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Abstract: Every day, new data must be analysed as well as possible in all areas of applied science,
which requires the development of attractive statistical models, that is to say adapted to the context,
easy to use and efficient. In this article, we innovate in this direction by proposing a new statistical
model based on the functionalities of the sinusoidal transformation and power Lomax distribution.
We thus introduce a new three-parameter survival distribution called sine power Lomax distribution.
In a first approach, we present it theoretically and provide some of its significant properties. Then
the practicality, utility and flexibility of the sine power Lomax model are demonstrated through a
comprehensive simulation study, and the analysis of nine real datasets mainly from medicine and
engineering. Based on relevant goodness of fit criteria, it is shown that the sine power Lomax model
has a better fit to some of the existing Lomax-like distributions.

Keywords: statistical modelling; trigonometric distributions; power lomax distribution; estimation;
data fitting

1. Introduction

A large part of applied mathematics consists of defining one or more models of a
mathematical nature, allowing a sufficiently general consideration of a given phenomenon.
In a somewhat schematic way, we can distinguish two kinds of modelling: the deterministic
modelling where random variations are not taken into account and stochastic modelling
which takes into account these random variations (roughly speaking, ‘stochastic’ means to
be or have a random variable). In the context of stochastic modelling, the random variations
are often associated with an underlying probability distribution. Stochastic modelling can
be divided into two sub-categories: probabilistic modelling and statistical modelling. The
main objective of the probabilistic modelling is to provide a formal framework making
it possible to describe the random variations discussed above, and to study the general
properties of the phenomena which govern them. More applied, the statistical modelling
essentially consists of defining suitable tools aiming to model the observed data taking into
account their random nature. This theme is fully developed in [1,2], among others.

Recent developments in stochastic modelling have been driven by the rapid progress
and accessibility of computing power. In particular, these have allowed direct applications
of existing continuous distributions with some functional complexity for various statis-
tical purposes. Also, these have accelerated the creation of new families of distributions
presenting original and practical characteristics. In this regard, we may refer to [3] for a
complete overview. Among the latest developments, the families defined by ‘trigonometric
transformations’ of a given distribution have attracted much attention due to their applica-
bility and working capacity in many practical situations. The pioneering works of [4–7]
have focused on the sinusoidal transformation leading to the so-called sine generated (S-G
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or Sin-G) family. The following equations are the generic definitions of the associated
cumulative distribution function (cdf) and probability density function (pdf), respectively:

FS(x; ζ) = sin
[π

2
G(x; ζ)

]
, x ∈ R (1)

and
fS(x; ζ) =

π

2
g(x; ζ) cos

[π

2
G(x; ζ)

]
, x ∈ R. (2)

In these equations, G(x; ζ) and g(x; ζ) are the cdf and pdf of a certain continuous
distribution with parameter(s) vector denoted by ζ, respectively. They are related to a
reference distribution chosen a priori by the practitioner, depending on the context of the
study. It is now established that the S-G family (i) offers an attractive alternative to the
reference family; one can show that G(x; ζ) ≤ FS(x; ζ) for any x ∈ R, (ii) is of acceptable
mathematical complexity without introducing new parameters, and (iii) has the ability to
provide flexible statistical models to accommodate data of varying nature. To illustrate
these items, in Reference [4], the exponential distribution is used as a reference to define the
SE model. It turns out to be well suited to analyse the important bladder cancer patients
dataset of [8]. In another study, the inverse Weibull (IW) distribution developed by [9]
was considered to be the reference distribution; the sine IW (SIW) model was introduced
by [6]. By analyzing the famous guinea pigs dataset by [10], the SIW model is proven to
perform better compared to serious and comparable competing models. An open-source R
package on the SIW model is developed in [11], facilitating the use of the model beyond
these basic purposes. These works inspired the construction of other trigonometric families
of distributions, such as the CS-G family by [12], C-G family by [7], TransSC-G family
by [13], NS-G family by [14], STL-G family by [15] and SKum-G family by [16].

In this paper, we contribute to the success of the S-G family by applying it to a specific
three-parameter survival distribution: the power Lomax (PL) distribution proposed by [17].
We thus introduce the sine PL (SPL) distribution and model. Thus, a retrospective on the
PL distribution is necessary to understand the proposed methodology. First, the Lomax
distribution was introduced by [18]. It can be presented as a manageable two-parameter
heavy-tailed survival distribution with a tuning polynomial decay and also, as a derivation
of the Pareto distribution as described in [19] (page 573). It is governed by the cdf and pdf
defined by

GL(x; ξ) = 1− (1 + λx)−α, x > 0 (3)

and
gL(x; ξ) = αλ(1 + λx)−(α+1), x > 0, (4)

respectively, with GL(x; ξ) = gL(x; ξ) = 0 for x ≤ 0, where ξ = (α, λ), α is a shape
parameter and λ is a scale parameter, all the parameters taking strictly positive values. It
finds numerous applications in reliability engineering and life testing. The theory, inference
and applications of the Lomax distribution have been the subjects of the following inevitable
references: [20–26]. The PL distribution proposed by [17] is obtained by making use of the
power transformation to the Lomax distribution, aiming to increase its capabilities on several
functional aspects. It corresponds to the distribution of the random variable X = Y1/β,
where Y is a random variable with the Lomax distribution and β > 0. Consequently, based
on (3) and (4), the PL distribution is defined by the cdf and pdf defined by

GPL(x; ζ) = GL(xβ; ξ) = 1− (1 + λxβ)−α, x > 0 (5)

and
gPL(x; ζ) = αβλxβ−1(1 + λxβ)−(α+1), x > 0, (6)

respectively, with GPL(x; ζ) = gPL(x; ζ) = 0 for x ≤ 0, where ζ = (α, β, λ), α is a shape pa-
rameter, and β and λ are scale parameters, all the parameters taking strictly positive values.
Contrary to the Lomax distribution, it is established in [17] that the PL distribution adapts



Modelling 2021, 2 80

to both inverted bathtub and decreasing hazard rates. The practical gain is particularly
impressive; the PL model is better than ten competing models for analyzing the bladder
cancer patients dataset of [8], all based on the Lomax model. For the sake of optimality,
some motivated distributions extending or generalizing the PL distribution was introduced,
including the type II Topp-Leone PL (TIITLPL) distribution by [27], type I half logistic PL
distribution by [28], inverse PL distribution by [29], Marshall-Olkin PL distribution by [30],
exponentiated PL distribution by [31] and Kumaraswamy generalized PL distribution
(KPL) by [32]. The main strategy of these proposed distributions is to add more parameters
to the PL distribution based on exponentiated, transmuted or truncated schemes. Basically,
these schemes give better results but add more parameters to the reference distribution;
the problem of manipulating all these parameters simultaneously can present a certain
difficulty from the modelling point of view. Thus, the immediate motivation of the SPL
model is to use the S-G scheme to improve the efficiency of the PL model with the existing
parameters. Deeper motivations come after further investigation which is detailed in the
next study. To summarize, the functionality and flexibility of the SPL model are particularly
attractive for data fitting. Indeed, the corresponding pdf has different kinds of curves such
as uni-modal, symmetrical, asymmetrical on right and left, reversed J-shaped curves. Also,
the model exhibits decreasing and increasing, inverted bathtub and reversed-J hazard rates.
These properties give the SPL model a constant consistency in the precision of the fits unlike
many other comparable models. This statement is illustrated in the practical environment
by considering nine published datasets mainly from medicine and engineering, and four
competing models derived from the Lomax distribution.

