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Abstract: Understanding electrochemical reactions at the surface of electrodes requires the accurate
calculation of key parameters—the transfer coefficient (α), diffusion coefficient (D0), and hetero-
geneous electron transfer rate constant (k0). The choice of method to calculate these parameters
requires careful consideration based on the nature of the electrochemical reaction. In this study, we
conducted the cyclic voltammetry of paracetamol to calculate the values of these parameters using
different methods and present a comparative analysis. Our results demonstrate that the Ep − Ep/2

equation for α and the modified Randles–Ševčík equation for D0 is particularly effective for the
calculations of these two parameters. The Kochi and Gileadi methods are reliable alternatives for the
calculation of k0. Nicholson and Shain’s method using the equation k0 = Ψ(πnD0Fν/RT)1/2 gives
the overestimated values of k0. However, the value of k0 calculated using the plot of ν−1/2 versus Ψ

(from the Nicholson and Shain equation, where ν is scan rate) agrees well with the values calculated
from the Kochi and Gilaedi methods. This study not only identifies optimal methodologies for
quasi-reversible reactions but also contributes to a deeper understanding of electrochemical reactions
involving complex electron transfer and coupled chemical reactions, which can be broadly applicable
in various electrochemical studies.

Keywords: rate constant; diffusion coefficient; transfer coefficient; Tafel plot; digital simulation;
Nicholson and Shain method; Kochi method; Gileadi method; paracetamol; acetaminophen

1. Introduction

A deep insight into electrochemical reactions on the surface of electrodes is essential to
understanding the processes in catalysis, electrolysis, batteries, sensors, and fuel cells [1–14].
Cyclic voltammetry—a simple, easy, and common technique—is a front-line tool to inves-
tigate reactions on electrode surfaces. Cyclic voltammetry is generally the first choice to
test any material with potential application in these research areas for the determination
of redox potentials and rates (for heterogeneous electron transfer and coupled chemical
reactions) [15–21]. However, the selection of a feasible method to explore reactions at the
electrode surface is essential because of the complex nature of these reactions, i.e., electron
transfer with chemically coupled reactions [22,23]. No method is universal that works well
for all kinds of reactions, hence requiring a careful choice of method depending on the
nature of the reaction.

In electrochemical studies, the number of electrons transferred (n), the transfer co-
efficient (α), diffusion coefficient (D0), and heterogeneous electron transfer rate constant
(k0) are essential parameters to explore reactions on the electrode surface. The transfer
coefficient is the symmetry factor that affects the activation energy at the electrode sur-
face, hence affecting the direction of the reaction. The diffusion coefficient is a transport
parameter that is related to the transport of species toward and away from the surface of
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the electrode. The heterogeneous electron transfer rate constant indicates how fast or slow
electron transfer happens. Overall, the electrode process depends on the transfer coefficient,
diffusion coefficient, and rate of electron transfer [20,22,24–27].

Electrochemical reactions are classified into three broad categories, reversible, quasi-
reversible, and irreversible, based on the value of the heterogeneous electron transfer
rate constant (k0). The value of k0 defines the boundaries for these categories as fol-
lows: reversible k0 > 2 × 10−2 cm/s, quasi-reversible k0 ranges from 2 × 10−2 cm/s
to 3 × 10−5 cm/s, and irreversible k0 is < 3 × 10−5 cm/s. In reversible reactions, ox-
idized/reduced species are stable enough at the time scale of the scan rate; in quasi-
reversible reactions, these species generally undergo chemical reactions, but their rate is
not fast enough to consume these species completely at the time scale of the scan rate.
In irreversible reactions, these species undergo fast chemical reactions and completely
transform into another chemical species, or these species are stable but do not transfer
electrons (to or from the electrode) on the reverse potential scan. However, the reliability of
the value of k0 depends on the accuracy of n, α, and D0. [20,27–29]

Here, in this study, we investigated paracetamol as an electroactive species using
various electrochemical methods. We chose paracetamol due to its complexity of electron
transfer and coupled chemical reactions during electrochemical processes [30,31]. We
employed different methodologies to determine the values of α, D0, and k0, and calculated
values were compared. Two different methods were employed to determine the values of α
and D0. The Nicholson and Shain and Kochi and Gileadi methods were used to determine
the k0. Furthermore, these parameters were validated using the digital simulation of cyclic
voltammograms, and calculated values were compared.

