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Abstract: The manufacturing industry is confronted with increasing demands for digitalization. To
realize a digital twin of the cutting process, an increase of the model reliability of the virtual repre-
sentation becomes necessary. Thereby, different models are required to represent the experimental
behavior of the workpiece material or frictional interactions. One of the most utilized material mod-
els is the Johnson–Cook material model. The material model parameters are determined either by
conventional or by non-conventional material tests, or inversely from the cutting process. However,
the inverse parameter determination, where the model parameters are iteratively modified until a suf-
ficient agreement between experimental and numerical results is reached, is not robust and requires
a high number of iterations. In this paper, an approach for the inverse determination of material
model parameters based on the Particle Swarm Optimization (PSO) is presented. The approach was
investigated by the inverse re-identification of an initial parameter set. The conducted investigations
showed that a material model parameter set can be determined within a small number of iterations.
Thereby, the determined material model parameters resulted in deviations of approximately 1% in
comparison to their target values. It was shown that the PSO is suitable for the inverse material
parameter determination from cutting simulations.

Keywords: chip formation simulation; particle swarm optimization; coupled Eulerian–Lagrangian;
material model; Johnson–Cook; inverse identification

1. Introduction

The process design, such as the design of the tool or the choice of the process param-
eters, of most of the state-of-the-art cutting processes depends on experimental studies
that base on “trial-and-error” approaches. This procedure of process design is expensive
and time consuming [1,2]. Further, this practice does not meet today’s demands for a
digital twin [3,4]. Due to major improvements in computer technology within the last
three decades [5], modeling of cutting processes by means of numerical techniques is well
established in research today [6]. Among the numerical techniques, the Finite Element
Method (FEM) has become one of the most applied techniques to model the cutting pro-
cess [7]. The advantage of the FEM, especially in comparison to the experimental process
design, is given in the capability to predict state variables, such as temperature fields,
strains, and strain rates, which are difficult or even impossible to measure during the
cutting process [8,9].

When modeling the cutting process by means of FE simulations, various input models
are required. Among these input models, an accurate material and friction model was
reported to be essential for the success and reliability of the simulated results [10]. The
importance of the material model that describes the plastic material behavior is given, since
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the calculation of many process observables (e.g., cutting force or chip form) can be traced
back to the quality of the applied flow stress data [11]. Additionally, the use of an accurate
flow stress model is important for further scopes of research by FEM-simulations. The
research scope of simulations is extended by using a variety of models and sub-models to
expand the calculation of cutting simulations to specific aspects, such as surface integrity,
tool wear, or chip breakage [12–14].

In the state-of-the-art, different material models are used for cutting simulations.
These models can be classified into empirical/phenomenological, semi-empirical, and
physical-based constitutive models [15]. Phenomenological material models rely solely
on observations, whereas physical-based material models take physical phenomena of
the material into account [13], such as micro-structural aspects of plastic deformation [16].
Even though physical-based material models are more appealing in comparison to the
non-physical-based models, each physical mechanism brings more parameters into the
model, which increases the number of model parameters to be determined [17]. Due to
the high efforts when using physical-based material models, empirical models have found
more application in FE cutting simulations. The empirical material models often describe
the flow stress as function of the strain, strain rate, and temperature and can take effects
such as hardening, viscosity, or loading history into account [18].

The approaches used to determine the material model parameters can be categorized
into two different groups: direct and inverse determination. When using the direct de-
termination, the model parameters are fitted with experimental data from conventional
quasi-static and/or dynamic material tests, such as the Split Hopkinson Pressure Bar
(SHPB) test. Since the achievable thermo-mechanical loads in terms of strains, strain rates,
and temperatures during these tests are lower than those occurring in the metal cutting
process, extrapolation into the cutting regime becomes necessary [19–22]. The problem of
extrapolation can be circumvented when using inverse techniques. The inverse technique
was suggested by Venuvindo and Jin as one of the first [23]. Thereby, the cutting process
is utilized as a material test itself, and simulations of the corresponding experiments are
conducted while varying the material model parameters until the results of the simulations
match those of the experimental cutting investigations [24,25]. The match between simula-
tions and experiments is assessed by different process results, such as the cutting force or
the chip form. These process results are called from here on process observables.

