.5874 
1 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 
 Average error (%) 0.0000 Average error (%) 2.4906 Average error (%) 3.6242 

5. Discussion 
Equation (5) is the new closed and simple new approximate analytical expressions’ 

concentration of reactant. The concentration depends on the parameters 𝛾 (dimension-
less activation energy), 𝛽 (dimensionless heat of reaction), and Φ (Thiele modulus). 

5.1. Influence of the Parameters (Thiele Modulus, Heat of the Reaction, and Activation Energy) 
on the Concentration Profile  

The Thiele modulus is the ratio of reaction to diffusion rates. Figure 1a–c represent 
the concentration of species for various value parameters. Figure 1a illustrates the concen-
tration profile for various values of the Thiele modulus. When Φ is low, the diffusional 
resistance is inadequate to limit the reaction rate. Therefore, uniform concentration CA/CAS 
can be maintained. However, when Φ is large, a significant diffusional resistance pre-
vents a constant concentration profile of A within the catalyst particle and thus lowers the 
observed rate. From the figure, it is observed that the concentration increases when the 
Thiele modulus decreases. Additionally, the concentration is uniform when Φ ≪ 0.1. 
From Figures 1b,c, it is inferred that concentration decreases when the heat of the reaction 
(𝛽) and activation energy (𝐸) decreases. 

 
Figure 1. Cont.



Electrochem 2022, 3 704
Electrochem 2022, 3, FOR PEER REVIEW 6 
 

 

 
Figure 1. Effect of the parameters Φ, 𝛽, and 𝛾 on concentration of the reactant 𝑦(𝑥) for spherical 
catalyst pellet using Equation (5). (a) Various values of Φ, (b) various values of 𝛽 and (c) various 
values of 𝛾. 

5.2. Influence of the Parameters (Thiele Modulus, Heat of the Reaction, and Activation Energy) 
on the Effectiveness Factor 

The overall reaction rate in a catalytic pellet is often expressed by the effectiveness 
factor η, which measures the total reaction rate as a scalar multiple of a homogeneous 
reaction rate at the surface concentration. 

Equation (9) represents the new approximate analytical expression of the effective-
ness factor for all values of parameters. It is observed that the value of the effectiveness 
factor 𝜂  increases as the Thiele modulus Φ increases initially, reaches the maximum 
value, and then decreases. The peak value of the effectiveness factor increases when the 
heat of the reactant (𝛽) or activation energy (𝛾) increases. The heat of the reaction value 
is negative for an exothermic reaction. In this case, the effectiveness factor is less than one 
(see Figure 2a). 

Figure 1. Effect of the parameters Φ, β, and γ on concentration of the reactant y(x) for spherical
catalyst pellet using Equation (5). (a) Various values of Φ, (b) various values of β and (c) various
values of γ.

5.2. Influence of the Parameters (Thiele Modulus, Heat of the Reaction, and Activation Energy) on
the Effectiveness Factor

The overall reaction rate in a catalytic pellet is often expressed by the effectiveness
factor η, which measures the total reaction rate as a scalar multiple of a homogeneous
reaction rate at the surface concentration.

Equation (9) represents the new approximate analytical expression of the effectiveness
factor for all values of parameters. It is observed that the value of the effectiveness factor η
increases as the Thiele modulus Φ increases initially, reaches the maximum value, and then
decreases. The peak value of the effectiveness factor increases when the heat of the reactant
(β) or activation energy (γ) increases. The heat of the reaction value is negative for an
exothermic reaction. In this case, the effectiveness factor is less than one (see Figure 2a).
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Figure 2. Plot of the effectiveness factor η (spherical catalyst pellets) versus the Thiele modulus Φ for
various values of parameter β (a) when γ = 10 (b) when γ = 20 using Equation (9).

Figure 3 shows the effectiveness factor versus Thiele modulus for flat, cylindrical, and
spherical catalyst pellets. It is observed that the peak value of the effectiveness factor for
spherical geometrics is higher than for cylindrical and slab geometries. Furthermore, it
is concluded that for all geometries, the effectiveness increases when the Thiele modulus
increases to attain the maximum value before it decreases.
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Figure 3. The effectiveness factor η versus of the Thiele modulus Φ for the flat, cylindrical, and
spherical catalyst pellet.