2. Materials and Methods

LiClO4 bought from Merck (Darmstadt, Germany) and paracetamol from Glaxo Smith
Klein Pharmaceuticals (PVT) Ltd. (Karachi, Pakistan). In total, 10 mL of 1 × 10−6 M of the
paracetamol solution with 0.1 M of LiClO4 as a supporting electrolyte in deionized water
was prepared and used. The working electrode was polished using 0.2 µm of aluminum
powder provided by CHI Instruments. All solutions were purged with nitrogen gas for
15 min before running cyclic voltammetry.

Cyclic voltammetry was carried out at room temperature using a CHI 760D Electro-
chemical Workstation, operated by an Intel Core 2 Quad-Supported IBM computer with
a Windows XP operating system. All the electrochemical experiments were performed
in a conventional three-electrode cell. The following electrodes were used: glassy car-
bon (GC) as the working electrode, platinum as the counter electrode, and the saturated
calomel electrode (SCE) as the reference electrode. The digital simulation was carried
out through DigiSim software built into the CHI 760D electrochemical workstation. The
working electrode was polished with aluminum powder before use. The surface area of
the working electrode was 0.0706 cm2, as provided by CHI Instruments (Austin, TX, USA;
Model No. CHI 104). All reported potentials are referenced to the SCE potential.

3. Results
3.1. Cyclic Voltammetry of Paracetamol

Before starting with the results, it is essential to understand the basic parameters that
can be directly obtained from a cyclic voltammogram. These basic parameters include the
peak potentials for anodic (Epa) and cathodic (Epc) reactions, as well as the corresponding
peak currents for anodic (Ipa) and cathodic (Ipc) processes. From these four foundational
parameters, several kinetic and thermodynamic parameters are derived. (1) Formal po-
tential (E1/2) is calculated as the absolute difference between Epc and Epa, divided by two
(E1/2 = |Epc − Epa|/2). The formal potential is also called standard reduction poten-
tial. (2) Peak separation (∆Ep), defined as the absolute difference between Epc and Epa
(∆Ep = |Epc − Epa|), is a parameter that is an immediate measure and shows the nature
of the electron transfer process, distinguishing between reversible, quasi-reversible, or
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irreversible reactions. (3) The ratio of peak currents (Ipc/Ipa), the ratio between the anodic
and cathodic peak currents that provide insights into chemically coupled reactions, is
also an important criterion to evaluate the nature of electron transfer. A value near unity
indicates that reduced/oxidized species are stable and there are no chemically coupled
reactions. In contrast, a value less than unity indicates the presence of chemically coupled
reactions, resulting in the consumption of reduced/oxidized species. Utilizing Epa, Epc,
Ipa, Ipc, and E1/2, one can calculate the transfer coefficient and the diffusion coefficient.
These coefficients are instrumental in determining the heterogeneous electron transfer rate
constants. Such calculations are pivotal in understanding the electron transfer kinetics and
the overall electrochemical behavior of the analyte under study.

Cyclic voltammograms of the paracetamol solution were taken at the scan rate of
0.025 V/s to 0.300 V/s with an incremental change of 0.025 V/s and are presented in
Figure 1. The scan rate, Epa, Epc, Ipa, Ipc, ∆Ep, E1/2, and (Ipc/Ipa), is presented in Table S1 of
the Supplementary Information. The Epa was observed at 0.705 V at 0.025 V/s, which was
shifted to 0.750 V at 0.300 V/s. The Epc shifted from 0.577 V to 0.564 V with the increase
in the scan rate. The ∆Ep increased from 0.128 V to 0.186 V as the scan rate was increased
from 0.025 V/s to 0.300 V/s. An increase in ∆Ep and a shift in peak potentials indicated
the quasi-reversible nature of the electron transfer or higher uncompensated IR resistance.
To check whether quasi-reversibility is attributed to slow electron transfer and not from
higher uncompensated IR resistance, we plotted ∆Ep vs. the sq. root of the scan rate as
presented in Figure S1 of the Supplementary Information. A good regression with a linear
trend indicates that ohmic resistance is negligible, and slow electron transfer is responsible
for the quasi-reversibility of this process. Additionally, ∆Ep is significantly higher than the
peak separation of the reversible peak, i.e., 0.029 V for n = 2, (n = number of electron(s)),
which shows the quasi-reversible nature of processes. Furthermore, Figure 1 clearly shows
that the reverse peak is smaller than the forward peak. The ratio of Ipc/Ipa remains almost
constant at 0.59 ± 0.03. The ratio of Ipc/Ipa has less than unity and a smaller reverse peak,
both indicating the presence of chemically coupled reactions followed by the first electron
transfer [32,33].
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the supporting electrolyte in the aqueous solution at different scan rates. Arrows show the direction
of potential scan.