We organize the rest of the paper as follows. Section 2 is devoted to the definition,
characteristics and main properties of the SPL distribution. The parametric estimation
related to the SPL model is discussed and illustrated by a comprehensive simulation study
in Section 3. Concrete applications to datasets are provided in Section 4. Finally, conclusions
are stated in Section 5.

2. The SPL Distribution
2.1. Function Anlysis

Here, some mathematics of the SPL distribution are presented. First, by considering
(5) and (6) in (1) and (2), we obtain the main distributional functions of the SPL distribution;
the corresponding cdf and pdf are given as

FSPL(x; ζ) = cos
(π

2
(1 + λxβ)−α

)
, x > 0 (7)

where ζ = (α, β, λ), and

fSPL(x; ζ) =
π

2
αβλxβ−1(1 + λxβ)−(α+1) sin

(π

2
(1 + λxβ)−α

)
, x > 0, (8)

with FSPL(x; ζ) = fSPL(x; ζ) = 0 for x ≤ 0. We recall that ζ = (α, β, λ), α is a shape
parameter, and β and λ are scale parameters, all the parameters taking strictly positive
values. Considering different values of the parameters, variant forms of the pdf can be
obtained. More specifically, by differentiating (8), it can be readily verified that fSPL(x; ζ) is
decreasing for β ≤ 1 and unimodal for β > 1. The more representative of them are shown
in Figure 1.
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Figure 1. Curves of the pdf of the SPL distribution at different parameter values.

From Figure 1, we observe that the pdf of the SPL distribution can be decreasing
or unimodal, with a very versatile asymmetry in all the directions. This versatility is an
attractive point for the use of the SPL model in data fitting.

We complete this functional study by discussing the hazard rate function (hrf). First,
in full generality, the hrf measures the tendency of an item to fail or die depending on the
age reached. Therefore, it plays a key role in the classification of survival distributions.
Basically, the shapes of hazard rates are either monotonic (increasing or decreasing) or
non-monotonic (bathtub or inverted bathtub). The hrf of the SPL distribution is given by

hSPL(x; ζ) =
π

2
αβλxβ−1 (1 + λxβ)−(α+1) cot

(π

4
(1 + λxβ)−α

)
, x > 0, (9)

and hSPL(x; ζ) = 0 for x ≤ 0. Upon differentiation of (9), it can be seen that hSPL(x; ζ) is
increasing for β ≥ 1 and α ≤ 1. It is also conjectured that hSPL(x; ζ) is decreasing for β ≤ 1
and α ≥ 1, and unimodal for β ≥ 1 and α ≥ 1. The graphical study in Figure 2 supports
these claims.

Figure 2 emphasizes the fact that the proposed SPL distribution possesses increasing
and decreasing, and also upside down bathtub hazard rates.

Another important function of the SPL distribution is the quantile function (qf). It is
defined as the inverse function of the corresponding cdf. Thus, based on (7), it is specified by

Q(u; ζ) = F−1
SPL(u; ζ) =

{
1
λ

[(
2
π

arccos u
)−1/α

− 1

]}1/β

, u ∈ (0, 1). (10)

As the cdf, the qf determined the SPL distribution. Classically, we can use it for determining
the median, as well as the lower and upper quartiles. The qf can also be used to generate
values from a random variable with the SPL distribution. Further detail on the quantile-
based reliability analysis can be found in [33].
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Figure 2. Curves of the hrf of the SPL distribution at different parameter values.

2.2. Moment Analysis

We now conduct a moment analysis. The following result gives a series expansion for
the (crude) moments of a random variable with the SPL distribution.

Proposition 1. Let r ≥ 1 be an integer and X be a random variable with the SPL distribution.
Then, for r < 2αβ, the r-th moment of X exists and can be expanded as

E(Xr) = αλ−r/β
+∞

∑
k=1

(−1)k+1

(2k− 1)!

(π

2

)2k
B
(

r
β
+ 1, 2kα− r

β

)
,

where E denotes the mathematical expectation and B(a, b) refers to the standard beta function given
as B(a, b) =

∫ 1
0 ta−1(1− t)b−1dt =

∫ +∞
0 ta−1(1 + t)−(a+b)dt for a, b > 0.

Proof. First, the definition of E(Xr) is

E(Xr) =
∫ +∞

−∞
xr fSPL(x; ζ)dx =

∫ +∞

0
xr fSPL(x; ζ)dx, (11)

since fSPL(x; ζ) = 0 for x ≤ 0.
Let us study the mathematical existence of this integral by the Riemann integrability

criterion. When x → 0, we have xr fSPL(x; ζ) ∼ (π/2)αβλxr+β−1, which is integrable
over (0, δ) with δ > 0 since β > 0. For the case x → +∞, we have xr fSPL(x; ζ) ∼
(π2/4)αβλ−2αxr−2αβ−1, which is integrable over (δ,+∞) with δ > 0 if and only if r < 2αβ.
The desired condition is obtained.
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Let us now investigate a linear representation of the cdf expressed in (7), from which
we will deduce a series expansion for the pdf as given by (8). By using the Taylor series
expansion of the cosine function, for x > 0, we get

FSPL(x; ζ) = cos
(π

2
(1 + λxβ)−α

)
=

+∞

∑
k=0

(−1)k

(2k)!

(π

2
(1 + λxβ)−α

)2k

=
+∞

∑
k=0

(−1)k

(2k)!

(π

2

)2k
(1 + λxβ)−2kα.

By applying a first order differentiation with respect to x, the following series expan-
sion of the pdf comes:

fSPL(x; ζ) = αλβ
+∞

∑
k=1

(−1)k+1

(2k− 1)!

(π

2

)2k
xβ−1(1 + λxβ)−2kα−1. (12)

Please note that we ignored the term in k = 0 since the corresponding term disappears.
From (11) and (12), by integrating fSPL(x; ζ) with respect to x, swapping the symbols

∫
and

∑ by the dominated convergence theorem, and applying the change of variables y = λxβ,
we obtain

E(Xr) = αλβ
+∞

∑
k=1

(−1)k+1

(2k− 1)!

(π

2

)2k ∫ +∞

0
xr+β−1(1 + λxβ)−2kα−1dx

= αλ−r/β
+∞

∑
k=1

(−1)k+1

(2k− 1)!

(π

2

)2k
B
(

r
β
+ 1, 2kα− r

β

)
.

This completes the proof of Proposition 1.

A computational remark is that, for K large enough, a precise approximation of µ′r is
obtained as

E(Xr) ≈ αλ−r/β
K

∑
k=1

(−1)k+1

(2k− 1)!

(π

2

)2k
B
(

r
β
+ 1, 2kα− r

β

)
.

Diverse moment measure can be defined from Proposition 1. Here, we restrict our
attention on the variance of X basically defined by Var = E(X2)− [E(X)]2.

The first four moments and variance of X for different parameter values are indicated
in Table 1 provided αβ > 2.

From Table 1, we see the numerical versatility of the moment measures considered,
varying from small to large values; central and dispersion indicators may be negligible or
substantial. This confirms the claim about the overall flexibility of the SPL distribution.

Based on similar developments employed in the proof Proposition 1, it is possible
to express various series expansions of moment-type functions. Here, we complete our
moment analysis by investigating the incomplete moments of the SPL distribution which
are involved in the definition of many applied measures and indicators.
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Table 1. Moments of a random variable X with SPL distribution for different parameter values.

