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Abstract: Cyanobacteria and their toxins present potential hazards to consumers of water from lakes,
reservoirs and rivers; thus, their removal via water treatment is essential. Previously, we demon-
strated that nanocomposites of octadecyltrimethyl ammonium (ODTMA) complexed with clay could
efficiently remove cyanobacteria and their toxins from laboratory cultures and lake water. In this
study, we determined the capacity of ODTMA nanocomposites to remove cyanotoxins, namely
microcystins (MCs), from water to below 1 µg/L via filtration. This capacity was 1500 mg MC-LR
per Kg of nanocomposite. Similar capacities were estimated for the removal of other MC congeners
(MC-WR, MC-3aspWR and MC-YR), whereas substantially lower capacities were recorded for more
positively charged MC congeners, such as MC-RR and MC-3aspRR. Filtration results were simulated
with a filtration model, which considers convection and adsorption/desorption of one to several
toxins. Model calculations for the removal of MC-LR, under a variety of situations, fitted well with
all the experimentally measured values and also estimated the co-removal of several MC congeners.
In agreement with model predictions, results demonstrated that in the presence of MC-WR, the
emerging concentrations of MC-RR congeners eventually exceed their solution values. In conclusion,
granulated nanocomposites of ODTMA–bentonite can be applied for the removal of microcystins
from drinking water.

Keywords: Cyanobacteria; Microcystis; 3; cyanotoxins; microcystin; nanocomposite; micelle–bentonite
complex; modeling of filtration; filtration removal efficiency

1. Introduction

Cyanobacteria are notorious for producing water blooms. Toxic cyanobacterial blooms
present an ever-increasing, serious threat to the quality of drinking water worldwide.
In many cases, such blooms are dominated by toxic species such as Microcystis sp. that
produce a family of structurally similar hepatotoxins, known as microcystins (MCs) [1].
MCs are monocyclic hepta-peptides made up of two protein amino acids and five non-
protein amino acids. Over 200 MC variants have been discovered, but the most common
and abundant MCs are MC-LR, MC-RR, MC-YR, and MC-LA (L, leucine; R, arginine;
Y, tyrosine; and A, alanine), where MC-LR is the most studied and potently toxic [2].
Microcystins inhibit serine/threonine protein phosphatases (PPs) and cause liver damage
and side effects in other organs. MCs act as tumor promoters and induce oxidative stress
in animal cells. MC-LR shows the strongest acute toxicity, thus posing a severe threat to
drinking water and food safety, followed by MC-YR and MC-RR [3].
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Elimination of cyanobacteria and their toxins during the water treatment process is
essential in order to meet water supply standards for cyanotoxins [4]. Chlorination has
been the main strategy for disinfecting drinking water but it has a minor effect on the
removal of MC contingents. Adsorption technology based on granulated activated carbon,
as well as advanced oxidation processes (AOP), are currently the preferred processes to
remove cyanotoxins from water [4,5]. However, these processes target only soluble toxins
and not the toxins retained in cells. In the search for an efficient technology that may
rapidly and reliably remove cells of cyanobacteria and other phytoplankton species from
water, we recently demonstrated that cyanobacteria and cyanotoxins could be removed
from lake water by filtration through a bed of granulated composites of bentonite with
micelles of octadecyltrimethyl ammonium cation (ODTMA) [6]. This granulated com-
posite was reported to be efficient in the removal of microorganisms from water [7–10].
Micelle–clay complexes are formed by an interaction of micelles of an organic cation with
a long alkyl chain, such as ODTMA with sodium bentonite. The micelles, which include
several tens to around several hundred molecules, are in the nanometer range, whereas
the clay platelets have a thickness of around 1 nm and a typical area of around 1 µm2 [11].
The micelle–clay complex ODTMA–bentonite has an excess of positive charges of half of
the cation-exchange capacity (CEC) of the clay mineral. Filtration of toxic cyanobacteria
suspension through granulated composites yielded a significant reduction in the number of
cyanobacteria cells, or filaments, and their corresponding toxins. Furthermore, the micelle–
clay complex ODTMA–bentonite demonstrated a high removal rate of microcystins in
batch experiments [6].

The current study focuses on the removal of cyanobacteria toxins, microcystins,
from contaminated water by filtration through a bed of micelle–clay complex ODTMA–
bentonite granules. We demonstrate efficient adsorption of various microcystin congeners,
with clear selectivity related to the MC structure. A filtration model which considers
convection and adsorption/desorption of the toxins was applied to simulate the removal
of several MC congeners and demonstrated reliable application of nanocomposite granules
for cyanotoxin removal from water.