5.3. A limiting Case: The Dimensionless Heat of Reaction Is Zero (β = 0)

When β = 0, Equation (1) becomes

d2y(x)
d x2 +

n
x

dy(x)
dx

= Φ2 y(x) (10)

In this case, we can obtain the well-known exact analytical expression of concentration
and effectiveness factors when n = 0, 1, 2. In Table 5, the exact results for the limiting
cases, i.e., n = 0, 1, 2 (Equations. (11) to (16)), and approximate general analytical results
(Equations. (17) to (19)) for all cases (this work) are summarized.
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Table 5. The concentration and effectiveness factors when β = 0.

Geometry Exact Result This Work (Approximate Analytical Result)

Concentration Effectiveness
Factor Concentration Effectiveness

Factor

Spherical (n = 2 ) y(x) = sin hh(Φx)
xcoshΦ (11) 1

Φ

[
1

tanh(φ) −
1

3φ

]
(12) y(x) = cos h(mx)

cosh m (17)
where m is obtained by

solving the equation
m2 + 2nmtanh(0.5m) =

Φ2 (18)

η = (n+1)
Φ2 mtanhm (19)Cylindrical (n = 1 ) y(x) = I0 (Φx)

I0 (Φ)
(13) I1 (2Φ)

ΦI0 (2Φ)
(14)

Slab(n = 0 ) y(x) = cos h(Φx)
cosh Φ (15) tan hΦ

Φ (16)

This limiting case result for the concentration of species y(x) for cylindrical catalyst
pellets is compared with our approximate analytical results in Table 6, where satisfactory
agreement is noted.

Table 6. Comparison of dimensionless concentration of species y(x) for cylindrial catalyst pellets
with simulation results for various values of parameter Φ when γ = 0 and β = 0.

x
Φ = 0.1 Φ = 5 Φ = 10

Exact
Equation (13)

This Work
Equation (17) Error% Exact

Equation (13)
This Work

Equation (17) Error% Exact
Equation (13)

This Work
Equation (17) Error%

0 0.9975 0.9975 0.0000 0.0367 0.0351 4.3697 0.0003 0.0003 0.0000

0.2 0.9976 0.9976 0.0000 0.0465 0.0469 0.8602 0.0008 0.0008 0.0000

0.4 0.9979 0.9979 0.0000 0.0837 0.0821 1.9116 0.0040 0.0045 12.500

0.6 0.9984 0.9984 0.0000 0.1792 0.1753 2.1763 0.0239 0.0236 1.2552

0.8 0.9991 0.9991 0.0000 0.4149 0.4174 0.7231 0.1518 0.1607 5.8629

1 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000

Average error (%) 0.0000 Average error (%) 1.6735 Average error (%) 3.2697

Here we have presented an analysis to compute the effectiveness factor in a reac-
tion/diffusion system of general geometry. The value for the effectiveness factor is also
valid for a modified electrode, since the reaction flux is defined by the concentration gra-
dient at x = 1. Therefore, the analysis for a polymer-modified electrode and a packed
bed reactor are equivalent. Consequently, the theory applies to both electrochemical and
catalytic problems, hence the concept applies equally to electrochemical and catalytic prob-
lems. The concept of effectiveness factor is beneficial for polymer-modified electrodes
since it presents the degree of utilization of the layer in catalysis. The electrochemical
polymer-modified electrode problem is equivalent to packed bed catalysis.

6. Conclusions

The mass transfer behavior in fixed electrochemical reactors was discussed. The non-
linear differential equation for coupled heat and mass transfer in a slab, cylindrical, and
spherical non-isothermal kinetics was solved analytically using the efficient Akbari-Ganji
method. The approximate analytical expressions for the reactant concentration and effec-
tiveness factor were obtained for all values of parameters. The numerical simulation results
provided by Matlab, and theoretical predictions, were found to be in satisfactory agreement.
The derived approximate analytical results were employed to analyze the effect of the
behavior of porous catalyst particles subject to both internal mass concentration gradients
and temperature gradients in endothermic or exothermic reactions. The theoretical model
in this study and the derived approximate analytical solution can be extended to study the
electrosynthesis of chemicals and drugs, redox flow batteries, fuel cells, water disinfection,
and electrodialysis.
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List of Symbols