Parameters α E(X) E(X2) E(X3) E(X4) Var

β = 1.15 λ = 0.05

5 2.0982958 8.0587805 46.731802 380.750565 3.6559354

10 1.0965961 2.1021457 5.766650 20.843274 0.8996228

15 0.7593655 0.9941883 1.835014 4.389999 0.4175523

20 0.5869620 0.5900577 0.830389 1.503360 0.2455333

β = 0.95 λ = 0.15

2.5 1.9969643 10.875856 141.228274 5891.000628 6.8879901

3.5 1.2950962 4.065762 24.541340 276.793358 2.3884878

4 1.0991066 2.838471 13.451765 110.208386 1.6304353

6 0.6802299 1.019179 2.569788 9.906019 0.5564665

Proposition 2. Let r ≥ 1 be an integer, t ≥ 0 and X be a random variable with the SPL
distribution. Then, the r-th incomplete moment of X with the truncated value t exists and can be
expanded as

E(Xr I(X ≤ t)) = αλ−r/β
+∞

∑
k=1

(−1)k+1

(2k− 1)!

(π

2

)2k
Bλtβ/(1+λtβ)

(
r
β
+ 1, 2kα− r

β

)
,

where I denotes the indicator function and Bu(a, b) refers to the truncated beta function given as
Bu(a, b) =

∫ u
0 ta−1(1− t)b−1dt for a, b > 0 and u ∈ (0, 1).

Proof. First, we have

E(Xr I(X ≤ t)) =
∫ t

0
xr fSPL(x; ζ)dx. (13)

The rest of the development follows the lines of the proof of Proposition 1; From (12)
and (13), by integrating fSPL(x; ζ) with respect to x, swapping the symbols

∫
and ∑ owing

to the dominated convergence theorem, and applying the change of variables y = λxβ,
we obtain

E(Xr I(X ≤ t)) = αλβ
+∞

∑
k=1

(−1)k+1

(2k− 1)!

(π

2

)2k ∫ t

0
xr+β−1(1 + λxβ)−2kα−1dx

= αλ−r/β
+∞

∑
k=1

(−1)k+1

(2k− 1)!

(π

2

)2k ∫ λtβ

0
yr/β(1 + y)−2kα−1dy.

Next, with the change of variables z = y/(1 + y), we get

E(Xr I(X ≤ t)) = αλ−r/β
+∞

∑
k=1

(−1)k+1

(2k− 1)!

(π

2

)2k ∫ λtβ/(1+λtβ)

0
zr/β(1− z)2kα−r/β−1dz

= αλ−r/β
+∞

∑
k=1

(−1)k+1

(2k− 1)!

(π

2

)2k
Bλtβ/(1+λtβ)

(
r
β
+ 1, 2kα− r

β

)
.

This completes the proof of Proposition 2.
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Based on the incomplete moments, we can define the mean residual life function,
mean waiting time, mean deviation about the mean, and various inequalities measures
(Lorenz curve, Gini index, Bonferroni curve, Atkinson index, Zenga index, Pietra index,
etc.). In this regard, we may refer the reader to the book of [34]. However, these measures
are beyond the applied line of this paper.

3. Inference of the SPL Model

This section is devoted to the inferential treatment of the SPL distribution for the
perspectives of statistical modelling. The maximum likelihood method, as described in full
generality in [35], is employed. A mathematical description of this method in the context
of the SPL distribution is provided below.

First, let x1, x2, . . . xn be observations drawn from a random variable X with the SPL
distribution. Then the corresponding likelihood function and log-likelihood function are

LSPL(ζ) =
(π

2

)n
(αβλ)n

n

∏
i=1

xβ−1
i (1 + λxβ

i )
−(α+1) sin

(π

2
(1 + λxβ

i )
−α
)

and

log LSPL(ζ) = n log
(π

2

)
+ n log(αβλ) + (β− 1)

n

∑
i=1

log xi − (α + 1)
n

∑
i=1

log(1 + λxβ
i )

+
n

∑
i=1

log
(

sin
(π

2
(1 + λxβ

i )
−α
))

,

respectively. Then, the maximum likelihood estimates (MLEs) are defined by
ζ̂=argmaxζ LSPL(ζ) = argmaxζ [log LSPL(ζ)]. The components of ζ̂, say α̂, β̂ and λ̂, form
the MLEs of α, β and λ, respectively. The MLEs can be formalized through non-linear
equations involving the partial differentiation of the log-likelihood function with respect to
the parameters α, β and λ. These partial derivatives are given as

∂

∂α
log LSPL(ζ) =

n
α
−

n

∑
i=1

log(1 + λxβ
i )−

π

2

n

∑
i=1

(1 + λxβ
i )
−α log(1 + λxβ

i )×

cot
(π

2
(1 + λxβ

i )
−α
)

∂

∂β
log LSPL(ζ) =

n
β
+

n

∑
i=1

log xi − (α + 1)λ
n

∑
i=1

xβ
i

1 + λxβ
i

log xi −
π

2
αλ

n

∑
i=1

xβ
i log xi×

(1 + λxβ
i )
−α−1 cot

(π

2
(1 + λxβ

i )
−α
)

and

∂

∂λ
log LSPL(ζ) =

n
λ
− (α + 1)

n

∑
i=1

xβ
i

1 + λxβ
i

− π

2
α

n

∑
i=1

xβ
i (1 + λxβ

i )
−α−1 cot

(π

2
(1 + λxβ

i )
−α
)

.

Simple analytical expressions for α̂, β̂ and λ̂ remain impossible, but practice only re-
quires numerical evaluations of them. These numerical values can be easily obtained using
specific tools in statistical software as the R software (see [36]). Also, the well-established
theory on MLEs ensures that the random version of ζ̂ is asymptotically three-dimensional
normal with mean vector ζ and variance-covariance matrix V = {−∇2

ζ log LSPL(ζ) |ζ=ζ̂}
−1,

where ∇ξ denotes the gradient according to ξ.
In particular, the (asymptotic) estimated standard error (SE) of α̂ is obtained by taking

the square-root of the first diagonal component of V, and we can proceed in a similar way
to obtain the SEs of the two other parameters. The asymptotic normal distribution is at the
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basis of diverse statistical tests or confidence intervals. Also, based on ξ̂, fSPL(x; ζ̂) is the
estimated pdf of fSPL(x; ζ). This estimated pdf plays a central role in fitting the normalized
histogram of the data, as discussed in the next section on applications.

We now evaluate the accuracy of the MLEs of the SPL model. The data are artificial;
they are generated by using the qf as defined by (10) through the inverse transform sampling
technique. We conduct 1000 Monte Carlo simulations for each sample size n with n = 50,
100, 200, 300 and 500 to the following different sets of parameters: Set I = (0.5, 1.5, 0.5),
Set II = (1.25, 1.25, 0.5), Set III = (1.5, 1.5, 0.5) and Set IV = (1.5, 2.5, 0.5) with reference to
the usual order (α, β, λ). In each case, the standard mean MLE (MMLE), bias (Bias) and
mean squared error (MSE) are calculated. The results are reported in Table 2.

From Table 2, we see that the maximum likelihood method performs quite well
to estimate the parameters for the considered sample sizes. Indeed, as the sample size
increases, the biases and the SEs of the MLEs decrease as expected. Also, we observe that
when the sample size increases, the MMLEs are closed to the true parameter values.