2. Materials and Methods

Organisms and culture conditions—Two strains of Microcystis aeruginosa (Chroococcales)
were used in this study (M. aeruginosa strain C1004 from KLL culture collection—http://
kinneret.ocean.org.il/INCCA.aspx—and strain PCC7806 from Pasteur culture collection—
https://catalogue-crbip.pasteur.fr/resultatRecherche.xhtml, accessed on 2 March 2021).
Cyanobacteria species were cultivated in a BG11 medium [12] at 20 ◦C and under continu-
ous light of 15 µmol quant m−2 s−1, to obtain a cell density of ca 1 × 107 cells mL−1 with a
chlorophyll concentration of ca 1000 µg L−1. Cultures from different growth phases were
used for the extraction of microcystins. In addition, Microcystis colonies were collected from
Lake Kinneret (Sea of Galilee, Israel) during a Microcystis bloom event (February–March
2018) [13], using a silk plankton net of 63-µm mesh size, to select predominantly Microcystis
colonies. Immediately after transport to the laboratory, samples were first filtered through
a 200-µm sieve to remove large particles and then through a 63-µm sieve. The collected
samples of Microcystis colonies were maintained in a small volume of BG11 medium at
20 ◦C and continuous light of 15-µmol photons s−1 m−2 until further processing for the
extraction of microcystins.

Microcystin congeners—Microcystin LR was purchased from Enzo Biochem, Inc.
(New York, NY, USA). Other studied microcystins were extracted from cultivated M. aerug-
inosa strains. Strain C1004 provided MC-RR, MC [D-Asp3]-RR, MC-WR, and MC [D-
Asp3]-WR. Strain PCC7806 provided MC-LR and Microcystis biomass collected from Lake
Kinneret provided MC-YR, MC-LR, and MC-RR.

Extraction of MCs from cultures and collected biomass—MCs were extracted from Mi-
crocystis biomass by exposing laboratory cultures or field-collected Microcystis biomass
to 0.1 mM ODTMA-Br. This cyanocide disrupts cyanobacteria cells, which results in the
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release of toxins and cellular components to the medium. Cell debris and other suspended
particles were removed by filtration on a Whatman® GF/F 47-mm diameter membrane
filter (www.gelifesciences.com/whatman, accessed on 2 March 2021) to obtain a clear
solution enriched with MCs. In cases where high concentrations of soluble MCs were
detected, the Microcystis biomass was removed by centrifugation, followed by filtration on
Whatman® GF/F membrane filter.

Micelle–clay complex preparation and granulated activated carbon—Bentonite was purchased
from Tolsa–Steetley, UK. The bromide salt of the organic cation ODTMA was purchased
from Sigma-Aldrich (Sigma Chemical Co., St. Louis, MO, USA). Granulated complexes of
ODTMA–clay were prepared as described in Nir et al. [8] and Nir and Ryskin [14]. Sieving of
the granules was applied for particle sizes between 0.3 and 2 mm. Granular activated carbon
(GAC) (ca. 2.5 mm) was purchased from Merck (Darmstadt, Germany).

Filtration experiments—Filtration columns (10-cm length, 1.4-cm diameter) were pre-
pared, with non-woven, polypropylene geotextile (Markham Culverts Ltd., Lae, Papua
New Guinea) coverings at the inlet and outlet of the column. Columns were filled with
9 g of complex (ODTMA–clay), unless other details are provided. Prepared columns were
connected to a peristaltic pump (Cole-Palmer Masterflex L/S, Vernon Hills, IL, USA) with
Tygon tubes. The filtration flow rate was ca 4.0 mL min−1. Prior to each experimental
run, tap water was added to the columns at a slow rate in an upward direction in order
to eliminate air pockets and channeling. Each experiment was conducted in duplicate.
A GAC filtration column (10-cm length, 1.4-cm diameter) was prepared as described above,
but the column was filled with 9 g of GAC.

Analysis of microcystins—The qualitative and quantitative analysis of microcystins in
the collected column’s effluent and in pre-filtrated samples was performed using high-
performance liquid chromatography (HPLC) and a diode array detector (DAD), following
a published protocol [15]. The HPLC system was calibrated for the following microcystin
congeners—MC-LR, MC-[D-Asp3]-RR, MC-RR, MC-WR, MC [D-Asp3]-WR, and MC-YR—
using authentic standards purchased from Enzo Biochem, Inc. (NY, USA). Other eluted
MC congeners could be identified by their typical absorption spectra, but due to the lack
of standards, they were annotated as MC-like. Sensitivity and accuracy of this method
was determined as proposed by [16]. Alternatively, MC concentrations were determined
immunologically, using microcystin ELISA kits (Abraxis, Los Angeles, CA, USA), according
to US EPA Official Method 546.

