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Abstract: Earthmoving is one of the main processes involved in heavy construction and mining projects.
It requires a significant share of the project budget and can dictate its overall success. Earthmoving
related activities have a stochastic nature that affects the project cost and duration. In common
practice, the equipment required for a project is selected using average operating cycles, neglecting
the stochastic nature of operations and equipment. Ultimately this can lead to rough estimates and
poor results in meeting the projects’ objectives. This research aims to provide a decision-support
tool for earthmoving operations and achieve the best arrangement of equipment based on project
objectives and equipment specifications by utilizing historical data. Operation simulation is identified
as an efficient technique to model and analyze the stochastic aspects of the cost and duration of
earthmoving operations in construction projects. Therefore, two simulation models—namely the
Decision-Support Model and the Estimation Model, have been developed in the Symphony.net
modeling environment to address the industry needs. The Decision-Support Model provides the
best arrangement of equipment to maximize global resource utilization. In contrast, the Estimation
Model captures more of the project details and compares various equipment arrangements. In this
paper, these models are created, and the modeling logic is validated through a case study employing
a real-world earthmoving project that demonstrates the model’s capabilities. The decision support
model showed promising results in determining the optimized fleet selection when considering
equipment and shift variations, and the cost model helped better quantifying the impact of the
decision on the cost and profit of the project. This modeling approach can be reproduced by others in
any case of interest to gain optimal fleet management.

Keywords: earthmoving operations; decision-support model; simulation; construction management;
heavy constructions

1. Introduction

In terms of scope and detail, heavy construction projects can be categorized as some of the largest
industries in the world. Earthmoving is an integral part of heavy construction projects and requires
substantial financial investments in the purchasing or renting of heavy equipment, in addition to
signficant operational and maintenance costs [1]. The optimum employment of equipment is a vital
responsibility for the project management team, and, if done properly, can lead to considerable savings
in both the time and cost of earthmoving operations.

Earthmoving consists of several tasks, as shown in Figure 1, some of which include excavating,
loading, hauling, dumping, crushing, and compacting [2]. The excavator/loader loads the hauler (i.e.,
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truck) with the disposal material, the hauler starts its trip to the dumping zone, then the hauler dumps
the material. Finally, it returns to the loading zone to begin the cycle anew. Earthmoving operations
depend on heavy equipment for their various tasks, all of which require planning and control of the
relevant methods and resources involved [3].
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In a land-based operation, the main goal is to implement the project with a minimum operating
cost. A critical factor to this implementation is the role of machinery and their efficient selection
and management in order to minimize the overall operation costs. Due to the large scale of
heavy construction projects, even a small improvement in operational efficiency could be highly
cost-effective [4]. Making the right decision for an earthmoving project on both a strategic and
tactical level is considered one of the most challenging phases of the project [1]. Decisions on a
strategic level, i.e., long-term decisions, include both the type of equipment to be purchased or
leased, and the equipment quantity. These decisions can determine if the project can be executed
while complying with time and cost constraints [1]. Decisions on the tactical level, i.e., short-term
decisions, include management of equipment operations, and solving unexpected issues that arise due
to the uncertainty of operation processes [1]. Many difficulties can be encountered due to the nature
of construction operations. These difficulties include: (1) the complicated interaction between the
different resources needed to execute the required task, (2) the uncertainties and varying conditions
that occur during execution that can affect operations, and (3) variability and the dynamic nature
of the construction industry [5]. The recommended technique to overcome the abovementioned
difficulties is the employment of computer simulations in order to model and predict the uncertainties
encountered in construction operations [6]. Computer simulation can aid in the decision-making
process, resulting in cost savings and increased productivity [7]. This research aims to provide a
stochastic based decision-support tool for earthmoving operations to achieve the best equipment
arrangement based on specific project objectives and equipment specifications utilizing empirical data.
The activities’ sequence and duration are captured through simulation modeling and distribution
fitting. The Decision-Support Model provides a range for optimal fleet arrangement by considering
different number and types of loading and hauling equipment. The Estimating Model provides cost
implications and interactions between cost, duration, and risk. The simulation is based on empirical
data from construction projects, subjected to different project parameters such as: the day or night shifts,
loaded dirt, and fuel consumption. Statistical distributions are used to capture activity uncertainties.
The proposed decision support system consists of two parts, the Decision-Support Model, and the
Estimation Model. The Decision-Support Model provides an initial prediction of the number of
required trucks based on the highest possible utilization of loaders and trucks. The initial value of
truck numbers is then used in the Estimation Model to estimate the cost and project duration and to
perform trials around this initial estimation to achieve a project-cost tradeoff. Herein, a case study is
presented in the results section to validate the developed framework of this study.

In common practice, the equipment required for a project is selected using average operating
cycles, neglecting the stochastic nature of operations and equipment. Ultimately this can lead to rough
estimates and poor results in meeting the projects’ objectives. The overarching research question in
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this article is “How to optimize earthmoving fleet arrangement by relying on empirical earthmoving
data and considering interacting and influencing parameters?”.

Particularly, this research attempts to answer the following questions:

(1) How to select proper fleet size and arrangement while considering the uncertain nature
construction operations?

(2) How to balance project cost, schedule, and level of risk/uncertainty when comparing different
equipment types and fleet arrangement?

(3) How project cost and duration interact considering the uncertainties involved in the day to
day operations?

Specifically, this study strives to address the following objectives:

1. Developing a Decision-Support Model for optimizing earth moving fleet arrangement.
2. Developing an Estimation Model in the Symphony.net modeling environment to incorporate the

cost aspect in the overarching model.
3. Creating simulation models utilizing the empirical distributions from the previous step.
4. Implement the decision support model with the goal of maximum utilization of a loader, as the

loader is the most expensive resource in this study.