CA Concentration of reactant A inside the catalyst pellet
CA,s Concentration of reactant A at the surface of catalyst pellet
Dεz Effective diffusivity inside the catalyst pellet
E Activation energy
kre f Reference reaction constant
Kεz Effective thermal conductivity inside the catalyst pellet
rA Arrhenius reaction rate
R Radius of a sphere
Rg Gas constant
T Temperature inside the catalyst pellet
Tre f Reference temperature
Ts Temperature at the surface of catalyst pellet
x Dimensionless radius of the spherical catalyst pellet
y(x) Dimensionless concentration
∆H Heat of reaction
Φ Thiele modulus
β Dimensionless heat of reaction
γ Dimensionless activation energy
η Effectiveness factor
ψ Flux

Appendix A Physicochemical Formulation of the Problem

Many industrial reactors use heterogeneous reaction kinetics of packed catalytic pellets
in fixed-bed reactors (Equation (A1)). A single porous catalyst pellet can be viewed as a
porous media through which reactants diffuse as interaction occurs.

A
Catalyst→
∆H

B (A1)

The species mass balance equation is

Dεz∇2CA + rA = 0, (A2)

where ∇2 is the Laplacian operator and the rate constant k is a negative exponential
function of temperature

rA = −kre f e
[ −E

RgTre f
(

Tre f
Ts −1)]

CA,s (A3)

The boundary conditions are given by

CA = CA,s at r =


RS (sphere)

RC(cylinder)
L (slab)

(A4)
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dCA
dr

= 0 at r = 0, (A5)

where CA is the concentration of reactant A inside the catalyst pellet, CA,s is concentration
of reactant A at the surface of catalyst pellet, R is a length parameter (radius in case of a
sphere), kre f is the reference reaction constant,E is the activation energy, Rg is a gas constant,
Tre f is a reference temperature, Ts is a temperature at the surface of catalyst pellet, and Dεz
is the effective diffusivity inside the catalyst pellet. The schematic concentration profile
showing boundary condition for slab, cylindrical, and spherical catalytic is represented in
Figure A1.
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The analogous equation for heat diffusion is

Kεz∇2T + rA∆H = 0, (A6)

where Kεz is the thermal conductivity and ∆H is a function of T.

∆H = k0 c e
( E ∆T

R T0(T0+∆T) ) (A7)

and
∆T = T − T0 = −∆H D

K
(c0 − c). (A8)

Here, T0 and c0 are the boundary values. The boundary conditions are

T = Ts at r =


RS (sphere)

RC (cylinder)
L (slab)

(A9)

dT
dr

= 0 at r = 0 (A10)

Using the relation Equation (A8), we can write the reaction rate Equation (A6) in terms
of one variable instead of both c and ∆T. Using the following dimensionless variable

y =
CA

CA,s
, x =

r
R

, Φ = R

{
kre f

Dεz
e
[ −E

RgTre f
(

Tre f
Ts −1)]

} 1
2

, β =
−∆HDεzCA,s

KεzTs
, γ =

E
RgTs

(A11)

The nonlinear equation and boundary conditions can be written as in Equations (1)–(3)
in the main manuscript.
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Appendix B Approximate Analytical Expression of a Substrate Concentration
in Species

There are numerous analytical and numerical techniques for solving linear differen-
tial equations, however, nonlinear differential equation techniques are far more difficult
to use [48,49]. Here, we can use a novel algebraic method AGM for solving nonlinear
differential equations proposed by Akbari et al. [50]. In the AGM, it is initially assumed
that a solution function with unknown constant coefficients will satisfy both the initial
conditions and the differential equation. Then, using algebraic equations obtained for the
initial condition and their derivatives, the unknown coefficients are calculated. Assume
that the solution to Equation (1) is the following Akbari Ganji’s method.

y(x) = A0 cosh(mx) + B0sinh(mx), (A12)

where A0, B0, and m are constant. The values of A0, B0 are found easily from boundary
conditions (2) and (3), that is