Theoretical analysis of kinetics of filtration—Filtration results were simulated with a model
(Equation (1)), which considers convection and adsorption/desorption [17]. The column is
of length L and a cross-section A and is filled with material whose molar concentration
of adsorbing sites is R0. The beginning and end parts of the filter are at the coordinates X
= 0 and X = L, respectively. We consider a situation where a solution containing several
(I = 1, . . . , m) pollutants (e.g., microcystins) is provided at given concentrations, C0i, i.e.,
Ci(X,t) = C0i for X ≤ 0, where t denotes the time.

dCi(X,t)/dt = −v ә·Ci(X,t)/ә X − Ci·Ci(X,t)·R(X,t) + Di·RLi(X,t) (1)

where RLi(X,t) is the molar concentration of occupied sites of type i and v denotes the flow
velocity in the filter, which is given by

v = Qv/(A·f) (2)

in which Qv is the flow rate (volume/time) and f is the fraction of pore volume out of the
total volume of the filter. R(X,t) denotes the molar concentration of free adsorbing sites, i.e.,

R(X,t) = R0 − ∑ RLi(X,t) (3)

Ci are the forward rate constants of adsorption (M−1 min−1) and Di (min−1) are the
rate constants of dissociation.

www.gelifesciences.com/whatman
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The ratio between the adsorption and desorption rate constants is the equilibrium
constant (at a given temperature), Ki (M−1) = Ci/Di. Another parameter is R0, the molar
concentration of adsorption sites for a given amount of complex in the filter.

3. Results and Discussion
3.1. Removal of MC-LR from Water

Based on our earlier results, where we recorded the high capacity of the ODTMA–
clay granulated complex to adsorb microcystins in solution [6], we set up a series of
filtration experiments using a single MC congener dissolved in water. For this purpose,
we used a commercially available MC-LR to form solutions of different concentrations
that were loaded on filtration columns filled with granulated complexes of ODTMA–clay.
Initial filtration experiments were run with MC-LR solutions of 10 and 100 µg/L using
columns with different quantities of granules. Loading a 10 µg/L MC-LR solution on a
column packed with 9 g of granulated complex at a flow rate of 3.2 mL/min indicated
high efficiencies of removal of MC-LR (Figure 1A). The toxin concentration below 1 µg/L
MC-LR was measured in the effluent as the filtration continued for 16 h with a total load
of 30 µg MC-LR (3.0 L of 10 µg/L MC-LR solution). In order to evaluate the full capacity
of granulated complexes of ODTMA–clay to retain MC-LR, a filtration column (1.6-cm
diameter and 30-cm length) was prepared with 1 g of granules mixed with 52 g of washed
quartz sand. The column was loaded with a 100-µg/L MC-LR solution at a flow rate of
4.0 mL/min for 9.5 h (total load of 2.28 L, 200 µg MC-LR). Toxin concentrations of 1 µg/L
were measured in the effluent after 30-min operation and gradually increased with time as
the toxin load increased (Figure 1B).

In additional filtration experiments, the MC-LR solution originating from Microcystis
(strain PCC7806) passed through a column including 9 g of granulated complex of ODTMA–
clay. It is important to note that this toxin solution contained inorganic salts of the BG11
medium and dissolved organic matter accumulated during the biomass growth, which
further increased due to cell lysis. MC-LR concentration in the solution was 49 µg/L and
the effluent was practically free of MC-LR, even after filtration of 7 L at a flow rate of
4 mL/min (Figure 1C).

Based on these results, we estimate that 1 g of granulated complex of ODTMA–clay
may adsorb ca. 250 µg of MC-LR, more than 2.5 times the capacity estimated from batch
experiments [6]. Additional filtration experiments with various initial concentrations of
pure MC-LR in aqueous solution were run to validate the theoretical filtration model,
as described below.