One of the first attempts for the inverse determination of material model parameters
from the cutting process was presented by Özel and Altan, who utilized flow stress data
from low strains and strain rates as starting points for their simulations of the orthogonal
cutting process [26]. The agreement between experiments and simulations was evalu-
ated by means of the cutting force, whereby a deviation lower than 10% was achieved.
Later, Shrot and Bäker presented an inverse approach to re-identify material model pa-
rameters that were taken initially from the literature [27–29]. The authors employed the
Levenberg–Marquardt algorithm in order to re-determine the material model parameters.
The re-identification of the material model parameters finished successfully after a low
number of iterations. Albeit, the authors focused on the re-identification of two material
model parameters. The influence of the two material model parameters on the flow stress,
especially in comparison to the remaining parameters, remains questionable. Further,
the re-determined material model parameters can directly be obtained from quasi-static
material tests.

A procedure for the inverse determination of material and damage model parameters
of AISI 316L was presented by Klocke et al. [30]. The approach is based on the calibration
using a lower and an upper value that underestimates and overestimates the target values,
assuming a linear relation for the parameters. However, the underlying material model is
non-linear and small variations in the material models can cause distinct differences in the
modeled flow stress. Later, the authors used this approach for the inverse identification of
the material model parameters of AISI 1045 and Inconel 718 [11].
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Albeit that there are advantages of the inverse parameter determination from machin-
ing experiments, such as the avoidance of extrapolation of flow stress data into the regime
of metal cutting, different drawbacks were reported. One challenge of the inverse determi-
nation is given by the non-uniqueness of the material model parameters for the domain of
investigation [31]. Further, the inverse iterative identification can be time-consuming and
might need a large number of iterations [32].

To reduce the number of iterations and to increase the accuracy of the determined
model parameter, optimization strategies were used in solving manufacturing optimization
problems. For example, in the field of laser cutting Sibalija et al. utilized Particle Swarm
Optimization to determine the optimal combination of process parameters to achieve
tolerable characteristics of the cut area [33]. Thereby, the authors optimized a cost function
that evaluates the relationship between the process parameters and their process measures.
Chaparro et al. compared, in their study, a genetic algorithm, a gradient-based algorithm,
and combination of both to identify material model parameters for sheet metal forming
inversely [24]. The authors showed that both kinds of algorithm were able to fit the
numerical with the experimental data. In the field of metal cutting, optimization algorithms
were applied to determine process parameters, with respect to surface finish, dimensional
deviations, tool wear, or the occurring cutting forces. Chandrasekaran et al. and Yusup
et al. published a broad literature review on the application of optimization strategies in
these fields of machining [34,35].

To determine material model parameters in the field of metal cutting, Özel and Karpart
utilized Particle Swarm Optimization for optimizing the Johnson–Cook (JC) parameters [36].
Therefore, the authors used an experimental database obtained from SHPB tests. Since data
from SHPB tests were used and not experimental data from cutting tests, this approach
cannot be considered as an inverse approach, but rather as a method for curve fitting.
Denkena et al. utilized Particle Swarm Optimization in conjunction with Oxley’s machining
theory [37]. Therefore, the widely reported drawbacks resulting from the assumptions
and simplifications of Oxley’s machining theory underlie this approach [38]. Since the
iterative procedure aimed to match the experimental forces by adjusting the JC-material
model as input for Oxely’s machining theory, the procedure used the intermediate step of
the analytical model.

Bergs et al. utilized the Downhill Simplex Algorithm (DSA) for the inverse mate-
rial model parameter determination from FE cutting simulations. At first, the general
applicability was investigated by the inverse re-identification of an initial material model
parameter set that was taken from the literature [39]. Therefore, a close match between
the target and the simulated process observables was achieved within a low number of
iterations. Later, the authors applied this approach to experimental data from AISI 1045,
which resulted in a close agreement for different process observables [40]. However, the
parametric investigation on the application of the DSA to the inverse problem of material
model parameter determination from FE-cutting simulations revealed some drawbacks,
which were associated with the characteristics of the algorithm and its exploitation charac-
teristics [41].