The first criterion we need to know is whether the reaction is adsorption-controlled
or diffusion-controlled because both processes require different forms of electrochemistry.



Electrochem 2024, 5 60

Generally, Ip correlates with the scan rate raised to some power, which is supposedly
b here. If the reaction is adsorption-controlled, the Ip vs. scan rate is linear (b = 1); if
diffusion-controlled, the Ip vs. sq. root of the scan rate is linear (b = 0.5). We plotted
Ip vs. the scan rate and Ip vs. the sq. root of the scan rate in Figure 2a,b, respectively.
Comparatively, the best fit for Ip vs. the sq. root of the scan rate (Figure 2b) shows that
the process is diffusion-controlled. However, R2 for Figure 2a is 0.984 and 0.964, and
Figure 2b is 0.997 (for both lines), indicating a very small difference in the values of R2. We
adapted an alternate approach to confirm the nature of processes in which the log of the
scan rate vs. the log of the peak current is plotted. The slope of this plot shows the nature
of the process: a slope near unity indicates adsorption-controlled, and near 0.5 indicates
a diffusion-controlled reaction [32,34]. We plotted the log of a scan rate vs. the log of a
peak current in Figure 2c. Figure 2c shows the slope close to ~0.5, which indicates that
the reaction is diffusion-controlled. In the following sections, we calculated the transfer
coefficient, diffusion coefficient, and electron transfer rate constant.
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3.1.1. Transfer Coefficient

The transfer coefficient, a critical parameter in electrochemical studies, significantly
affects the activation energy of the electron transfer rate. The transfer coefficient typically
ranges from 0.3 to 0.7, with a general assumption of 0.5 in calculations of the electron
transfer rate constant. However, for accurate measurements of the heterogeneous electron
transfer rate constant, the precise quantification of the transfer coefficient is essential. In
this study, we determined the transfer coefficient using the following two methods: the
Tafel plot and another method referred to as Equation (1).

The Tafel plot method involves plotting the logarithm of the current against poten-
tial. For our measurements, we selected the current and potential values from the cyclic
voltammograms of paracetamol at scan rates of 0.025 V/s and 0.300 V/s, focusing on the
potential range of 0.62 V to 0.75 V, where the oxidation peaks are prominent as shown
in Figure 3. In these Tafel plots, we observed slopes of −22.69 at 0.025 V/s and −14.65
at 0.300 V/s, corresponding to transfer coefficient values of 0.34 and 0.57, respectively.
These values were calculated using the following relation: slope = −(1 − α)nF/2.3RT. It is
crucial to carefully select the points for slope measurement in the Tafel plot, aiming for the
descending straight part of the curve that is close to the horizontal current line. The lines
used to calculate slopes are shown in Figure S2 in the Supplementary Information. This
careful selection is important because even a minor error in identifying the slope points
can lead to significant deviations in the transfer coefficient value.
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To validate the transfer coefficient values obtained from the Tafel plot, we also em-
ployed another method, referred to as Equation (1) [34,35]. This method requires only two
electrochemical parameters as follows: Ep and Ep/2, as shown in Equation (1), and values
calculated from Equation (1) are presented in Table 1.

Ep − Ep/2 = 48/(αn) (1)

Here, α is the transfer coefficient, n is the number of electrons involved (n = 2) [31,33],
and Ep and Ep/2 are in mV. We found the values of the transfer coefficient between 0.62 and
0.36 at scan rates ranging from 0.025 V/s to 0.300 V/s, respectively, as shown in Table 1.
The average value is 0.43. Table 1 shows that the value of α depends on the scan rate;
as the scan rate increases, α decreases, as previously reported [36]. Here, the values of
transfer coefficients are in close agreement with the values calculated using the Tafel plots.
Additionally, this method is easy compared to the Tafel plot method, which requires a very
careful selection of points for calculating the slope.
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Table 1. The value of transfer coefficients calculated from Equation (1) at different scan rates.