A0 =
1

cosh m
, B0 = 0 (A13)

As a result, Equation (A12) becomes

y(x) = A0 cosh(mx) =
cosh(mx)

cosh m
. (A14)

We use the general form of Equation (1) to find the constant m in Equation (B3). We
write Equation (1) in the form

F(x) =
d2y(x)

dx2 +
n
x

dy(x)
dx
−Φ2 y(x) e(

γβ(1−y(x))
1+β(1−y(x)) ) = 0. (A15)

By substituting Equation (A14) into Equation (B4) and letting x = 0.5, we obtain

F
∣∣∣∣x=0.5 = m2 +

( n
0.5

)
mtanh(0.5m)−Φ2e(

γβ(1−cosh (0.5 m) sec hm)
1+β(1−cosh (0.5 m)sec hm)

)
= 0. (A16)

Appendix C Approximate Analytical Solution of Nonlinear Equation (6)

The approximate solution of the nonlinear equation in non-isothermal kinetics

d2y(x)
dx2 +

n
x

dy(x)
dx

= Φ2y(x) e(
γβ(1−y(x))

1+β(1−y(x)) ) (A17)

for the boundary conditions y(1) = 1 and dy
dx (0) = 0 is given by

y(x) = sec hm cosh(mx), (A18)

where m is obtained by solving the equation

m2 + 2 nmtanh
(m

2

)
−Φ2e

(
γβ(1−cosh ( m

2 )sec hm)

1+β(1−cosh ( m
2 )sec hm)

)
= 0 (A19)

Case 1: m is sufficiently small.
In this case, we have

tanh
(m

2

)
' m

2
and cosh

(m
2

)
sec hm '

(
1− m2

2

)[
1 +

m2

8

(
1 +

m2

32

)]
' 1− m2

2
(A20)

Hence, Equation (A19) becomes

m2 + nm2 −Φ2eF1 = m2(1 + n)−Φ2eF2 = 0 (A21)
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where F1 =
γβ
(

1−
[
1−m2

2

])
1+β

(
1−
[
1−m2

2

]) and F2 = γβm2

2+βm2 .

If we assume that γβm2

2 � 1. Then eF2 ' e(
γβm2

2 ) ' 1 + γβm2

2 . Hence,

m2(1 + n)−Φ2
(

1 +
γβm2

2

)
= 0 (A22)

which reduces to

m '

√√√√ Φ2

1 + n− Φ2γβ
2

. (A23)

Case (2). Assume m is large, that is m > > 1. Then

tanh
(m

2
)
' 1, cos h

(m
2
)
' e(

m
2 )

2 . That is sec hm ' 2 e−m. Hence, cosh
(m

2
)
sec hm '

e(
−m

2 ). For large , e(
−m

2 ) → 0 . In other words,

cosh
(m

2

)
sec hm ' 0, (A24)

and consequently Equation (A19) becomes

m2 + 2 nm−Φ2e(
γβ

1+β ) = 0, (A25)

Solving (A25) for m gives

m =
−2n±

√
4n2 + 4 Φ2e(

γβ
1+β )

2
, (A26)

and in simplified from,

m =

√
n2 + Φ2e(

γβ
1+β ) − n (A27)

Appendix D MATLAB Code for Numerical Solution of the Non-Linear Equation (1)

function pdex1
m = 1;
x = linspace(0,1);
t = linspace(0,1000);
sol = pdepe(m,@pdex1pde,@pdex1ic,@pdex1bc,x,t);
u1 = sol(:,:,1);
figure
plot(x,u1(end,:))
title(‘u1(x,t)’)
xlabel(‘Distance x’)
ylabel(‘u1(x,2)’)
% ————————————————————–
function [c,f,s] = pdex1pde(x,t,u,DuDx)
c = 1;
f = DuDx;
p = 10;b = 0.01;r = 3;
s =-(pˆ2)*u*exp(r*b*(1-u)/(1 + b*(1-u)));
function u0 = pdex1ic(x)
u0 = 1;
function [pl,ql,pr,qr] = pdex1bc(xl,ul,xr,ur,t)
pl = 0;
ql = 1;
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pr = ur-1;
qr = 0;
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