In this study, a methodology that is based on Particle Swarm Optimization is de-
veloped to inversely re-determine material model parameters from orthogonal cutting
simulations. Thereby, the use of the PSO as the evolutionary algorithm is reasoned by
its wide application to engineering problems and the possibility to transition the inverse
determination from the exploitation of the DSA [41] into an exploration. The application of
the algorithm to simulation data instead of experimental data is justified by the possibility
to evaluate the determined parameter set in comparison to the target set as well as by the
ideal representation of the material behavior because of the utilized material model. When
using an experimental database, the parameter set is unknown and can, therefore, not be
compared with the one determined inversely. Further, the real material behavior does not
exactly follow the ideal theoretic description of the constitutive model, which results in
remaining deviations between experiments and simulations.
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In Section 2, the material model that is utilized within this paper is outlined, followed
by the theoretical background of Particle Swarm Optimization. Thereafter, the FE model of
orthogonal cutting, which underlies the simulations of this study, is described (Section 3).
Further, the theory of Particle Swarm Optimization is applied to the inverse problem of
material model parameter determination from orthogonal cutting simulations (Section 4).
The results of the inverse material model parameter determination are presented in Section
5, followed by a discussion of the results in Section 6. Concluding the presented research, a
summary of the obtained results will be given and conclusions will be drawn in Section 7.

2. Material Model to Describe the Constitutive Material Behavior

Within this study, the JC-material model is utilized to describe the constitutive material
behavior. The JC model is one of the most utilized material models in FE-cutting simulations
and is expressed by three multiplicative terms: Equation (1) [42]. The three terms express
the effects of strain hardening, strain rate hardening, and thermal softening. In comparison
to other material models, the influence of the strain, strain rate, and temperature are
modeled uncoupled by the JC model [43,44]. In an uncoupled material model, the strain
rate sensitivity is independent of the temperature. In the JC material model, A, B, n, C,
and m are the material model parameters,

.
ε0 the reference strain rate, T0 the reference

temperature, and Tm the melting temperature of the material.

σF = (A + B · εn) ·
(

1 + C · ln
( .

ε
.
ε0

))
·
(

1−
(

T − T0

Tm − T0

)m)
(1)

The choice of the material model for the conducted research of this paper is reasoned
by the wide application of the JC model. However, a transfer to other material models is
expected, since the underlying optimization procedure does not take the formulation of
the model into account.

The aim of this study is to investigate the applicability of Particle Swarm Optimization
(PSO) for the inverse parameter determination. Therefore, it is aimed to re-identify a target
set of material model parameters. As target set, a set of material model parameters is
taken from the literature [11] (Table 1). The target parameter set is utilized to simulate
the process observables, which are later used for the inverse re-identification. If being
applied to experimental results, the same process observables could be determined from
orthogonal cutting experiments and could therefore be used for the methodology. During
the re-identification of this study, the target parameter set is handled as if it is unknown,
as it would be the case for the inverse identification of the material model parameters
from experimental cutting tests. Within this study, the machining process of AISI 1045
is simulated within a certain cutting parameter range, with cutting speeds between 50
and 150 m/min and an un-deformed chip thickness of 0.05 mm. Within this domain of
process parameters, the produced chips of AISI 1045 are continuous and have no chip
segmentation [40]. Therefore, a damage model is not incorporated into the simulations.

Table 1. Johnson–Cook material model parameters of AISI 1045 used for the inverse re-
identification [11].

Material AISI 1045 (Normalized)

A/MPa 546
B/MPa 487

n/- 0.25
m/- 0.631
C/- 0.027

.
ε0/s−1 0.002
T0/◦C 20
Tm/◦C 1500
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3. Particle Swarm Optimization

The PSO is an algorithm for the minimization of non-linear functions and was initially
developed by Kennedy and Eberhardt in 1995 [45]. The general idea of the algorithm is
based on the social behavior, which a population of individuals adapts to the environment
by returning to regions of interest that were identified previously [46]. The fundamental
principle goes back to the hypothesis of the social biologist Wilson, according to whom an
individual member of a population can profit from discoveries and experiences from all
other members of the population [47]. That theory being transferred to the PSO algorithm
means that the initial population of particles within the hyperspace of the design variables,
to which the velocity operators are applied to, simulates individual cognitive abilities and
social interactions [48].