We now present some useful measures of adequacy by using the notation of the SPL
distribution for convenience. Let x1, x2, . . . , xn be the data and x(1), x(2), . . . , x(n) be their
ordered values. First, we consider the Cramér-von Mises (W*), Anderson Darling (A*) and
Kolmogorov-Smirnov (K-S) statistics (Dn) defined by

W* =
1

12n
+

n

∑
i=1

[
FSPL(x(i); ζ̂)− 2i− 1

n

]2
,

A* = −n−
n

∑
i=1

2i− 1
n

[
log(FSPL(x(i); ζ̂)) + log(1− FSPL(xi; ζ̂))

]
and

Dn = max
i=1,...,n

(
i
n
− FSPL(x(i); ζ̂), FSPL(x(i); ζ̂)− i− 1

n

)
,

respectively, where ζ denotes the parameters of the distribution, i.e., ζ = (α, β, λ) for
the SPL distribution and ζ̂ for its MLE. The p-Value of the K-S test related to Dn is also
considered. The above definitions can be adapted for any other distribution by changing
the definition of the cdf and the notation of the parameters. These adequacy measures are
widely used to find out which model is best suited. The model with the minimum value
for W* or A*, and maximum value for p-Value, is chosen as the best one that is in adequacy
to the data.

Also, we consider the Akaike information criterion (AIC), corrected Akaike informa-
tion criterion (CAIC), Bayesian information criterion (BIC) and Hannan-Quinn information
criterion (HQIC), defined in the context of the SPL distribution as

AIC = −2 log LSPL(x; ζ̂) + 2k, BIC = −2 log LSPL(x; ζ̂) + k log(n),

CAIC = −2 log LSPL(x; ζ̂) +
2kn

n− k− 1
, HQIC = −2 log LSPL(x; ζ̂) + 2k log[log(n)],

respectively, where k is the number of parameters so k = 3 for the SPL distribution. As
commonly accepted, the model with the minimum value for AIC or CAIC or BIC or HQIC is
chosen as the best one that fits the data. Further informations on the use and interpretation
of the measures W*, A*, AIC, CAIC, BIC and HQIC can be found in [37].

In this study, we aim to compare the SPL model related to the SPL distribution with
the useful and competitive Lomax-type model listed in Table 3.
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Table 2. Results of the simulation study for the SPL model.

n
α̂ β̂ λ̂

MMLE Bias MSE MMLE Bias MSE MMLE Bias MSE

Set I

50 1.108839 0.6088391 11.32678 1.614203 0.1142034 0.243457 0.7196926 0.2196926 6.40414

100 0.6011519 0.1011519 0.1436395 1.540166 0.04016637 0.08303307 0.547555 0.04755502 0.1272187

200 0.5293078 0.02930776 0.03047932 1.526763 0.0267628 0.03582971 0.5289976 0.02899762 0.04151895

300 0.5133177 0.01331768 0.01382865 1.522277 0.02227688 0.0221875 0.5196845 0.01968455 0.02336737

500 0.5128972 0.01289724 0.008065997 1.50705 0.007049975 0.01270958 0.5059856 0.0059856 0.01260153

Set II

50 6.468901 5.218901 159.0966 1.329557 0.07955683 0.1083518 1.110171 0.6101705 37.25226

100 3.593558 2.343558 54.05308 1.265795 0.01579527 0.03209507 0.5524636 0.05246365 0.2133836

200 1.859037 0.6090371 5.817042 1.257794 0.007794238 0.01795586 0.5249296 0.0249296 0.1045979

300 1.514497 0.2644969 1.594299 1.257145 0.007145333 0.01171177 0.5257128 0.02571277 0.06209381

500 1.38347 0.13347 0.4142243 1.251482 0.001482267 0.006478437 0.5039528 0.0039528 0.02902843

Set III

50 9.361844 7.861844 305.6011 1.59088 0.09087955 0.1409131 0.9202953 0.4202953 7.984993

100 4.759137 3.259137 72.48332 1.519314 0.01931441 0.05390178 0.5778875 0.07788749 0.42830

200 2.467968 0.9679683 14.13403 1.521203 0.02120301 0.02278287 0.5443301 0.04433006 0.1120899

300 2.006722 0.5067219 4.919388 1.506562 0.006562497 0.01653096 0.5164482 0.01644821 0.07516359

500 1.66471 0.1647104 0.4900911 1.507026 0.007025808 0.009009118 0.5154791 0.01547907 0.03658865

Set IV

50 8.911521 7.411521 314.756 2.675421 0.1754205 0.3928405 1.104784 0.6047839 37.61909

100 4.948069 3.448069 100.0595 2.546041 0.04604129 0.14232 0.5919749 0.09197495 0.3972336

200 2.477961 0.977961 14.33094 2.529503 0.02950304 0.07370563 0.5540613 0.05406125 0.1307966

300 1.877404 0.3774044 2.798978 2.518045 0.01804488 0.04578572 0.5330729 0.03307289 0.07655854

500 1.764778 0.2647782 1.438529 2.501113 0.00111261 0.02642756 0.4970354 -
0.002964561 0.03740574
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Table 3. Competitive models of the SPL model.

Models Abbreviations Cdfs (x > 0) References

Topp-Leone Lomax TLGL
(

1− (1 + αx)−2β
)λ

[38]

power Lomax PL 1−
(

1 + λxβ
)−α

[17]

exponentiated Lomax EL
(

1−
(

β

x + β

)α)λ

[39]

Lomax Lomax 1−
(

β

x + β

)λ

[18]

We can notice that the Lomax model is nested in the TLGL, EL and PL models. The
proposed SPL model is completely different in this sense. In addition, conceptually, the
TLGL and EL models are closed; they coincide with a reparametrization of the parameters.

4. Applications of the SPL Model

Based on the above methodology, we apply the SPL model on nine datasets. They
differ mainly in size, characteristics or background, but all of them are of modern interest
to their respective fields. For each dataset, we proceed as follows:

1. We briefly present the data, with reference(s).
2. We provide a table that summarizes the main statistical characteristics of the data.
3. We assess the quality of the fit measures of the models considered and organize them

in a table in order of the model performance.
4. As complementary work, we indicate the MLES of the model parameters as well as

the related SEs.
5. We end with a visual approach by plotting the histogram of the data and the fitted pdfs,

and, in another graph, the probability-probability (PP) plot for the SPL model only.

Data set 1: We consider a real dataset on the remission times (in months) of a random
sample of 128 bladder cancer patients. This dataset is given by Lee and Wang [40] and it
contains the following values: 0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52,
4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26,
9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32,
10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66,
15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12,
46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40,
3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37,
12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93,
8.65, 12.63, 22.69.

A summary measure of descriptive statistics of dataset 1 is provided in Table 4.

Table 4. Descriptive statistics of dataset 1.

Mean Median Variance Skewness Kurtosis Minimum Maximum

9.36562 6.395 110.425 3.28657 15.48308 0.08 79.05

We see in Table 4 that the data are right skewed and highly leptokurtic with high
variance. With respect to model adequacy, the measures W*, A*, Dn, p-Value, AIC, CAIC,
BIC and HQIC are reported in Table 5.
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Table 5. Goodness of fit measures of the models for dataset 1

Models W* A* Dn p-Value AIC CAIC BIC HQIC

SPL 0.0186 0.1239 0.0349 0.9977 825.3925 825.5861 833.9486 828.8689

PL 0.0195 0.1308 0.0351 0.9974 825.4798 825.6733 834.0359 828.9562

TLGL 0.0283 0.1902 0.0405 0.9847 826.1436 826.3372 834.6997 829.6200

EL 0.0283 0.1902 0.0404 0.9847 826.1436 826.3372 834.6997 829.6200

Lomax 0.0807 0.4876 0.0966 0.1831 831.6658 831.7618 837.3698 833.9834

From Table 5, we observe that the SPL model possesses the lowest values for W*, A*,
Dn, AIC, CAIC, BIC and HQIC, and the highest value for p-Value compared to the other
models. It can be considered the best. The second best model is the PL model.