The potential stakeholders of the scope of this study are local agencies, planners, superintendent,
project manager, equpiement owner, contractor, sub contractor, client, and logistics sectors.
By employing the developed simulation model of this study, they would be able to optimize
earthmoving fleet arrangement time and cost more efficiently. The simulation model enables them to
plan for uncertainties and measure the cost implications of different fleet arrangements.

2. Literature Review

2.1. Modeling and Simulation

Earthmoving operations encompass a sizable portion of infrastructure projects. Mining and
heavy construction projects, such as highway and dam construction, require different equipment and
methods of construction. Therefore, the optimal use of resources is a critical task for contractors.
Optimizing earthmoving operations has involved the development of various models employing
different techniques, including simulation optimization [6,8,9], simulation and genetic algorithm
(Parente and Gomez) in [10], computer simulation [11,12], linear programming [13], and artificial
intelligence [14].

Simulation is defined as “imitation of a real-world process or system over time” [15]. Computer
simulation tools are used to build models to provide an image of different project activities, resources
used in work execution, and the surrounding environment of the project [16]. Models can be used in
developing better plans for projects, optimizing the usage of resources, minimizing project costs and
duration, and improving overall performance and productivity [16].

Construction simulation is the application of computer-based systems to model construction
operations to understand their behavioral pattern and make decision-making models more precise [17].
When construction projects are longer and more complex, they become more challenging to manage
with traditional methods; computer simulation methods can be useful in analyzing such problems.
The diversified evolution of the construction simulation tool has expanded, along with the scope of
its application. Various scenarios can therefore be tested to overcome real-life construction project
problems. Typically, the main goal in such simulations is to minimize costs and project duration,
and to explore various operation scenarios in different project types. Simulation tools can provide a
holistic image of the long-term and cyclic operations which serve to generate more reliable results for
these operations as compared to other methods [16]. The simulation models are built through four
consecutive phases: (1) determining the product to be built, (2) abstracting and reducing the resources,
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processes, and environment to models, (3) carrying out the simulation and testing the model, and
finally, (4) the decision-making phase [16].

2.2. Simulation in Construction

Computer simulation has also been used in other aspects of the construction process such as
scheduling and planning. Liu et al. [18] established an integrated scheduling platform under resource
constraints, and Bi et al. [19] conducted a schedule risk analysis to study long-distance diversion
tunnels. Moreover, Lin et al. [20] employed multi-objective optimizations for construction resource
allocation schemes. Tang et al. [21] investigated the impact of construction management strategies
on project greenhouse gas emissions using interactive simulation. Additionally, Alzraiee et al. [22]
developed the dynamic planning of construction activities by employing a hybrid simulation model to
study both the operational and strategic planning aspects of a project. Finally, [23] utilized real-time
data to develop a framework to simulate earthmoving projects using location tracking technologies.

Discrete event simulation (DES), a stochastic modeling method that incorporates random variables
and follows a specific probability distribution, has been employed to model cyclic operations and to
analyze complicated construction systems [24,25]. Several construction simulation systems have been
developed within the last fifty years. For example, CYClic Operation NEtwork (CYCLONE) which was
first introduced by [26], works by making modifications to the conventional Activity Cycle Diagram
(ACD) to give a clearer image of different activities that are carried out in construction operations.
MicroCYCLONE, which is a site level construction processes simulation program, was developed
by [27]. Later, CYCLONE was further advanced as a graphical simulation software through the
introduction of State- and ResOurce-Based Simulation of Construction ProcEsses (STROBOSCOPE) [28]
and EZSTROBE [29]. SIMPHONY was developed in 1996 and was considered one of the most successful
simulation software that aids the modeler in developing complicated models by using a user-friendly
interface [30]. Simplified Discrete-Event Simulation Approach (SDESA) was first introduced in
2003, leading to the development of the ACD simulation method and the proposal of the disposal
resource concept [31]. A further development was introduced in the construction process simulation
by developing the Simphony.NET 3.5 [17] and COSYE [30] based on the concept of High-Level
Architecture. Ince [6] developed a simulation model that dynamically predicts the Roughness Defect
Score of the road as the traffic increases and gives an optimal maintenance management program
based on the impacted cost parameters by employing Simphony.Net. Additionally, Ince incorporated
a Markov model in the system to accommodate a more realistic modeling of the road deterioration
status over time.

There are primarily two components involved in construction simulation models, activity,
and resource [16]. These refer to the activities involved in a project, and the resources required to
accomplish those activities. Construction activities have a degree of uncertainty, due to the stochastic
nature of their processes, and several parameters that affect productivity and performance. Labor skills,
weather conditions, and equipment breakdown are just a few examples of the uncertainties involved
during the duration of construction activity [32]. Modeling all possible factors of influence would be a
daunting task. Even if every aspect of an operation is modeled, it would be near impossible to properly
include all site conditions and factors that can occur while executing the project. Comparably, it would
be too simplistic to rely on average cycle times and choose an integer value for the number of equipment
without considering the consequences. An appropriate solution then, is to simulate the operation
activities stochastically. As a result, the simulation would not have constant activity durations; activity
durations would be randomly selected from its associated probability density, representing the reality
on the ground [17]. Moreover, the success of a simulation experiment depends mainly on the accuracy
of the input modeling [1]. In developing a simulation model for construction processes, the models
can be based either on observations of historical data, or an experts’ judgment and knowledge of the
processes [33]. The use of historical data is advisable when the user does not expect any significant
change in the underlying assumptions of the process. While the experts’ judgment is an appropriate
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choice for conceptualizing inputs that are expected to vary in the future due to unexpected changes in
the underlying factors.