Scan Rate (V/s) α

0.025 0.62
0.050 0.55
0.075 0.48
0.100 0.46
0.125 0.44
0.150 0.41
0.175 0.39
0.200 0.38
0.225 0.37
0.250 0.35
0.275 0.36
0.300 0.31

3.1.2. Diffusion Coefficient

The diffusion coefficient was determined using the modified Randles–Ševčík equation
for a quasi-reversible process, as presented in Equation (2) [37]

Ip = 2.99 × 105 ACn(αnD0ν)1/2 (2)

Here, Ip is the peak current, A is the area of the working electrode in cm2, C is the
concentration in mmol/cm3, n is the number of electrons involved (n = 2) [31], ν is the scan
rate in V/s, D0 is the diffusion constant in cm2/s, and α is the transfer coefficient. The
calculated values using Equation (2) are presented in Table 2. These values are averaged to
2.19 × 10−5 cm2/s with the smallest value of 1.25 × 10−5 cm2/s and the largest value of
3.10 × 10−5 cm2/s at a scan rate of 0.025 and 0.300 V/s, respectively.

Table 2. The values of the diffusion coefficient calculated from Equation (2) at different scan rates.

Scan Rate (V/s) D0 (×10−5 cm2/s)

0.025 1.25
0.050 1.51
0.075 1.95
0.100 1.86
0.125 1.83
0.150 2.12
0.175 2.31
0.200 2.42
0.225 2.56
0.250 2.67
0.275 2.67
0.300 3.01

Additionally, D0 can be determined using the slope of Ip vs. the sq. root of the
scan rate (from Figure 2b) according to Equation (3). This method gives the value of
2.42 × 10−5 cm2/s, which is in close agreement with the average value determined from
Equation (2).

D0 = (slope/(2.99 × 105 ACn(αnD0ν)1/2)/)2 (3)

This value from the slop method had an added advantage of background subtraction
due to uncompensated resistance and contribution from the capacitive current.

3.1.3. Heterogeneous Electron Transfer Rate Constant

The determination of the heterogeneous electron transfer rate constant (k0) is a pivotal
aspect of characterizing any new electrochemical system. This parameter is integral to un-
derstanding the kinetics of electron transfer processes at the electrode–electrolyte interface.
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In our study, we employed three different methods to calculate k0, each contributing to
a comprehensive understanding of the electrochemical behavior of the system. The first
method utilized was the Nicholson and Shain method [7]: a widely recognized approach
in electrochemical kinetics. This method, based on the analysis of cyclic voltammograms,
allows for the estimation of k0 by examining the relationship between peak separation and
scan rates using a dimensionless parameter Ψ. In addition to the Nicholson and Shain
method, we also employed Kochi’s method [14]. Kochi’s approach offers a different per-
spective on determining k0, focusing on the relationship between the electron transfer rate,
overpotential and transfer coefficient. Lastly, the Gileadi method [38] was applied. This
method is renowned for its robustness in analyzing the heterogeneous electron transfer
processes, particularly in systems where electron transfer is coupled with other chemical
reactions, i.e., for irreversible reactions.

Nicholson and Shain Method

Nicholson and Shain provided a simple and elegant method to determine k0, as shown
in Equation (4) [30]

k0 = Ψ(πnD0Fν/RT)1/2 (4)

Here, Ψ is a dimensionless kinetic parameter that depends on peak separation. All
other symbols have their usual meaning, as discussed earlier in Equations (1)–(3). Later,
Lavagnini et al. provided a quantitative relationship between Ψ and peak separation
according to Equation (5) [39]

Ψ = (- 0.6288 + 0.0021 ∆Ep)(1 − 0.017 ∆Ep) (5)

Here, ∆Ep is the peak separation in mV. The values of ∆Ep in (mv), Ψ, and k0 are
provided in Table 3. The average value of k0 was found to be 0.022 cm/s.

Table 3. The scan rate, peak separation, and calculated value of Ψ (from Equation (5)) and k0 (from
Equation (4)).