Please note that for this dataset, the results for the TLGL and EL models are al-
most identical due to their similar nature, but small numerical variations are observed
without rounding.

For additional information, the MLEs of the model parameters as well as their SEs are
reported in Table 6.

Table 6. MLEs of the model parameters for dataset 1 (in parenthesis are the SEs).

Models α β λ

SPL 1.0216200 (0.45875225) 1.3956063 (0.18303304) 0.0371991 (0.01408465)

PL 2.070725 (0.9705209) 1.427499 (0.1782097) 34.861099 (13.9162924)

TLGL 1.586149 (0.2798032) 2.292993 (1.1137263) 24.744613 (16.6935617)

EL 4.589053 (2.2316031) 24.763807 (16.7230668) 1.586145 (0.2798554)

Lomax - 13.96063 (15.45659) 121.24393 (143.40888)

From Table 6, among other, we see that the parameters α, β and λ of the SPL model
have been estimated by α̂ = 1.0216200, β̂ = 1.3956063 and λ̂ = 0.0371991, respectively,
with quite small SEs.

Figure 3 shows two graphics: the histogram of the data fitted by the estimated pdfs,
and the PP plot for the SPL model only.

In Figure 3, we observe that the empirical objects are almost perfectly adjusted by the
estimated objects. In particular, in the PP plot, the black line is almost confused with the
estimated red line related to the SPL model.

Data set 2: The considered data represent the failure times of the mechanical compo-
nents of the aircraft windshield. They are taken from [41]. They were recently reviewed
by [42]. The data are: 0.040, 1.866, 2.385, 3.443, 0.301, 1.876, 2.481, 3.467, 0.309, 1.899, 2.610,
3.478, 0.557, 1.911, 2.625, 3.578, 0.943, 1.912, 2.632, 3.595, 1.070, 1.914, 2.646, 3.699, 1.124,
1.981, 2.661, 3.779, 1.248, 2.010, 2.688, 3.924, 1.281, 2.038, 2.823, 4.035, 1.281, 2.085, 2.890,
4.121, 1.303, 2.089, 2.902, 4.167, 1.432, 2.097, 2.934, 4.240, 1.480, 2.135, 2.962, 4.255, 1.505,
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2.154, 2.964, 4.278, 1.506, 2.190, 3.000, 4.305, 1.568, 2.194, 3.103, 4.376, 1.615, 2.223, 3.114,
4.449, 1.619, 2.224, 3.117, 4.485, 1.652, 2.229, 3.166, 4.570, 1.652, 2.300, 3.344, 4.602, 1.757,
2.324, 3.376, 4.663.

Fitting of SPL and Lomax distributions 
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Figure 3. (a) Plot of the estimated pdfs over the histogram and (b) PP plot of the SPL model for
dataset 1.

A summary of descriptive statistics for dataset 2 is provided in Table 7.

Table 7. Descriptive statistics of dataset 2

Mean Median Variance Skewness Kurtosis Minimum Maximum

2.55745 2.3545 1.25177 0.09949 −0.65232 0.04 4.663

Based on the information of Table 7, we can say that the data are approximately
symmetric and platykurtic, with little dispersion. One more point, we observe that the
data have a negative kurtosis value which means that the underlying distributions should
have lighter tails.

The statistical measures considered for the comparison of the models are given in
Table 8.

Table 8. Goodness of fit measures of the models for dataset 2.

Models W* A* Dn p-Value AIC CAIC BIC HQIC

SPL 0.0626 0.6447 0.0563 0.9531 268.5388 268.8388 275.8312 271.4703

PL 0.1031 0.9686 0.1061 0.3016 275.1259 275.4259 282.4184 278.0574

EL 0.2393 1.8777 0.1236 0.1536 288.6155 288.9155 295.9079 291.5470

TLGL 0.2465 1.9232 0.1204 0.1751 289.4639 289.7639 296.7563 292.3954

Lomax 0.1933 1.5824 0.3077 2.49×10−7 337.4818 337.6299 342.3434 339.4361
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From Table 8, the values of the model adequacy measures and goodness of fit test are
clearly in favor of the SPL model. The second best model is the PL model.

The MLEs of the parameters of the SPL model and other models with their SEs are
reported in Table 9.

Table 9. MLEs of the model parameters for dataset 2 (in parenthesis are the SEs).

Models α β λ

SPL 2.97275466 (1.266693742) 2.44917417 (0.234312750) 0.01610661 (0.007105774)

PL 2.510918 (1.0039915) 2.501948 (0.2813778) 24.858636 (8.8454850)

EL 24.107930 (13.9109419) 30.212370 (18.6585652) 3.661293 (0.6506768)

TLGL 3.721336 (0.7759183) 9.745047 (5.5473841) 24.585348 (16.2933590)

Lomax - 8.650051 (3.207235) 21.150309 (8.180986)

In addition, the estimated pdfs over the histogram and PP plot of the SPL model are
displayed in Figure 4.

Fitting of SPL and Lomax distributions 
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Figure 4. (a) Plot of the estimated pdfs over the histogram and (b) PP plot of the SPL model for
dataset 2.

From Figure 4, it is obvious that the light tails of the SPL model are instrumental in
having a better fit. In addition, the PP plot underlines this power of adaptation; the black
line is almost confused with the estimated red line.

Data set 3: We now consider a dataset containing 27 observations of time of succes-
sive failures of the air conditioning system of jets in a fleet of Boeing 720 as reported in
Proschan [43]. Recently, this data was studied by [44] and the data are: 1, 4, 11, 16, 18, 18,
18, 24, 31, 39, 46, 51, 54, 63, 68, 77, 80, 82, 97, 106, 111, 141, 142, 163, 191, 206, 216.

Some descriptive measures of dataset 3 are provided in Table 10.
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Table 10. Descriptive statistics of dataset 3

Mean Median Variance Skewness Kurtosis Minimum Maximum

76.81481 63 4059.311 0.80235 −0.42669 1 216

From Table 10, we see that the data are right skewed and platykurtic with a high variance.
Table 11 indicates the values of the statistical measures considered to compare the models.

Table 11. Goodness of fit measures of the models for dataset 3.

Models W* A* Dn p-Value AIC CAIC BIC HQIC

SPL 0.0379 0.2811 0.1023 0.9399 296.0297 297.0732 299.9172 297.1857

EL 0.1396 0.9252 0.1609 0.4865 304.4668 305.5103 308.3543 305.6228

TLGL 0.1623 1.0683 0.1738 0.3880 306.2415 307.285 310.129 307.3975

PL 0.0932 0.6368 0.2345 0.1025 309.2454 310.2889 313.133 310.4014

Lomax 0.1052 0.7090 0.2161 0.1605 306.0443 306.5443 308.6359 306.8149

The analysis of Table 11 ensures that the SPL model is the best with, in particular,
p-Value = 0.9399. The second best model is the EL model.