After reviewing the role of simulation in the construction industry, and the modeling of stochastic
durations, it is essential to discuss the reasons behind modeling earthmoving operations. According
to [34], an earthmoving simulation model should address the following: (1) modeling earthmoving
operations in a simple way to understand and providing a clear image of the process, (2) modeling
complex construction operations and increasing the productivity of operations, (3) visualizing the
complex and dynamic interactions between different activities and resources, (4) optimizing the
earthmoving operations in terms of fuel consumption, productivity, and resource utilization, and (5)
reducing the fuel consumption for haulers (trucks) for both monetary and environmental reasons.

2.3. Identified Gap

The focus of this study is in optimizing earthmoving operations. Earthmoving operations are
costly and involve many different variables that once optimized can lead to significant savings of
cost and time. In earthmoving operations, you deal with four main activities including loading,
hauling, dumping, and returning. These activity durations are impacted by uncertainties resulting in a
stochastic behavior [34]. Earthmoving operations have many interacting activities and resources that
need to be planned accurately to ensure successful project execution. As a result, a comprehensive and
adaptable modeling approach is needed to address this complexity. There have been multiple studies
carried out in the past three decades for modeling the uncertainties in a earthmoving operation that
indicate the uniform, triangular, normal and lognormal [35], beta [33], and Erlang [36] distributions
are suitable for expressing the uncertainties in construction processes. AbouRizk and Halpin [33]
recommended using flexible distributions with tractable parameters that can be estimated from sample
data and should be bounded between upper and lower limits. This approach was adopted in this
study to model the uncertainties in the production and consumption rates of the heavy machinery.

3. Methodology

This research aims to provide a decision support tool through a simulation model that is capable
of modeling earthmoving operations in terms of the total cost of ownership (TCO), fuel consumption,
productivity, and resource utilization. Figure 2 illustrates a flowchart of the methodology presented
in this research. A problem or gap in the industry is defined along with and the leading parameters
affecting the earthmoving operation (In common practice, the equipment required for a project is
selected using average operating cycles, neglecting the stochastic nature of operations and equipment.
Ultimately this can lead to rough estimates and poor results in meeting the projects’ objectives.).
Empirical data for different parameters under the study is collected and organized, and various
distributions on the collected data is fitted to find the representative distributions for each parameter.
Particularly, this study strives to address the following objectives:

1. Developing a Decision-Support Model for optimizing earth moving fleet arrangement.
2. Developing an Estimation Model in the Symphony.net modeling environment to incorporate the

cost aspect in the overarching model.
3. Creating simulation models utilizing the empirical distributions from the previous step.
4. Implement the decision support model with the goal of maximum utilization of a loader, as the

loader is the most expensive resource in this study.

Ultimately, these objectives resulted in a prediction model covering the cost estimation aspects of
the earth moving project that is based on realistic assumptions.
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Figure 2. Methodology overview.

A basic earthmoving project can be summarized into four significant components: the loading,
hauling, dumping, and returning of trucks. However, selecting the proper number of trucks considering
the cost and duration of the project, while maintaining allowable confidence levels may not be a
straightforward task. Figure 3 depicts the activities and steps that each truck follows to assist in the
completion of an earthmoving project. This abstraction is adopted for simulation purposes in this
study. All durations of the activities illustrated in the following flowchart, as well as the amount of dirt
being moved by each truck, have a stochastic nature, and follow a probability distribution in the real
world. The problem defined in this research is how to select the proper fleet size and configuration
given the uncertainties in the nature of an earthmoving fleet’s activities and operations. Parameters
such as truck types and capacity, loader bucket capacity, hauling speed, and many more (listed in
Table 1) can have a major impact on fleet selection, as well as the cost and duration associated.
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The cost components that affect an earthmoving project can be defined as the operational cost of
equipment (i.e., the hourly equipment cost for owner and operator costs), and the fuel cost. In reality,
these values are not constant and depend on the idle time of the truck and hauling distances. Capturing
and including this variation in a simulation model is one of the advantages to this research. The list of
all the simulation variables used in this study is illustrated in Table 1.
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Table 1. Parameters affecting an earthmoving project.

Activity/Uncertainty Effecting Parameter 1 Effecting Parameter 2

Excavator Loading Rate Shift: Day/Night Loaded Dirt
Truck Hauling Speed Shift: Day/Night Hauling distance
Truck Returning Speed Shift: Day/Night Hauling distance
Truck Dumping Duration Shift: Day/Night Finding the right spot
Truck Payload Shift: Day/Night Visibility
Excavator Idle Fuel Rate Utilization Fuel consumption
Excavator Operating Fuel Rate Utilization Fuel consumption
Truck Idle Fuel Rate Idleness Idle fuel consumption
Truck Moving Fuel Rate Hauling distance Moving fuel consumption

4. Case Study

The duration and productivity of construction activities can experience uncertainties best captured
by a range of distributions. The range of each activity is governed by the parameters affecting that
activity, and to some extent can be obtained by analyzing activity duration/productivity over time.
As a result, the more data gathered, the more accurately parameters and ranges can be generalized to
fit a problem. To give a full scope of the earthmoving variables and parameters, the data encompassed
in this study is provided for two truck types and two loader types under the same soil conditions.
The data set collected in this research includes more than 1400 data points capturing the duration of all
the activities in heavy haul operations with 750 data points from the day shifts and 650 data points
from the night shifts. As a result, two 10-h shifts were taken on every 24-h day. To make the simulation
results more generalizable to possible scenarios, distributions were fitted to the collected data with the
defined parameters in Table 1, considering the following two concepts:

• Distributions should be at bounded on the left side as the duration or fuel consumption cannot
have negative values.