3.2. Co-Removal of MC Congeners Originating from Biological Sources

Laboratory cultures of M. aeruginosa and Microcystis biomass collected from Microcys-
tis surface scum from Lake Kinneret were used as the source for mixtures of MC congeners.
In several filtration experiments, 9 g of granulated complexes of ODTMA–clay was packed
in a column of 1.5-cm diameter and 12-cm length. More details on these experiments and
the concentrations of MCs loaded on granulated complexes of ODTMA–clay columns are
presented in Table 1. The three M. aeruginosa experiments represent MC mixtures origi-
nating from cultures collected from different growth phases and biomass concentrations
(early and mid-exponential phase cultures, and a 3-week-old stationary phase culture) were
used. These cultures provided solutions with different concentrations of the major MC
congeners (MC-RR, MC [D-Asp3]-RR, MC-WR, and MC [D-Asp3]-WR), and variable ratios
among them (Table 1). Furthermore, the MC solutions contained different concentrations
of dissolved organic carbon (DOC) originating from the Microcystis cells during the culture
growth and MC extraction. Note that the late stationary phase culture yielded MC-YR
in addition to high concentrations of the four MC congeners. The Microcystis biomass
collected from Lake Kinneret contained three major MCs: MC-LR, MC-YR, and MC-RR.
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Figure 1. Residual MC-LR in effluents following filtration of toxin solution of (A) 10 µg/L;
(B) 100 µg/L and (C) 49 µg/L as a function of the accumulated MC-LR loaded on the column.
For A and B, pure MC-LR solutions were used. For C, MC-LR originating from Microcystis aeruginosa
strain PCC7806 biomass was used. See the text for more details on the experiments. The column
in (A) and (C) contained 9 g of granulated complexes of ODTMA–clay, whereas the column in B
contained only 1 g of the granules mixed with washed quartz. The black dots in the graphs represent
specific MC concentrations in the loaded solutions. Analytical standard error for MC-LR is less
than 5%.
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Table 1. MC sources, types, and concentrations, in extracts originating from Microcystis cultures and Microcystis biomass
collected from Lake Kinneret (LK) and used in filtration experiments using beds of granulated complexes of ODTMA–clay.
Analytical standard error for MCs was less than 5%.

MC Source DOC (µg/L) Total MC
(µg/L)

Major MC Congeners (µg/L)

MC-LR MC-YR MC-RR MC
[D-Asp3]-RR MC-WR MC

[D-Asp3]-WR

M. aeruginosa
C1004—Early

exponential phase
5.8 250 n.f. n.f. 37 17 112 84

M. aeruginosa C1004—
Mid-exponential

phase
8.0 242 n.f. n.f. 87 35 73 47

M. aeruginosa
C1004—Late

stationary phase
38.0 1553 n.f. n.f 117 204 383 829

LK population 3.3 152 83 43 26 n.f. n.f. n.f.

M. aeruginosa
PCC7806 3.3 49 49 n.f. n.f. n.f. n.f. n.f.

n.d.—not determined; n.f.—not found.

The results of these filtration experiments clearly show high affinity of the granulated
complexes of ODTMA–clay for most MC congeners, with the clear exception of MC-
RR and MC [D-Asp3]-RR (Figure 2). Using MC extracts from M. aeruginosa cultures
demonstrated high removal efficiency for the two MC-WR congeners, more than 70–80%
removal following a load of more than 2 mg MC [ASP3]-WR and 90–99% removal of
both congeners, when loads lower than 0.1 mg of both congeners were applied (Figure 2).
The removal of both MC-RR congeners demonstrated a different pattern, with relatively
high efficiency (75–100%) at the early stage of the filtration (load of 0.005–0.015 mg),
but these congeners rapidly leaked from the column and their concentration in the effluent
gradually increased to their concentration in the loaded solution (Figure 2).
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Figure 2. Residual MC congeners in effluents of filtration experiments, using extracts from M. aeruginosa C1004 cultures
from various growth phases, as a function of the accumulated MCs loaded on the columns of granulated complexes of
ODTMA–clay. Results for three runs corresponding to different cultures (Table 1) are presented. The upper panels show
data for MC-RR and MC [D-Asp3]-RR and lower panels for MC-WR and MC [D-Asp3]-WR. The black dots in the graphs
represent specific MC concentrations in the loaded solutions. Analytical standard error for MCs was less than 5%.
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An additional source for a mixture of MCs applied in this set of filtration experiments
was Microcystis biomass collected from Lake Kinneret. The presence of three MC congeners
was identified (Table 1). The results of the filtration through a granulated complex of
ODTMA–clay column are presented in Figure 3 and demonstrate again high removal
efficiency of MC-LR (as in Figure 1), and of MC-YR, but much lower removal efficiency of
MC-RR, similar to the results presented in Figure 2.
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Figure 3. Residual MC congeners in effluents following filtration experiments using extracts from
Microcystis biomass collected from Lake Kinneret, as a function of the accumulated MCs loaded on
the columns of granulated complexes of ODTMA–clay. The black dots in the graphs represent specific
MC concentrations in the loaded solutions. Analytical standard error for MCs was less than 5%.