The MLEs of the model parameters as well as their SEs are reported in Table 12.

Table 12. MLEs of the model parameters for dataset 3 (in parenthesis are the SEs).

Models α β λ

SPL 1.382763741 (0.6448660998) 1.221321892 (0.1405012622) 0.002328135 (0.0004797677)

EL 1.123151 (0.3229477) 17.681731 (10.9965985) 2.336629 (0.7915584)

TLGL 2.8564521 (1.0394244) 0.5234784 (0.1417636) 11.9763851 (7.9755583)

PL 1.1193937 (0.5529827) 0.8687552 (0.1596078) 24.1383129 (10.1687168)

Lomax - 0.9108902 (0.2758631) 29.3494386 (12.4143031)

The estimated pdfs over the histogram and the PP plot of the SPL model are shown in
Figure 5.
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Fitting of SPL and Lomax distributions 
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Figure 5. (a) Plot of the estimated pdfs over the histogram and (b) PP plot of the SPL model for
dataset 3.

In Figure 5, the fitted power of the SPL model is flagrant; the corresponding estimated
pdf has captured the decreasing roundness shape of the histogram, contrary to the other
estimated pdfs. In addition, the red line of the PP plot is generally close to the black line.

Data set 4: The data represent 69 strength measures for single carbon fibers (and
impregnated 1000-carbon fiber tows). They are given by [45]. The measures in GPA by
subtracting 1 are: 0.0312, 0.314, 0.479, 0.552, 0.700, 0.803, 0.861, 0.865, 0.944, 0.958, 0.966,
0.977, 1.006, 1.021, 1.027, 1.055, 1.063, 1.098, 1.140, 1.179, 1.224, 1.240, 1.253, 1.270, 1.272,
1.274, 1.301, 1.301, 1.359, 1.382, 1.382, 1.426, 1.434, 1.435, 1.478, 1.490, 1.511, 1.514, 1.535,
1.554, 1.566, 1.570, 1.586, 1.629, 1.633, 1.642, 1.648, 1.684, 1.697, 1.726, 1.770, 1.773, 1.800,
1.809, 1.818, 1.821, 1.848, 1.880, 1.954, 2.012, 2.067, 2.084, 2.090, 2.096, 2.128, 2.233, 2.433,
2.585, 2.585,4.32.

A statistical description of dataset 4 is given in Table 13.

Table 13. Descriptive statistics of dataset 4.

Mean Median Variance Skewness Kurtosis Minimum Maximum

1.48802 1.484 0.3702 1.24191 5.46869 0.0312 4.32

Table 13 shows that the data are almost symmetric and leptokurtic, with a low variance.
The fitting performance of the considered models are investigated numerically in

Table 14.
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Table 14. Goodness of fit measures of the models for dataset 4.

Models W* A* Dn p-Value AIC CAIC BIC HQIC

SPL 0.1218 0.8688 0.0720 0.8614 131.0550 131.4187 137.8005 133.7344

PL 0.1345 0.9450 0.0778 0.7909 131.9917 132.3553 138.7372 134.6711

TLGL 0.4060 2.5291 0.1443 0.1085 152.7280 153.0916 159.4734 155.4073

EL 0.4265 2.6440 0.1440 0.1098 153.4122 153.7758 160.1577 156.0916

Lomax 0.3213 2.0540 0.3554 4.18×10−8 204.3163 204.4954 208.8133 206.1026

From Table 14, we see that the SPL model is more relevant for the fit of the dataset
than the other models. Indeed, it has the lowest value for all the statistical measures
considered, except for the p-Value where it has the highest value. The second best model is
the PL model.

Table 15 contains the MLEs of the considered models along with their SEs.

Table 15. MLEs of the model parameters for dataset 4 (in parenthesis are the SEs).

Models α β λ

SPL 1.78152330 (1.05814438) 3.06914764 (0.43240005) 0.08628047 (0.05177348)

PL 3.457354 (2.0440478) 3.162505 (0.4336058) 13.575912 (7.9684278)

TLGL 4.817675 (0.9783213) 12.333991 (7.2953270) 16.079007 (10.2327362)

EL 21.972027 (12.564484) 13.246999 (7.875189) 5.455173 (1.080415)

Lomax - 12.35939 (5.819302) 17.92672 (8.717093)

The fitted histogram of the data is shown in Figure 6, along with the PP plot of the
SPL model.
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Fitting of SPL and Lomax distributions 
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Figure 6. (a) Plot of the estimated pdfs over the histogram and (b) PP plot of the SPL model for
dataset 4.

From Figure 6, the curve of the estimated pdf of the SPL model is close to the shape of
the histogram and has captured the ‘elbow phenomena’ in the right. The corresponding PP
plot is also convincing.

Data set 5: We now consider a dataset containing 100 observations on breaking stress
of carbon fibers (in Gba). It was studied by [46] and the data are: 3.7, 2.74, 2.73, 2.5, 3.6,
3.11, 3.27, 2.87, 1.47, 3.11,4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.9, 3.75, 2.43, 2.95,
2.97, 3.39, 2.96, 2.53,2.67, 2.93, 3.22, 3.39, 2.81, 4.2, 3.33, 2.55, 3.31, 3.31, 2.85, 2.56, 3.56, 3.15,
2.35, 2.55, 2.59,2.38, 2.81, 2.77, 2.17, 2.83, 1.92, 1.41, 3.68, 2.97, 1.36, 0.98, 2.76, 4.91, 3.68,
1.84, 1.59, 3.19,1.57, 0.81, 5.56, 1.73, 1.59, 2, 1.22, 1.12, 1.71, 2.17, 1.17, 5.08, 2.48, 1.18, 3.51,
2.17, 1.69,1.25, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.7, 2.03, 1.8, 1.57, 1.08, 2.03, 1.61,
2.12,1.89, 2.88, 2.82, 2.05, 3.65.

A summary of descriptive statistics for these data is presented in Table 16.

Table 16. Descriptive statistics of dataset 5.

Mean Median Variance Skewness Kurtosis Minimum Maximum

2.6214 2.7 1.02796 0.36815 0.10494 0.39 5.56

From Table 16, we see that the data are approximately symmetric and platykurtic with
a low variability.

The statistical measures considered for the comparison of the models are given in
Table 17.
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Table 17. Goodness of fit measures of the models for dataset 5.

Models W* A* Dn p-Value AIC CAIC BIC HQIC

SPL 0.0715 0.3949 0.0628 0.8248 288.6900 288.9400 296.5055 291.8530

PL 0.1750 0.8914 0.1257 0.0848 296.9140 297.1640 304.7295 300.0770

EL 0.2549 1.3462 0.1103 0.1751 300.7922 301.0422 308.6077 303.9553

TLGL 0.2706 1.4368 0.1131 0.1552 302.1661 302.4161 309.9816 305.3292

Lomax 0.1676 0.8605 0.3139 5.52×10−9 405.1160 405.2397 410.3263 407.2247

In our framework, Table 17 attests to the superior adequacy of the SPL model.
The MLEs of the model parameters and their SEs are reported in Table 18.

Table 18. MLEs of the model parameters for dataset 5 (in parenthesis are the SEs).