• For simulation purposes, having the right side unbounded could result in irrationally large
numbers, which may cause an error in the simulation.

Based on the abovementioned assumptions, the most reliable distributions for the parameters
defined in Table 1 were limited to three distributions of Beta, Triangular, and Uniform. Table 2
represents the best fitted distribution to each uncertain parameter. Figure 4 also depicts a sample
distribution fitted to the loading rate of the loader activity. The following shows the description of
the activities:

• Excavator Loading rate (CY/minute): Refers to the capacity (cubic yard) of each rotor bucket in
cubic yard, per minute.

• Truck Loaded Speed (Mile/hour): Refers to the speed (Mile/hour) of the loaded truck.
• Truck Payload (CY): Refers to all the cargo weight that you can safely add in addition to your

truck’s empty weight.
• Truck Dumping time (Minute): Refers to the time (Minute) required to dump the material.
• Excavator Fuel consumption Rate (Gal/hour): Refers to the fuel consumption volume (Gallon) of

the excavator in each hour.
• Truck Cycle Fuel (Gal/Mile): Refers to the fuel consumption volume (Gallon) of truck by completing

each earthmoving cycle.



Modelling 2020, 1 163

Table 2. The parameters affecting earthmoving projects.

Activity/Uncertainty Unit Day Night

Excavator 1 Loading rate
CY/minute

Beta (5.5, 9.95, 0.1, 0.64) Beta (6, 15.21, 0.07, 0.87)

Excavator 2 Loading rate Beta (1.17, 1.78, 0.27, 0.68) Beta (6.32,0.95,0.15,0.47)

Truck 1 Loaded Speed

Mile/hour

Beta (5.3, 4.2, 15, 44.9) Beta (7.6, 6.5, 17, 45)

Truck 2 Loaded Speed Beta (9.35, 4.35, 18, 42.9) Beta (6, 4.3, 22, 42.6)

Truck 1 Empty Speed Beta (7.2, 7.6, 15, 51.3) Beta (6.9, 8.5, 20, 50.8)

Truck 2 Empty Speed Beta (18.5, 7.9, 9.1, 48) Beta (7.3, 5.4, 23.5, 46.5)

Truck 1 Payload
CY

Beta (5.5, 9.2, 35, 100) Beta (7.3, 7.0, 30.4, 90)

Truck 2 Payload Beta (6.1, 4.9, 185, 274) Beta (27, 17.1, 124.4, 303.1)

Truck 1 Dumping time
Minute

Triangular (30.3, 230, 88.5)

Truck 2 Dumping time Triangular (48.25, 280, 50)

Excavator 1 Fuel consumption Rate

Gal/hour

Triangular (20, 27, 23.5)

Excavator 2 Fuel consumption Rate Triangular (28, 40, 34)

Truck 1 Idle Fuel consumption rate Triangular (9.9, 14.9, 12.4)

Truck 2 Idle Fuel consumption rate Triangular (22.5, 33.8, 28.1)

Truck 1 Cycle Fuel consumption rate
Gal/Mile

Beta (2.3, 3.96, 2.3, 4.3)

Truck 2 Cycle Fuel consumption rate Beta (3.4, 12, 4.5, 9.9)
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274) 

Beta (27, 17.1, 124.4, 
303.1) 

Truck 1 Dumping time 
Minute 

Triangular (30.3, 230, 88.5) 
Truck 2 Dumping time Triangular (48.25, 280, 50) 
Excavator 1 Fuel consumption 
Rate 

Gal/hour 

Triangular (20, 27, 23.5) 

Excavator 2 Fuel consumption 
Rate Triangular (28, 40, 34) 

Truck 1 Idle Fuel consumption 
rate Triangular (9.9, 14.9, 12.4) 

Truck 2 Idle Fuel consumption 
rate Triangular (22.5, 33.8, 28.1) 

Truck 1 Cycle Fuel consumption 
rate 

Gal/Mile 
Beta (2.3, 3.96, 2.3, 4.3) 

Truck 2 Cycle Fuel consumption 
rate Beta (3.4, 12, 4.5, 9.9) 
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4.1. Creating Simulation Models Utilizing the Fitted Distributions

From a decision-makers’ point of view, allocating the right amount of resources for each activity
can play a crucial role in determining the project cost and duration.

The factors contributing to these can change from one project to another, depending on the choice
of equipment, hauling distance, and number of resources. This problem is addressed in the next two
sections; first, a simulation model with the purpose of identifying the range of optimal fleet size is
developed; second, a model with more detailed cost functions captures the true operation costs and can
perform a more detailed comparison of the range of fleet sizes provided by the Decision-Support Model.

4.1.1. Decision-Support Model

The Decision-Support Model has all the attributes of the hauling operation but has more freedom
in changing its fleet size during operations. The model is structured with a main loop performing the
primary operation activities and a secondary loop of capturing excessive trucks or releasing more as
needed (Figure 5). The main loop consists of all activities in the hauling operation, with the activity
durations randomly sampled from the distributions discussed in the previous section. The second
loop, shown in Figure 5, incorporates values and conditions for the capturing and releasing of trucks.
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This method results in the full utilization of the loader as the most expensive resource. Moreover,
this method can illustrate a range of fleet sizes as opposed to one value, due to stochastic nature of these
operations. This model sampled the loading, hauling, dumping, and returning durations of trucks
along with the trucks’ loaded dirt from the distribution as defined in the previous step. The element of
“Set Trucks’ Attributes” assigned trucks properties (e.g., hauling duration) to flow entities (i.e., trucks).
Every truck carried a certain amount of dirt, so when there was no material to be hauled, trucks
stopped in the “End of Material” element. The simulation was terminated by having the specified
material hauled.
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Figure 5. Decision-Support Model.