The observed differences in removal efficiency between MC-RR congeners and the
other MC compounds presumably reflect differences in molecular charge, since MC-RR
congeners carry two arginine moieties and thus have an excess of positive charge that
reduces their affinity to the granulated complexes of ODTMA–clay. These differences are
further depicted in the results of the filtration simulation model.

3.3. Fitting the Filtration Model to Experimental Results and Estimation of Adsorption Capacity

Application of the filtration-simulated model for the results presented in Figure 1A
is shown in Figure 4. The MC-LR removal efficiency ranged between 87.4 and 99.1%,
leaving less than 1 µg/L MC-LR in the effluent (8 out of 10 measurements). The calculated
efficiency for this experiment ranged between 87.4 and 100%. The calculated root mean
square error (RMSE) between the measured and calculated values was 6.6, indicating
acceptable minor differences between the observed and estimated efficiency.

In an additional experiment, we used just 1 g of the complex mixed with excess sand
and a 100 µg/L MC-LR solution. The results of this filtration experiment are presented
in Figure 1B and the experimental removal efficiency data are compared with model
calculations in Figure 5. The model ignored adsorption of the toxin by sand. The calculated
results in Figure 5 indicate strong adherence to the experimental values of toxin removal
(RMSE = 1.3). Considering the geometrical variations between the filters used for the
experimental results shown in Figures 4 and 5 and the fractions of pore volumes (out of
total), which were 0.3 and 0.5, respectively, the value of R0 to be used in the calculations in
Figure 5 had to be 0.00015 M−1 rather than the 0.0027 M−1 value used in Figure 4.
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Figure 4. Removal of MC-LR from a 10-µg/L solution by filtration through a column filled with a
granulated complex of ODTMA–clay at a flow rate of 3.2 mL/min for 38 h. Experimental results are
presented along with the results of the simulation model (RMSE = 6.6). The parameters used in the
calculations were R0 = 0.0027 M, C1 = 3000 M−1 min−1, D1 = 0.003 min−1.
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Figure 5. Experimental and calculated values of removal efficiency of MC-LR from a 100-µg/L
solution filtrated through a column of 30-cm length and 1.6-cm diameter, filled with 1 g of granulated
complex of ODTMA–clay mixed with excess sand. A flow rate of 4 mL/min was used. The val-
ues of the parameters used in the calculations were R0 = 1.5 × 10−4 M, C1 = 8000 M−1 min−1,
D1 = 0.008 min−1. The fit gave (RMSE = 1.4).

The viscosity of the medium of the granulated complex in Figure 4 was expected to be
larger than that corresponding to Figure 5, where the filter included an excess of sand at a
52:1 w/w ratio. The theory of Smoluchowski [18] and Fuchs [19] treats aggregation and
adsorption as a diffusional motion modified by the interaction energy between particles
(reviewed in [20,21]). According to this theory, the values of C1 and D1 are inversely
proportional to the viscosity of the medium. The values used for C1 and D1 in Figure 4
were 3000 M−1 min−1 and 0.003 min−1, respectively (Table 2), i.e., 3/8 of the values used
in Figure 5, but the value of the affinity constant K= C1/D1 = 106 M−1 was the same.
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Table 2. Kinetic parameters used in simulations and predictions of MC toxin filtration of columns filled with ODTMA–
bentonite granulated complex.

MC Type and Conc.
(µg/L) R0 (M) C1 (M−1 min−1) D1 (min−1) K (M−1) Data Presented in