Models α β λ

SPL 2.55459370 (0.908492280) 2.93269704 (0.268147463) 0.01073138 (0.003521699)

PL 1.624010 (0.5246620) 3.169221 (0.3380815) 29.455632 (8.5643898)

TLGL 25.408341 (15.707237) 22.975388 (15.610496) 8.504096 (1.789886)

EL 8.964875 (1.934670) 8.283858 (3.997527) 14.222593 (7.879147)

Lomax - 9.946361 (3.517630) 25.833924 (9.683001)

A visual work is performed in Figure 7, showing the histogram and PP plot of the
SPL model.

Fitting of SPL and Lomax distributions 
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Figure 7. (a) Plot of the estimated pdfs over the histogram and (b) PP plot of the SPL model for
dataset 5.

In Figure 7, the flexible skewness of the SPL model is clearly the key, allowing the
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symmetrical nature of the data to be fully captured. The observation of the PP plot confirm
the high quality of the fit of the SPL model.

Data set 6: The data correspond to times in days between 109 successive mining
catastrophes in Great Britain, for the period 1875-1951, as published in [47]. The sorted
data are given as follows: 1, 4, 4, 7, 11, 13, 15, 15, 17, 18, 19, 19, 20, 20, 22, 23, 28, 29, 31, 32,
36, 37, 47, 48, 49, 50, 54, 54, 55, 59, 59, 61, 61, 66, 72, 72, 75, 78, 78, 81, 93, 96, 99, 108, 113, 114,
120, 120, 120, 123, 124, 129, 131, 137, 145, 151, 156, 171, 176, 182, 188, 189, 195, 203, 208, 215,
217, 217, 217, 224, 228, 233, 255, 271, 275, 275, 275, 286, 291, 312, 312, 312, 315, 326, 326, 329,
330, 336, 338, 345, 348, 354, 361, 364, 369, 378, 390, 457, 467, 498, 517, 566, 644, 745, 871, 1312,
1357, 1613, 1630.

A descriptive statistical summary of dataset 6 is presented in Table 19.

Table 19. Descriptive statistics of dataset 6.

Mean Median Variance Skewness Kurtosis Minimum Maximum

233.3211 145 87873.33 2.9572 9.99439 1 1630

From Table 19, we can say that the data are right skewed and leptokurtic, with a very
high variance.

The goodness of fit measures of the considered models are calculated and collected in
Table 20.

Table 20. Goodness of fit measures of the models for dataset 6.

Models W* A* Dn p-Value AIC CAIC BIC HQIC

SPL 0.0811 0.5028 0.0646 0.7534 1407.712 1407.941 1415.786 1410.986

EL 0.5525 3.1487 0.1246 0.0679 1442.115 1442.344 1450.189 1445.389

TLGL 0.5731 3.2669 0.1300 0.0499 1443.560 1443.789 1451.634 1446.834

PL 0.2374 1.3374 0.1917 0.0006 1458.161 1458.39 1466.235 1461.436

Lomax 0.3775 2.1425 0.2114 0.0001 1463.446 1463.559 1468.829 1465.629

From Table 20, the SPL model shows the best results, far superior to those of the
competition. The second best model is the EL model.

The MLEs of the model parameters along with their SEs are reported in Table 21.

Table 21. MLEs of the model parameters for dataset 6 (in parenthesis are the SEs).

Models α β λ

SPL 1.667282340 (0.7019358659) 0.985393302 (0.0964258687) 0.002185021 (0.0001928461)

EL 0.7859451 (0.09768566) 11.4402958 (8.24677574) 3.8369019 (1.53466623)

TLGL 4.3433527 (3.63593087) 0.4023303 (0.07476114) 10.1888715 (15.43343884)

PL 1.0290758 (0.22032790) 0.7672704 (0.06388817) 30.6523845 (6.75638611)

Lomax - 0.5771954 (0.07560304) 30.9556050 (6.48208435)
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Figure 8 illustrates the nice fit of the SPL model by two different graphical approaches.

Fitting of SPL and Lomax distributions 
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Figure 8. (a) Plot of the estimated pdfs over the histogram and (b) PP plot of the SPL model for
dataset 6.

From Figure 8, we observe that the adjustment of the SPL model proposes a slope
more adapted to the form of the histogram of the data, compared to those of the other
models. A nice result in the PP plot is also observed.

Data set 7: The data are measures of life of Kevlar 373/epoxy fatigue fractures that
are subjected to constant pressure (at the 90% stress level) until all has failed. These data
was recently studied by [13] and they are: 0.0251, 0.0886, 0.0891, 0.2501, 0.3113, 0.3451,
0.4763, 0.5650, 0.5671, 0.6566, 0.6748, 0.6751, 0.6753, 0.7696, 0.8375, 0.8391, 0.8425, 0.8645,
0.8851, 0.9113, 0.9120, 0.9836, 1.0483, 1.0596, 1.0773, 1.1733, 1.2570, 1.2766, 1.2985, 1.3211,
1.3503, 1.3551, 1.4595, 1.4880, 1.5728, 1.5733, 1.7083, 1.7263, 1.7460, 1.7630, 1.7746, 1.8275,
1.8375, 1.8503, 1.8808, 1.8878, 1.8881, 1.9316, 1.9558, 2.0048, 2.0408, 2.0903, 2.1093, 2.1330,
2.2100, 2.2460, 2.2878, 2.3203, 2.3470, 2.3513, 2.4951, 2.5260, 2.9911, 3.0256, 3.2678, 3.4045,
3.4846, 3.7433, 3.7455, 3.9143, 4.8073, 5.4005, 5.4435, 5.5295, 6.5541, 9.0960.

Table 22 presents a brief summary of descriptive statistics for these data.

Table 22. Descriptive statistics of dataset 7.

Mean Median Variance Skewness Kurtosis Minimum Maximum

1.95924 1.73615 2.47741 1.97956 5.16079 0.0251 9.096

From Table 22, it can be deduced that the data are right skewed and leptokurtic, with
a low variability.

According to Table 23, for the purpose of optimal data fit, the SPL model is more
pertinent than the other models. The second best model is the PL model.
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Table 23. Goodness of fit measures of the models for dataset 7.

Models W* A* Dn p-Value AIC CAIC BIC HQIC

SPL 0.0857 0.5128 0.0816 0.6620 248.7158 249.0491 255.7080 251.5102

PL 0.0924 0.5513 0.0865 0.5904 249.0608 249.3941 256.0530 251.8552

TLGL 0.1179 0.7057 0.0845 0.6184 250.9647 251.2980 257.9569 253.7591

EL 0.1183 0.7083 0.0908 0.528319 251.0226 251.3559 258.0148 253.8170

Lomax 0.1162 0.6928 0.1755 0.016153 260.8785 261.0429 265.540 262.7415

We numerically complete the above results by showing the MLEs of the model param-
eters as well as the SEs inTable 24.

Table 24. MLEs of the model parameters for dataset 7 (in parenthesis are the SEs).

Models α β λ

SPL 1.5772126 (1.0282246) 1.5747198 (0.2344551) 0.1439615 (0.1010120)

PL 3.720675 (3.720675) 1.583297 (0.2352289) 10.034301 (8.7770949)

TLGL 1.870763 (0.3248518) 6.903672 (6.2287549) 17.059630 (16.7566780)

EL 12.677044 (10.829670) 16.160300 (15.788961) 1.821291 ( 0.344925)

Lomax - 11.57571 (6.638425) 21.51162 (13.080670)

The histogram and PP plot of the data with the model fits are shown in Figure 9.

Fitting of SPL and Lomax distributions 
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Figure 9. (a) Plot of the estimated pdfs over the histogram and (b) PP plot of the SPL model for
dataset 7.