In parallel to the cycle depicted in Figure 5, a separate cycle, highlighted in Figure 6, collected
statistical information from the primary cycle during every identified collection interval. As a result,
as the simulation progressed, the data (such as the number of trucks in every instance of the simulation)
was collected for statistical analysis.
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4.1.2. Cost Estimation Model

After comparing the initial output of the first simulation over system performance, a more
comprehensive model was developed covering the cost estimation aspects of the project with a more
detailed consideration to cost. Figure 7 illustrates the Cost Estimation Model developed in this
study. In said model, some elements were defined with exact properties and functions identical to the
Decision-Support Model, while new functions were elaborated as follows:

• A dummy resource was captured as each truck was being generated to mimic truck breakdowns
in every instance of the simulation.

• Preempting this dummy resource halted trucks within tasks and released it after it was repaired,
returning the truck to its task.

• Fuel consumption of trucks was defined as: idle fuel consumption + moving or cycle
fuel consumption.
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• The duration that each truck was idle (fuel consumption) before getting loaded by the loader was
measured in the “Trucks Queue” element (when multiplied by idle fuel consumption rate results
in idle fuel consumption).

• Cycle fuel consumption was calculated by checking the state of diesel in the truck fuel tank before
and after each cycle.

• If the level fuel in a truck’s tank after each cycle was less than that required for the next cycle (with
a margin of 20 percent), the trucks needed to fill their tanks. This condition was modeled in the
simulation by the “Enough Fuel” element.
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The statistical information of the simulation was collected by a parallel cycle which also
simultaneously set shifts and calculated costs Figure 8 depicts the statistical information collection
process of the estimation model developed in this study. Additionally, the intervals between data
collections were set implicitly by inputting a task inside this cycle.
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Table 3 shows the assumptions of this study for the price of loaders and trucks, the capacity of the
trucks’ tanks, and the diesel price. These assumptions were implied to be deterministic due to their
nature, as the user would know the exact price and capacity tank at any given time.
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Table 3. The assumptions of this study.

Loader 1 200$/h

Loader 2 400$/h

Truck 1 180$/h

Truck 2 400$/h

Truck 1 350 Gallon

Truck 2 1150 Gallon

Diesel Price 1$/Gallon

The estimation model simulation started with a sampling from the distributions on created process
models and by running a Monte Carlo simulation (with 1000 runs). The decision-making model output
is the number of trucks that results in the maximum utilization of the loader. Whereas, in the estimation
model, more comprehensive details about the costs related to the project are considered. The results of
the simulations are presented and discussed in the next section.

5. Analysis of the Results and Discussion

The output analysis of this simulation ultimately could facilitate the decision-making process
in earthmoving projects, taking into considering cost and duration. As long as the assumptions
within the models (e.g., cost of fuel) are consistent, the outcome is comparable between different
arrangements of truck and loaders. Many aspects of an earthmoving project can be analyzed by
performing this simulation for the defined scenarios, resulting in better overall project decisions made
with increased confidence.

From the decision-making model, the number of trucks that results in the highest utilization of the
loader can be obtained. Assuming a fixed hauling distance (40 miles in this case), the project production
rate is controlled by the loader reaching one hundred percent utilization rate. Figure 9 depicts the
optimum number of trucks needed to achieve one hundred percent utilization of the loader during the
simulation period. At the beginning of the simulation, the model releases more trucks, as requested by
the loader. It is noteworthy that the peak at the beginning of the simulation appears because the first
loaded trucks have not yet returned from the dumpsite. In other words, whenever the loader is idle
another truck is requested. After the initial phase, the feedback loop stabilizes the system and reduces
the number of trucks. Due to the uncertain nature of operation, there are still fluctuations in number of
trucks, but the fluctuations are in between 12–14 trucks. As time passes, the number of trucks required
fluctuates between twelve and fourteen. These fluctuations are capturing the operations’ uncertainty
and stochastic nature.Modelling 2020, 2, FOR PEER REVIEW 12 
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The loader–truck configuration can be further investigated in the Cost Estimation Model using
the information gathered from the Decision-Support Model. The first value that could be useful
to a project manager is the production rate, calculated based on the slope of production over time.
Figure 10 shows the production rate for different numbers of trucks in units of a cubic yard per hour.
As a result of the stochastic nature of the operations, adding more trucks increases loader utilization
(Figure 11) and therefore improves the production rate (Figure 10), at a cost. Figure 11 compares the
average number of trucks waiting in the loader’s queue and their average waiting time for different
truck–loader configurations.
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To demonstrate the functionalities of the Cost Estimation Model, we can investigate the fuel
consumption over time for scenarios with a number of trucks above or below optimum values. Figure 12
shows the fuel cost of the project for a short period. In the case where the number of trucks is less
than the optimum (12 trucks), the idle fuel cost of the loader increases, while the truck’s idle fuel cost
is significantly reduced. On the other hand, when the number of trucks is higher than the optimum
(18 trucks), the idle fuel cost of the loader is reduced, and the truck’s idle fuel cost increases (Figure 12).
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Figure 12. Fuel cost of the project.