MC-LR, 10 0.0027 3000 0.003 106 Figure 1A/Figure 4, B1

MC-LR, 100 0.00015 8000 0.008 106 Figure 1B/Figure 5, B1

MC-LR, 5.5 0.005 8000 0.003 2.7 × 106 Figure 2/Figure 6, B2

MC-LR, 26.7 0.005 8000 0.003 2.7 × 106 Figure 2/Figure 6, B2

MC-LR, 62 0.005 8000 0.005/0.003 1.6 × 106/
2.7 × 106 Figure 2/Figure 6, B2

MC-LR, 83
MC-YR, 43

MC-RR, 25.9
0.005

8000
8000
350

0.005
0.005

0.0075

1.6 × 106

1.6 × 106

4.7 × 104
Figure 3/Figure 7

MC-WR
MC-RR 0.002 1300

350
0.0012
0.0075

1.1 × 106

4.7 × 104 Figure 8
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Figure 6. Emerging concentrations (measured and calculated) of MC congeners during filtration of a
62-µg/L MC solution. The measured emerging concentrations include both MC-LR and MC-like
congeners. The calculated root mean square deviation (RMSE) for the measured vs. calculated values
was 2.4, considering both MC-LR and MC-like measured congeners. The parameters used in the
calculations were R0 = 0.005 M, C1 = 8000 M−1 min−1, and D1 = 0.005 min−1. Using the value
D1 = 0.003 min−1 gives calculated emerging values of 0 at all times. The black dots in the graphs
represent MC-LR concentrations in the loaded solution.

Additional experiments were carried out by using a series of MC-LR solutions (5.5,
26.7, and 62 µg/L). Solutions were passed through column filters, each of 1 cm in diameter,
which included a layer (10 cm, 7 g) of granulated ODTMA–bentonite. The 5.5-µg/L
solution yielded zero emerging toxin for 100-h (30-L) filtration at a flow rate of 5 mL/min.
The 26.7-µg/L solution yielded zero emerging concentrations of the toxin for 83-h (20-L)
filtration at a flow rate of 4 mL/min. The experiment with 62 µg/L MC-LR solution
yielded zero emerging MC-LR toxin for 50-h (12-L) filtration at a flow rate of 4 mL/min.
However, in this case, the emergence of an identified MC congener (MC-like component)
was observed for all volumes that passed beyond 0.5 L, as shown in Figure 6. The highest
concentration of this compound, 3.8 µg/L, was measured after 36 h, whereas after 50 h,
the value was 2.7 µg/L. In all three cases, the values of the concentrations of MC-LR toxin
in the emerging water at the end of the filtration were below 1 µg/L. Calculations which
employed the same parameters for all three concentrations of the MC-LR toxin could fit
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all the experimental values. The parameters employed were R0 = 0.005 M, C1 = 8000 M−1

min−1, and D1 = 0.003 min−1. In the case of a solution of 62 µg/L, we used the same value
of R0 and C1 as for the other cases, but D1 was slightly enlarged to 0.005 min−1 (Table 2
and Figure 6).
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values for MC-RR was 1.4. Measured and calculated emerging concentrations for MC-LR and MC-YR were 0. The fit of all
calculated to experimental points yielded R2 = 0.98.
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Figure 8. Emerging concentrations (measured and calculated) of MC-WR, MC [D-Asp3]-WR, MC-RR, and MC [D-Asp3]-RR,
during filtration of the MC solution originating from Microcystis culture (Figure 2). The black dots in the graphs represent
specific MC concentrations in the loaded solutions. The calculated root mean square error (RMSE) for the measured vs.
calculated values for the whole combined dataset was 3.6 and the value of R2 was 0.944.
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3.4. Model Calculations for Filtration of Solutions with Several MCs

Fitting the filtration model to experiments with three MC congeners (MC-LR, MC-
YR, and MC-RR (Figure 3)) predicted the emerging concentrations of LR and YR to be
zero, whereas most of the MC-RR molecules were not retained in the filter after 670 min
(Figure 7), indicating its smaller affinity to interact with the positively charged granules.
Modeling these filtration results requires the use of seven parameters, i.e., R0 and Ci, Di
(I = 1–3). A simplification was introduced by assuming that MC-LR and MC-YR are similar,
thus using R0 = 0.005 M and the same kinetic rate constants as previously determined for
MC-LR solutions (Table 2). This reduced the number of parameters to be determined to just
two: CRR and DRR. The model results are presented in Figure 7 together with the measured
results. The value of the forward rate constant CRR, 350 M−1 min−1 was almost 23-fold
smaller than CLR, and the value of DRR (0.0075 min−1) was 1.5-fold larger than that of DLR.
This implies that the affinity constant KRR = CRR/DRR = 4.7 × 104 M−1 is 34-fold smaller
than KLR = 1.6 × 106 M−1. It is of interest to note that the use of Lake Kinneret water gave
similar efficiency of MC-LR removal as for cell cultures, indicating that the presence of
DOC molecules in the lake water had little effect on the adsorption of the toxins by the
filter matrix.