Scan Rate (V/s) ∆Ep (mV) Ψ k0 (cm/s)

0.025 74 1.83 0.022
0.050 84 1.06 0.018
0.075 84 1.06 0.022
0.100 88 0.89 0.022
0.125 88 0.89 0.024
0.150 91 0.80 0.024
0.175 94 0.72 0.023
0.200 97 0.65 0.023
0.225 96 0.68 0.025
0.250 101 0.58 0.022
0.275 102 0.56 0.023
0.300 109 0.47 0.020

Alternatively, Equation (5) can be rearranged into Equation (6).

Ψ = k0(RT/πnD0F)1/2 (ν)−1/2 (6)

Here, the value of k0 can be calculated using the slope of the plot of Ψ versus (ν)−1/2.
The slope is equal to the expression k0(RT/πnD0F)1/2. We present the plot of Ψ vs. (ν)−1/2

in Figure 4. The value calculated for k0 from the trend line from Figure 4 was found to
be 0.010 cm/s, which is smaller than the values calculated for the values of k0 from those
calculated from Equation (4) (Table 3).
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Kochi Method

In order to compare the value of k0 with another method, we used the Kochi method to
calculate the value of k0. Kochi and Klinger formulated this correlation between k0 and peak
separation. They developed this formula using the Nicholson and Shain expressions [40,41]

k0 = 2.18(αnD0Fν/RT)1/2 e−[α2nF∆Ep/RT] (7)

In this expression, all symbols have their usual meanings. In this expression, the value
of the transfer coefficient is retained, which is not in the Nicholson and Shain equation. The
values of calculated k0 using Equation (7) are presented in Table 4. The values of k0 range
from 0.001 to 0.013 cm/s, with an average value of 0.07 cm/s. This value could be more
reliable because it considers the value of the transfer coefficient.

Table 4. Calculated values of k0 using the Kochi and Klinger method.

Scan Rate (V/s) k0 (cm/s)

0.025 0.001
0.050 0.002
0.075 0.004
0.100 0.005
0.125 0.006
0.150 0.007
0.175 0.008
0.200 0.009
0.225 0.010
0.250 0.010
0.275 0.011
0.300 0.013

Gileadi Method

The Gileadi method is relatively simple and does not require peak separation. This
method works well for the system where a reversible peak is absent [32,38].

logk0 = −4.8α + 0.52 + log (αnD0FVc/2.303RT)1/2 (8)

Here, all symbols have their usual meaning. Vc is the critical scan rate where the
system undergoes a transition from a quasi-reversible to an irreversible system. Vc is
determined using the plot of peak potential versus the log of the scan rate, as shown in
Figure 5. Two straight trends were found at lower and higher scan rates with different
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slopes, and their intersection provided the value of Vc. Figure 5 shows that the log of the
scan rate value is about −0.72, which corresponds to the 0.190 V/s scan rate (indicated by
pink arrow). At the 0.190 V/s scan rate, Equation (8) produces the value of 0.017 cm/s.
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3.2. Digital Simulation

The digital simulation of the cyclic voltammogram is a method to validate the transfer
coefficient, diffusion coefficient, and heterogeneous electron transfer rate constant using
all these parameters together. In a digital simulation, input data from experiments were
fed into simulation software, which generated a cyclic voltammogram using theoretical
equations involving second or higher-order chemical reactions coupled with electron trans-
fer. This method can be particularly used to calculate the rate constants for homogeneous
chemical reactions and coupled reactions with electron transfer.

We used the reaction mechanism shown in Scheme 1 to simulate the cyclic voltam-
mogram. A simple representation is shown in the lower part of Scheme 1. Paracetamol
undergoes two electron transfers and forms acetic acid and p-Benzoquinone imine in the
aqueous solution.
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The best fit of the simulated voltammogram at 0.300 V/s is presented in Figure 6.
The best fit of CV was achieved using the following parameters: E1/2 = 0.645 V; α = 0.28;
D0 = 2.45 × 10−5 cm2/s; k0 0.017 cm/s; Kf = 9 × 10−6 M−1s−1 and Kb = 850 M−1s−1. The
reproduction of a fitted cyclic voltammogram using these parameters validates the accuracy
of the methodologies used in this study.
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4. Discussion

In this study, we investigated the electrochemical oxidation of paracetamol in an aque-
ous medium using cyclic voltammetry and a digital simulation. We determined the transfer
coefficient using the following two different methods: the Tafel plot and Equation (1). The
diffusion coefficient was determined for the individual scan rate, average value, and slope
method using the modified Randles–Ševčík equation. The heterogeneous electron transfer
rate constant was determined using the following three different methods: the Nicholson
and Shain method and the Kochi and Gileadi method. Then, all parameters were used
to simulate the voltammogram with the built-in feature of the CHI 760D electrochemical
workstation, which reproduced sufficiently with the experimental cyclic voltammogram
(Figure 5).