One of the most significant requirements of such a simulation is to generate results incorporating
the stochastic and uncertain attributes of the model. In terms of an earthmoving project, project
duration and cost, and more importantly their interaction, plays a critical role in project planning and
success. The output of a stochastic model would be a non-crisp value, which can form a bivariable
histogram of cost–duration. If the collected output data is well distributed over the given range of
outputs, it can form a normal distribution. The bivariate cost–duration distributions’ results of this
study are shown in Figure 13. The histogram and distribution demonstrate a superior fitting accuracy
and generalization. A clear correlation between the cost and duration is also visible.
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Figure 14 shows a sample of the scattered cost and duration results for a specific truck and loader
arrangement. For each arrangement of trucks and loaders, a positive correlation and dependency can
be observed between project duration and cost.
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The results of the simulation for different arrangements of trucks and loaders makes it possible to
compare different scenarios and perform value engineering for a specific project. Figure 15 depicts
project duration and cost samples for truck type 1 and loader type 1 arrangements. Three key
observations can be derived from Figure 15; first, the increase in project duration is much more
significant when changing the number of trucks from 14 to 12, compared to the change of 20 to 18.
Second, the result of simulation models indicates that the greater the number of trucks the steeper
the ratio between cost and duration. Third, the spread (standard deviation) of the simulation results
between different truck numbers shows the uncertainty of each scenario. The cost–duration results of
a 12-truck case shows a much higher variance than a 15-truck case.
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Figure 16 shows a separate equipment arrangement (for truck type 2 and loader type 2
arrangements) simulation result. The high cost of loader underutilizing has been added to the
project costs, compared to the scenario with truck type 1 and loader type 1 arrangements (Figure 15).
This is increasingly evident in the truck 1 results at the right end of the figure. Another noticeable
difference between the results in Figures 15 and 16 is that the steepness of ratio between cost and
duration is much higher in the type 2 arrangements. More specifically, by changing the number of
trucks from 7 to 6 or 5, the duration does not change significantly, but the total cost drops considerably.
However, by changing the number of trucks from 4 to 2 and from 2 to 1, the cost and duration of the
project significantly increases, and the increase in the duration is greater than that in cost.
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The mean curve of the projected cost and duration of the project for both fleet arrangements
(Figures 15 and 16) are plotted in Figure 17. In the planning stages of a project, such graphs can
be generated to improve project visibility and predictions. Furthermore, comparing different fleet
configurations and arrangements can benefit the user and facilitate optimal decision making regarding
the preferred time and cost of the project.
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Project Site 
Location

Dumping Site 1
Distance 40 Miles
Capacity 50000 CY

Dumping Site 3
Distance 10 Miles
Capacity 30000 CY

Dumping Site 2
Distance 30 Miles
Capacity 20000 CY

 

Figure 18. Number of trucks required to achieve maximum loader utilization with different haul 
distances. 

6. Conclusions 
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Figure 17. Comparison of two types of equipment in cost and duration.

In all the previous sections, the hauling distance is assumed to be constant (40 miles), wherein
most of the cases there is more than one dumping site. The simulation model presented in this study
can quickly adapt to the changing environment by finding the optimum fleet management for such
cases and further comparing the cost of a change in resources, i.e., changing the number of trucks
throughout the project or keeping set resources for the duration. Figure 18 demonstrates that by
using the same framework presented in the Cost Decision Support model, only changing the hauling
distances, the proper number of equipment can be obtained.
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Figure 18. Number of trucks required to achieve maximum loader utilization with different
haul distances.

6. Conclusions

Operation simulation is identified as an efficient technique to model and analyze the stochastic
aspects of the cost and duration of earthmoving operations in construction projects. Therefore,
two simulation models—namely the Decision-Support Model and the Estimation Model—have been
developed in the Symphony.net modeling environment to address the industry needs in optimizing fleet
arrangement. The Decision-Support Model provides the best arrangement of equipment to maximize
global resource utilization. In contrast, the Estimation Model captures more of the project details
and provides a comparison of various equipment arrangements based on their cost. This research
adds to the construction equipment management body of knowledge by providing a framework for
developing stochastic simulation based on empirical data to capture cost–benefit ratio (CBR) of deferent
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fleet arrangements considering the correlation between cost and duration for different scenarios.
The findings of this study can be summarized in three main areas:

• Cost–benefit ratio (CBR) of an increase or decrease in fleet size, i.e., the relationship between cost
and fleet size is not linear (evident in Figure 15).

• The correlation between cost and duration for different scenarios needs to be understood to make
sound decisions on fleet management.

• Stochastic simulation based on empirical data is an appropriate tool for assessing and measuring
the uncertainty and risk of fleet scenarios.

The absence of a customized simulation model to incorporate and synchronize the fleet resources
for earthmoving projects results in projects that are prone to cost and time overruns. A proper
simulation could provide great insight in dealing with sophisticated fleet selection and multiple
routing scenarios. Other planners, engineers, and scholars can follow the proposed process in this
study to generate the charts and optimize the cost–time management considering the uncertainty and
characteristics of their construction projects. Performing simulation analysis in the planning stages
of the project can lead to significant cost savings in project execution and provide excellent visibility
of project performance. The graphs developed in the process of the simulation can become quick
decision support guidelines for future projects and ad hoc decisions. The proposed tool provides a
practical project management approach, yielding notable cost, time, and resource savings during the
planning and execution phases of construction projects. In this paper, these models are developed,
and the modeling logic is validated through a case study employing a real-world earthmoving project
in Canada that demonstrates the model’s capabilities. This demonstration demonstrated the model’s
usefulness, presented its crucial features, and facilitated its assessment.

The main limitations of this research include data magnitude (The data set collected in this research
includes about 1400 data points capturing the duration of all the activities in heavy haul operations with
750 data points from the day shifts and 650 data points from the night shifts); to increase the accuracy
of the prediction of the simulation model, more data is required. There are more complex modeling
approaches such as machine learning and deep learning which were not included in the pipeline.