Results of an additional filtration experiment, where a solution of four MC congeners
originating from Microcystis culture was used (Figure 2), were modeled (Figure 8). The cal-
culations required eight kinetic parameters, but we employed just four parameters by
considering parameters for just two groups of toxins, each of which contained a pair of MC
congeners, (MC-RR + MC [D-Asp3]-RR and MC-WR + MC [D-Asp3]-WR). The calculations
used the values of CRR and DRR as for Figure 7 (Table 2). The value of R0 was reduced to
0.002 M, in order to fit the large emerging concentrations of the WR and RR toxins. The
values determined were CWR = 1300 M−1 min−1 and DWR = 0.0012 min−1, which amount
to KWR = 1.1 × 106 M−1, 1.45-fold smaller than KLR. However, it should be noted that the
value of R0 in the case of LR is 2.5-fold larger than that determined for WR. The results in
the four parts of Figure 8 were considered as a combined sample of four competing toxins
(2 pairs) for adsorption by the filter sites. The values of the statistical criteria for the fits of
the calculated values to the experimental ones were RMSE = 3.6 and R2 = 0.944.

The experimental value of emerging concentration of RR at 630 min (352.4 µg/L)
exceeds its initial value (321.3 µg/L) in the provided solution. This effect reflects the lower
value of KRR than that of KWR and its corresponding larger rate constant of desorption,
which results in a reduction in the adsorbed amounts of RR due to the competition with
WR, when the available numbers of unoccupied surface sites of the complex in the filter
are reduced. The mechanism is not a direct exchange reaction, but rather a statistical
preference of occupying sites of the complex, which become vacant instantaneously due to
desorption of RR. This effect was analyzed and shown experimentally for a pair of filtered
herbicides [17].

3.5. Simulation and Prediction of Toxin Filtration by the ODTMA–Bentonite Granulated
Complex—Summary of Kinetic Parameters

Table 2 presents the parameters deduced for simulation and prediction results of
filtration of toxins from solutions of a single toxin or of a mixture of several toxins. The pa-
rameters obtained for a given case were used in other calculations, but values of R0,
the total molar concentrations of adsorbing sites, vary as they depend on the concentra-
tion of the complex and the fraction of pore volume in the filter. The relatively small
values (less than 1) are mainly due to the size of the toxin molecules (molecular masses
around 1000 Da). The large values of the kinetic parameters of forward adsorption, Ci,
and the small values of the dissociation, Di, in the cases of the toxins MC-LR and MC-YR
reflect their large affinity of adsorption to the complex in the filter, which is expressed by
K = C1/D1.

The analytical standard errors in the determined concentration of the toxins (Table 1,
Figures 1–3 and 9) were less than 5%. The standard errors of quantities in cellular systems
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are usually larger. In the case of MC-LR in Table 2, the values of the affinity coefficient, K,
vary from 1.6 × 106 to 2.7 × 106 M−1 for the same value of R0. The variation in K-values
corresponds to around 20% in the capacity of filters with this toxin.
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toxin, due to the development of bacterial biofilms that degrade microcystins. Recently, 
we developed a model that simulates filtration in which a biological degradation compo-
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procedure of the removal of cyanotoxins, it is suggested to combine two elements in series, 
a filter with activated carbon followed by the micelle–clay one. The micelle–clay filter will 
complement the activity of GAC upon the occurrence of unfavorable conditions for the 
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Figure 9. Residual MC congeners in effluents of filtration experiments, using extracts from a culture of M. aeruginosa strain
C1004 (mid-exponential phase), as a function of the accumulated MCs loaded on a column of granulated activated carbon
(GAC). The left panel shows data for MC-RR and MC [D-Asp3]-RR and the right panel for MC-WR and MC [D-Asp3]-WR.
The black dots in the graphs represent specific MC concentrations in the loaded solutions. Analytical standard error for
MCs was less than 5%.