From Figure 9, in the fitting exercise, we see that the SPL model is slightly better than
the competing models. A favorable PP plot is also observed.

Data set 8: Data on service times for a particular model windshield are now consid-
ered. They are given from [41]. The unit for measurement is 1000 h and the data are: 0.046,
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1.436, 2.592, 0.140, 1.492, 2.600, 0.150, 1.580, 2.670, 0.248, 1.719, 2.717,0.280, 1.794, 2.819,
0.313, 1.915, 2.820, 0.389, 1.920, 2.878, 0.487, 1.963, 2.950, 0.622, 1.978, 3.003, 0.900, 2.053,
3.102, 0.952, 2.065, 3.304, 0.996, 2.117, 3.483, 1.003, 2.137, 3.500, 1.010, 2.141, 3.622, 1.085,
2.163, 3.665, 1.092, 2.183, 3.695, 1.152, 2.240, 4.015, 1.183, 2.341, 4.628, 1.244, 2.435, 4.806,
1.249, 2.464, 4.881, 1.262, 2.543, 5.140.

Table 25 presents a concise statistical description of these data.

Table 25. Descriptive statistics of dataset 8.

Mean Median Variance Skewness Kurtosis Minimum Maximum

2.08527 2.065 1.55059 0.43959 −0.26741 0.046 5.14

We see in Table 25 that the data are right skewed and platykurtic, with a moderate
variability.

Table 26 indicates that the SPL model is the most appropriate fitted model. The second
best model is the PL model.

Table 26. Goodness of fit measures of the models for dataset 8.

Models W* A* Dn p-Value AIC CAIC BIC HQIC

SPL 0.1069 0.6523 0.09844 0.5418 207.4985 207.9052 213.9279 210.0272

PL 0.1479 0.9025 0.1170 0.3283 210.1077 210.5145 216.5371 212.6364

EL 0.2287 1.3837 0.1613 0.0672 214.9548 215.3616 221.3842 217.4835

TLGL 0.2473 1.4955 0.1549 0.0875 216.3146 216.7214 222.744 218.8433

Lomax 0.2211 1.3380 0.2165 0.0045 227.3478 227.5478 231.634 229.0336

Some additional elements are now given. The MLEs of the models along with their
SEs are shown in Table 27.

Table 27. MLEs of the model parameters for dataset 8 (in parenthesis are the SEs).

Models α β λ

SPL 4.98613008 (3.14343174) 1.67430554 (0.18377985) 0.02945598 (0.01925146)

PL 4.607661 (2.4059839) 1.771149 (0.1990476) 17.766353 (10.1037955)

EL 20.786925 (16.9150052) 26.841521 (21.8605907) 2.035379 (0.3637032)

TLGL 1.994239 (0.3651147) 5.493725 (3.0004375) 14.121823 (8.4044275)

Lomax - 8.558363 (3.989779) 16.854870 (8.309326)

We visually see the adjustability of the SPL model in Figure 10.
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Fitting of SPL and Lomax distributions 
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Figure 10. (a) Plot of the estimated pdfs over the histogram and (b) PP plot of the SPL model for
dataset 8.

From Figure 10, it is evident that the histogram of the data is better fitted by the
estimated pdf of the SPL model. The red line of the PP plot is relatively close to the black
line, confirming the SPL model fitting power.

Data set 9: Data relating to the strengths of 1.5 cm glass fibres which was obtained
by workers at the UK National Physical Laboratory are now used. They were previously
analysed by [48]. The data are: 0.55, 0.74, 0.77, 0.81, 0.84, 1.24, 0.93, 1.04, 1.11, 1.13, 1.30,
1.25, 1.27, 1.28, 1.29, 1.48, 1.36, 1.39, 1.42, 1.48, 1.51, 1.49, 1.49, 1.50, 1.50, 1.55, 1.52, 1.53, 1.54,
1.55, 1.61, 1.58, 1.59, 1.60, 1.61, 1.63, 1.61, 1.61, 1.62, 1.62, 1.67, 1.64, 1.66, 1.66, 1.66, 1.70, 1.68,
1.68, 1.69, 1.70, 1.78, 1.73, 1.76, 1.76, 1.77, 1.89, 1.81, 1.82, 1.84, 1.84, 2.00, 2.01, 2.24.

A first statistical approach of these data is proposed in Table 28.

Table 28. Descriptive statistics of dataset 9.

Mean Median Variance Skewness Kurtosis Minimum Maximum

1.50683 1.59 0.10506 −0.89993 0.92376 0.55 2.24

From Table 28, we observe that the data are left skewed and platykurtic, with almost
negligible dispersion.

The goodness of fit measures of the considered models are calculated and collected in
Table 29.

Table 29. Goodness of fit measures of the models for dataset 9.

Models W* A* Dn p-Value AIC CAIC BIC HQIC

SPL 0.2637 1.4444 0.1639 0.0678 36.95819 37.36497 43.38759 39.4869

PL 0.4157 2.2916 0.2232 0.0038 46.09434 46.50112 52.52375 48.62306

TLGL 0.8017 4.3691 0.2258 0.0032 70.44963 70.85641 76.87904 72.97835

EL 0.8222 4.4767 0.2263 0.0031 71.82442 72.2312 78.25382 74.35313

Lomax 0.5854 3.2101 0.4210 3.98×10−10 186.006 186.206 190.2923 187.6918
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According to Table 29, we assert that the SPL model has a better goodness of fit than
the other models. The second best model is the PL model.

The MLEs of the model parameters and their SEs are shown in Table 30.

Table 30. MLEs of the model parameters for dataset 9 (in parenthesis are the SEs).

Models α β λ

SPL 3.02842979 (1.619006155) 5.77611926 (0.666909675) 0.01281263 (0.007095599)

PL 1.945485 (0.6988577) 6.010487 (0.7239624) 23.913933 (8.2279128)

TLGL 32.13406 (10.38371) 24.84223 (19.00308) 18.21983 (14.95689)

EL 27.01510 (15.272308) 9.35084 (5.989516) 35.10721 (11.975072)

Lomax - 13.77391 (6.867307) 19.96670 (9.995415)

Estimated pdfs over the histogram of the data and PP plot of the SPL model are shown
in Figure 11.

Fitting of SPL and Lomax distributions 
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Figure 11. (a) Plot of the estimated pdfs over the histogram and (b) PP plot of the SPL model for
dataset 9.

From Figure 11, unsurprisingly in view of Table 30, the SPL model shows the best fit
curve of the histogram. A nice fit of the SPL model is also validated by the PP plot.

5. Conclusions

The main contribution of the article is to propose a new efficient statistical modelling
strategy through a flexible trigonometric extension of the famous power Lomax model. In
this regard, we use the functionalities of the sine generalized (S-G) family of distributions
and introduce the sine power Lomax (SPL) distribution. We exhibited some of its interesting
characteristics, with an emphasis on the modelling ability of the corresponding probability
density and hazard rate functions, and discussed the moments and incomplete moments.
Simulations and applications illustrate the usefulness of the considered SPL model. In
particular, we carried out nine practical datasets for the evaluation of the SPL model with
the main existing models derived from the Lomax model. Whenever the data is symmetric
or skewed, the SPL model performs better than the competing models considered. Thus,
the results obtained are quite satisfactory, showing that the SPL model can be used fairly to
efficiently analyse a large panel of datasets.
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