For future studies, researchers can examine various arrangements of the number of resources and
add other types of heavy-duty machines to analyze the construction process more comprehensively.
Moreover, they could also add several economic and construction independent variables to investigate
how these factors affect earthmoving projects. Additionally, linear, and non-linear regression models
can be utilized to study the arrangement of heavy-duty vehicles in construction projects, and their
impact on time and cost attributes. Furthermore, additional project risk factors such as equipment
breakdown, weather conditions, and labor skill set can be incorporated into the models for achieving
more reliable fleet arrangement. Additionally, scholars could enhance the generated model more
accurately by adding the maintenance cost of each cycle. Ultimately, it is crucial to study the effect of
the contractors’ management style on earthmoving fleet arrangement.

Author Contributions: Conceptualization, A.M. (Arash Mohsenijam) and A.M. (Amirsaman Mahdavian);
methodology, A.M. (Arash Mohsenijam), A.M. (Amirsaman Mahdavian) and A.S.; software, A.M. (Arash
Mohsenijam); validation, A.M. (Arash Mohsenijam), A.M. (Amirsaman Mahdavian) and A.S.; formal analysis,
A.M. (Arash Mohsenijam), A.M. (Amirsaman Mahdavian) and A.S.; investigation, A.M. (Arash Mohsenijam),
A.M. (Amirsaman Mahdavian) and A.S.; resources, A.M. (Arash Mohsenijam), A.M. (Amirsaman Mahdavian)
and A.S.; data curation, A.M. (Arash Mohsenijam); writing—original draft preparation, A.M. (Arash Mohsenijam);
writing—review and editing, A.M. (Arash Mohsenijam), A.M. (Amirsaman Mahdavian) and A.S.; visualization,
A.M. (Arash Mohsenijam), A.M. (Amirsaman Mahdavian) and A.S.; supervision, A.M. (Arash Mohsenijam),
A.M. (Amirsaman Mahdavian) and A.S.; project administration, A.M. (Arash Mohsenijam), A.M. (Amirsaman
Mahdavian) and A.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.



Modelling 2020, 1 173

References

1. Fu, J. A Microscopic Simulation Model for Earthmoving Operations. In Proceedings of the International
Conference on Sustainable Design and Construction, Zurich, Switzerland, 15–17 January 2012; pp. 218–223.

2. Ricketts, J.T.; Loftin, M.K.; Merritt, F.S. Standard Handbook for Civil Engineers; McGraw-Hill Professional:
New York, NY, USA, 2003.

3. Edwards, D.G.; Holt, G. Construction plant and equipment management research: Thematic review. J. Eng.
Des. Technol. 2009, 7, 186–206. [CrossRef]

4. Asadbeigi, F.; Golsoorat Pahlaviani, A.; Majrouhi Sardroud, J. Application of Genetic Algorithms to Optimize
Heavy Earthwork Operations. J. Innov. Res. Eng. Sci. 2018, 4, 94–98.

5. Aytug, H.; Lawley, M.A.; McKay, K.; Mohan, S.; Uzsoy, R. Executing production schedules in the face of
uncertainties: A review and some future directions. Eur. J. Oper. Res. 2005, 161, 86–110. [CrossRef]

6. Ince, M. Simulation-based Modelling of the Unpaved Road Deterioration and Maintenance Program in
Heavy Construction and Mining Sectors. Master’s Thesis, Lakehead University, Thunder Bay, OT, Canada,
2019.

7. Klingstam, P.; Gullander, P. Overview of simulation tools for computer-aided production engineering.
Comput. Ind. 1999, 38, 173–186. [CrossRef]

8. Markiz, N.; Jrade, A. An expert system to optimize cost and schedule of heavy earthmoving operations for
earth- and rock-filled dam projects. J. Civ. Eng. Manag. 2017, 23, 222–231. [CrossRef]

9. Marzouk, M.; Moselhi, O. Object-oriented simulation model for earthmoving operations. J. Constr. Eng. Manag.
2003, 129, 173–181. [CrossRef]

10. Marzouk, M.; Moselhi, O. Multi-objective optimization of earthmoving operations. J. Constr. Eng. Manag.
2004, 130, 105–113. [CrossRef]

11. Kim, H.; Ham, Y.; Kim, W.; Park, S.; Kim, H. Vision-based nonintrusive context documentation for
earthmoving productivity simulation. Autom. Constr. 2019, 102, 135–147. [CrossRef]

12. Zhang, J.; Zhong, D.; Wu, B.; Lv, F.; Cu, B. Earth Dam Construction Simulation Considering Stochastic
Rainfall Impact. Comput. Aided Civ. Infrastruct. Eng. 2018, 33, 459–480. [CrossRef]

13. Son, J.; Mattila, K.; Myers, D. Determination of haul distance and direction in mass excavation. J. Constr.
Eng. Manag. 2005, 131, 302–309. [CrossRef]

14. Alkass, S.; Harris, F. Expert system for earthmoving equipment selection in road construction. J. Constr. Eng.
Manag. 1988, 114, 426–440. [CrossRef]

15. Banks, J.; Carson, J.S.; Nelson, B.L.; Nicol, D.M. Discrete-Event System Simulation; Prentice Hall, Inc.: New
Jersey, NJ, USA, 2000.

16. AbouRizk, S. Role of Simulation in Construction Engineering and Management. J. Constr. Eng. Manag. 2010,
136, 1140–1153. [CrossRef]

17. AbouRizk, S.; Hague, S. User’s Guide for General Template in Simphony.Net 3.5; University of Alberta: Edmonton,
AB, Canada, 2008.