3.6. The Capacity of the ODTMA–Bentonite Complex for Filtration of Microcystin Solutions

The capacity is given by dividing the volume filtered with emerging toxin concen-
trations below 1 µg/L by the weight of the complex contained in the filter. In the case
of the solution of 5.5 µg/L MC-LR, the value of the capacity after the passage of 30 L is
30 L/7 g = 4.3 L/g (or m3/kg). However, the calculations indicate that the concentration
of MC-LR in the emerging water after filtration of 30 L is only 0.1 µg/L. Extending the
filtration to 110 h, or 33 L, would yield a value of the emerging concentration of the toxin,
C = 0.9 µg/L, and the capacity would be 4.7 m3/kg. For the 62 µg/L solution, the corre-
sponding capacity is 2 m3/kg. A calculation tested the possibility to extend the capacity
of the ODTMA–clay granulated material by using a large-scale filter. A 1-m-long filter
operated at a flow velocity of 6 m/h yielded an increase in capacity to 6 m3/kg for a
solution of 5.5 µg/L of toxin. For a solution of 5 µg/L of toxin and a velocity of 1 m/h,
the capacity would be 8 m3/kg. Another aspect is the maximal loading of the toxin by
the complex during filtration. For a toxin solution of 62 µg/L, the loading is 120 mg/kg.
Calculations on the passage of a 1-mg/L solution of MC-LR indicated that a long filter
could adsorb up to 1.5 g MC-LR per kg of complex with emerging concentration below
1 µg/L. The total amount of toxin which can be retained in such a filter irrespective of the
emerging toxin concentration can reach 3 g per kg of complex. The maximal adsorbed
loadings which satisfy emerging concentrations below 1 µg/L were as follows for several
other MC congeners: 0.4 g/kg for MC-WR, and a significantly lower value of 0.012 g/kg
for MC-RR.

3.7. Granulated Activated Carbon (GAC) to Complement MC Removal by ODTMA–Bentonite
Granulated Complex

Removal of MCs from drinking water is widely achieved by adsorption on activated
carbon, either powdered or granular activated carbon (GAC). The first is used as a tem-
porary treatment for transient contaminants and the latter in fixed beds [4]. The poor
adsorption capacity of the ODTMA–bentonite granulated complex for MC-RR and its
derivatives calls for the application of a complementary filtration medium. For this pur-
pose, we evaluate the effectiveness of granulated activated carbon. Using a fresh batch of
GAC packed in the same column system described for the ODTMA–bentonite granules,
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MC congeners were removed from a multi-toxin solution, extracted from M. aeruginosa cul-
ture (as described for Figures 2 and 8). The results of these filtration experiments (Figure 9)
show improved affinity of GAC for MC-RR congeners. A removal efficiency of around
50% was recorded for both MC-RR congeners, when the total load reached 0.1 mg MC-RR
(using 5.15-g GAC column) as opposed to poor efficiency by the ODTMA–bentonite gran-
ulated complex column under the same flow conditions (Figure 2). Removal of MC-WR
congeners by the GAC column was not as efficient as by the ODTMA–bentonite granulated
complex column (Figure 9 vs. Figure 2). Much higher MC removal efficiency was reported
for the activated carbon filtration system [22,23].

GAC demonstrated different adsorption efficiencies for different microcystin con-
geners: MC-RR and MC-WR were the most and least adsorbed congeners, respectively.
Based on these complementary results, it is recommended that ODTMA–clay granulated
composites should be applied as remediation process together with GAC, presenting a
multi-barrier approach [24,25]. Application of a convection and adsorption/desorption
model allows the prediction of adsorption capacity for microcystin congeners and might
help in the design of large-scale filtration steps to improve potable water quality. GAC
filtration has been shown to be effective for the removal of MCs from drinking water, as it
is not only an efficient adsorbent but also can support the biodegradation of microcystins
via the development of an active biofilm [26].

We compared the adsorption characteristics of MC-LR between the micelle–clay
complex and sterile GAC during the early stage of the filtration process. In this comparison,
we performed calculations on the removal of MC-LR from a water solution of 5 µg/L by
the same filter as in Wang et al. [26], using the same flow velocity and flow rate (flow
velocity = 1 cm/min; flow rate = 4.91 mL/min), but filled with the granulated micelle–
clay complex. The masses of the sterile GAC and micelle–clay complex used for this
estimation were 36.8 and 59 g, respectively. After 20 d, the emerging MC-LR was at a
concentration of around 0.5 µg/L. The calculation gives this value of emerging toxin
after 64.9 d, or when normalizing the mass to that of the sterile GAC, the time would
be 40.4 d, or twice that in the case of sterile GAC. Hence, the sorption capacity during
filtration of the micelle–clay complex of the MC-LR toxin is around two-fold larger than
that of GAC. On the other hand, the system described in [26] appears to be much more
efficient in the removal of the toxin, due to the development of bacterial biofilms that
degrade microcystins. Recently, we developed a model that simulates filtration in which a
biological degradation component was added to the sorption/desorption processes [27].
For an efficient and reliable procedure of the removal of cyanotoxins, it is suggested to
combine two elements in series, a filter with activated carbon followed by the micelle–clay
one. The micelle–clay filter will complement the activity of GAC upon the occurrence of
unfavorable conditions for the activity of the toxin-degrading bacteria, such as chemicals,
or temperatures outside the optimal range. In addition, the micelle–clay filter will capture
bacteria which escape the activated carbon filter.
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