These results show that the value of α depends on the scan rate for paracetamol, even
in the narrow range of the scan rate. The value of α varied from 0.62 to 0.31 at 0.025 V/s
to a 0.300 V/s scan rate, respectively. Additionally, Equation (1) is an easy approach to
determine α compared to the Tafel plot method. While taking points for the slop, a slop
needs to be taken as near as possible to the horizontal line, as shown in Figure S2 in the
Supplementary Information.

The value of D0 using the modified Randles–Ševčík equation ranges from 1.25 to
3.10 × 10−5 cm2/s with an average value of 2.19 × 10−5 cm2/s. Moreover, the value of D0
calculated from the slope of the plot of Ip versus (ν)1/2 was found to be 2.42 × 10−5 cm2/s,
which is closer to the average value. The slop method is considered feasible because of the
cancellation of the capacitive current contribution in Ip.

The value of k0 from Nicholson and Shain using Equation (4) lies between 0.018 and
0.025 cm/s with an average value of 0.022 cm/s. However, the value of k0 calculated from
the linear plot of (ν)−1/2 versus Ψ is 0.010 cm/s, which is lower than the values calculated
from Equation (4). The value of k0 from the Kochi method lies in the range of 0.001 to
0.013 cm2/s with an average value of 0.070 cm2/s. The value of k0 using the Gileadi method
is 0.017 cm/s. Nicholson and Shain’s method calculated from the plot of (ν)−1/2 versus Ψ
is closer to the value calculated from Kochi and Gileadi’s methods. Additionally, Kochi and
Gileadi’s methods are a better choice for an electron transfer followed by a coupled chemical
reaction, as in the case of paracetamol here. The value of k0 from the Nicholson and Shain
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method is slightly different, as noted in previous studies [28,32]. We also note that the
Kochi method shows that the value of k0 varies with the change in the scan rate, which is
possibly due to the change in the transfer coefficient. In Nicholson and Shain’s method, the
value of 0.5 was assumed while calculating the kinetic parameter Ψ, hence reproducing a
constant value. At last, the digital simulation shows that the values calculated from these
methods have reasonable accuracy, which reproduces a cyclic voltammogram with very
good fitting.

5. Conclusions

This study presents a comprehensive analysis of the various methods used for calcu-
lating key electrochemical parameters, with a particular focus on paracetamol. Through
meticulous experiments and comparisons, we demonstrated that the combined applica-
tion of the Ep − Ep/2 equation, Randles–Ševčík equation, and Kochi and Gileadi method
approaches were particularly effective for accurately determining the transfer coefficient,
diffusion coefficient, and heterogeneous electron transfer rate constant, respectively. These
findings reveal that the Kochi and Gileadi methods are reliable alternatives for calculating
the heterogeneous electron transfer rate constant for chemically coupled electron trans-
fer processes. Moreover, our study successfully employed digital simulation as a tool to
validate these electrochemical parameters, ensuring their accuracy and reliability. This ap-
proach also unraveled the kinetics of chemically coupled reactions, offering deeper insights
into the complex interplay of reactions in electrochemical systems. The methodologies
validated and the insights gained can be applied to a wide range of electrochemical studies,
particularly those involving complex electron transfer and coupled chemical reactions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/electrochem5010004/s1, Table S1: Electrochemical parameters for
1 × 10−6 M of paracetamol solution with 0.1 M of LiClO4 as a supporting electrolyte; Figure S1: A
plot of ∆Ep (V) vs. sq.root of scan rate (V/s)0.5; Figure S2: Tafel plots at 0.025 V/s and 0.300 V/s with
tangent lines to calculate Tafel slope.
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