18. Liu, H.; Al-Hussein, M.; Lu, M. BIM-based integrated approach for detailed construction scheduling under
resource constraints. Autom. Constr. 2015, 53, 29–43. [CrossRef]

19. Bi, L.; Ren, B.; Zhong, D.; Hu, L. Real-Time Construction Schedule Analysis of Long-Distance Diversion
Tunnels Based on Lithological Predictions Using a Markov Process. J. Constr. Eng. Manag. 2015, 141,
04014076. [CrossRef]

20. Lin, C.T.; Hsie, M.; Hsiao, W.T.; Wu, H.T.; Cheng, T.M. Optimizing the schedule of dispatching earthmoving
trucks through genetic algorithms and simulation. J. Perform. Constr. Facil. 2012, 26, 203–211. [CrossRef]

21. Tang, P.; Cass, D.; Mukherjee, A. Investigating the effect of construction management strategies on project
greenhouse gas emissions using interactive simulation. J. Clean. Prod. 2013, 54, 78–88. [CrossRef]

22. Alzraiee, H.; Zayed, T.; Moselhi, O. Dynamic planning of construction activities using hybrid simulation.
Autom. Constr. 2015, 49, 176–192. [CrossRef]

23. Vahdatikhaki, F.; Hammad, A. Framework for near real-time simulation of earthmoving projects using
location tracking technologies. Autom. Constr. 2014, 42, 50–67. [CrossRef]

24. Bokor, O.; Florez, L.; Osborne, A.; Gledson, B.J. Overview of construction simulation approaches to model
construction processes. Organ. Technol. Manag. Constr. Int. J. 2019, 11, 1853–1861. [CrossRef]

http://dx.doi.org/10.1108/17260530910974989
http://dx.doi.org/10.1016/j.ejor.2003.08.027
http://dx.doi.org/10.1016/S0166-3615(98)00117-1
http://dx.doi.org/10.3846/13923730.2015.1027258
http://dx.doi.org/10.1061/(ASCE)0733-9364(2003)129:2(173)
http://dx.doi.org/10.1061/(ASCE)0733-9364(2004)130:1(105)
http://dx.doi.org/10.1016/j.autcon.2019.02.006
http://dx.doi.org/10.1111/mice.12337
http://dx.doi.org/10.1061/(ASCE)0733-9364(2005)131:3(302)
http://dx.doi.org/10.1061/(ASCE)0733-9364(1988)114:3(426)
http://dx.doi.org/10.1061/(ASCE)CO.1943-7862.0000220
http://dx.doi.org/10.1016/j.autcon.2015.03.008
http://dx.doi.org/10.1061/(ASCE)CO.1943-7862.0000935
http://dx.doi.org/10.1061/(ASCE)CF.1943-5509.0000219
http://dx.doi.org/10.1016/j.jclepro.2013.03.046
http://dx.doi.org/10.1016/j.autcon.2014.08.011
http://dx.doi.org/10.1016/j.autcon.2014.02.018
http://dx.doi.org/10.2478/otmcj-2018-0018


Modelling 2020, 1 174

25. Longman, M.; Miles, S.B. Using discrete event simulation to build a housing recovery simulation model for
the 2015 Nepal earthquake. Int. J. Disaster Risk Reduct. 2019, 35, 101075. [CrossRef]

26. Halpin, D.W. An Investigation of The Use of Simulation Networks for Modeling Construction Operations.
Ph.D. Thesis, University of Illinois, Urbana, IL, USA, 1973.

27. Lluch, J.F.; Halpin, D.W. Construction operation and microcomputers. J. Constr. Div. ASCE 1982, 108,
129–145.

28. Martinez, J.C. Stroboscope. Ph.D. Theis, University of Michigan, Ann Arbor, MI, USA, 1996.
29. Martinez, J.C. EZSTROBE—Introductory general-purpose simulation system based on activity cycle diagrams.

In Proceedings of the 2001 Winter Simulation Conference, Arlington, VA, USA, 9–12 December 2001.
30. AbouRizk, S.; Hague, S. An overview of the COSYE environment for construction simulation. In Proceedings

of the 2009 Winter Simulation Conference, Piscataway, NJ, USA, 13–16 December 2009; pp. 2624–2634.
31. Lu, M. Simplified discrete-event simulation approach for construction simulation. J. Constr. Eng. Manag.

ASCE 2003, 129, 537–546. [CrossRef]
32. Love, P.E.D.; Holt, G.D.; Shen, L.Y.; Li, H.; Irani, Z. Using systems dynamics to better understand change and

rework in construction project management systems. Int. J. Proj. Manag. 2002, 20, 425–436. [CrossRef]
33. AbouRizk, S.; Halpin, D. Statistical properties of construction data. J. Constr. Eng. Manag. 1992, 118, 525–544.

[CrossRef]
34. Fu, J. Logistics of Earthmoving Operations Simulation and Optimization. Licentiate Thesis, KTH Royal

Institute of Technology, Stockholm, Sweden, 2013.
35. Graham, L.D.; Smith, S.D.; Dunlop, P. Lognormal distribution provides an optimum representation of the

concrete delivery and placement process. J. Constr. Eng. Manag. 2005, 131, 230–238. [CrossRef]
36. Hassan, M.M.; Gruber, S. Application of discrete-event simulation to study the paving operation of asphalt

concrete. Constr. Innov. Inf. Process Manag. 2008, 8, 7–22.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ijdrr.2019.101075
http://dx.doi.org/10.1061/(ASCE)0733-9364(2003)129:5(537)
http://dx.doi.org/10.1016/S0263-7863(01)00039-4
http://dx.doi.org/10.1061/(ASCE)0733-9364(1992)118:3(525)
http://dx.doi.org/10.1061/(ASCE)0733-9364(2005)131:2(230)
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Literature Review 
	Modeling and Simulation 
	Simulation in Construction 
	Identified Gap 

	Methodology 
	Case Study 
	Creating Simulation Models Utilizing the Fitted Distributions 
	Decision-Support Model 
	Cost Estimation Model 


	Analysis of the Results and Discussion 
	Conclusions 
	References