In the beginning of the algorithm, the initial population p0 of particles p0
n, Equation (2),

and their initial velocities v0, Equation (3), are randomly defined within the hyperspace.

p0 =
[

p0
1, p0

2, . . . , p0
m, . . . , p0

n

]
(2)

v0 =
[
v0

1, v0
2, . . . , v0

m, . . . , v0
n

]
(3)

The individual particles pk
m of a population pk contain the coordinates np of the

parameters to be optimized. Therefore, an individual particle m with the particle position
and particle velocity is defined in the initial iteration as:

pk
m =

[
pk

1, pk
2, . . . , pk

j , . . . , pk
np

]T
(4)

vk
m =

[
vk

1, vk
2, . . . , vk

j , . . . , vk
np

]T
(5)

In the following steps, the velocities of the particles are modified based on the inertia,
the personal history, and the effects of the neighbor particles, as illustrated in Figure 1 for
the case of an optimization within a two-dimensional hyperspace. The particle’s inertia
takes into account that a particle follows along the initial direction and the personal history
accounts for the individual particle’s best position. In comparison to the personal history,
the effect of the neighbor particles modifies the particle velocity based on the global best
position of all particles. The general form of the updated velocity is given in Equation (6),
where the subscript of vw indicates the inertia parameter, vpbest the individual, and vgbest

the global best position that was identified so far. The formulation of the single influences
on the velocity is given in Equation (7), where w is the inertia coefficient, C1 the personal
acceleration coefficient, and C2 the social acceleration coefficient. rand() represents random
numbers within a predefined interval. The calculation of the updated particle position is
given in Equation (8).

vk+1 = vk
w + vk

p,best + vk
g,best (6)

vk+1
i = wk · vk

i + C1 · rand() ·
(

pbest
k
i − pk

m

)
+ C2 · rand() ·

(
gk

best − pk
m

)
(7)

pk+1 = pk + vk+1 (8)

The procedure of the PSO algorithm is shown in a flowchart in Figure 2. After the
initialization of the initial particles p0 and their corresponding velocities v0, the individual
particles are evaluated regarding their personal pbest and regarding the global best particle
gbest. The results of the particles are evaluated in terms of the function to be minimized,
which is called a fitness function. Depending on the results of each particle of the current
iteration, the particle’s position is updated. If the result of the fitness function of a single
particle during the iteration k is lower than the previous results of the particle, the personal
best pbest is updated. If the resulting fitness function value of the particle during step k is
lower than all previous results of all the particles of the population, the global best gbest is
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updated. This procedure is done for all particles of the population during one iteration.
Thereafter, the global best gbest is evaluated regarding a pre-defined value, which has to be
undercut to stop the algorithm. If the results of the fitness function of the global best gbest
is larger than the pre-defined value, the velocities are updated, the position of each particle
is calculated, and the procedure is repeated.
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Since its development, the PSO algorithm found wide application in multiple opti-
mization problems, such as in scheduling, task assignment, neural network training or in
engineering problems [49]. A broad summary on conducted research in this field is given
by Blum and Li [49], Poli et al. [50], and Schutte and Groenwold [51].
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4. Finite Element Model of Orthogonal Cutting

To model the chip formation, the orthogonal cutting process was simulated within
this study. The simulation of the chip formation process was the focus of several stud-
ies [19,52–54]. Among the variants of cutting, the orthogonal cutting is the most elementary
case [55]. To determine the material model parameters inversely from the cutting process,
the orthogonal cutting process was utilized in multiple studies [56–59].

Besides others, the models of the chip formation process deviate in terms of the
formulation. The two most utilized formulations are the Eulerian and the Lagrangian
formulation. In the Eulerian formulation, the material can flow freely through the fixed
mesh within the domain [60,61]; whereas, in the Lagrangian formulation the deformation
of the material is associated with the movement of the mesh [62]. However, both of these
formulations have some drawbacks, which were reported by Bäker [63] and Arrazola
et al. [19]. The drawbacks of the two formulations led to the development of hybrid
formulations. Among these, the Arbitrary Lagrangian Eulerian (ALE) formulation and the
Coupled Eulerian–Lagrangian (CEL) formulation are the most common used alternatives
to the Lagrangian and Eulerian formulations [59–62]. Within this study, a CEL model of
the orthogonal cutting process is utilized. The CEL formulation was initially introduced by
Ducobu et al. [64] and Puls et al. [65]. In the CEL formulation, the tool is discretized by
the Lagrangian formulation and the workpiece by the Eulerian formulation. The utilized
set-up of the simulation model underlying this paper is illustrated in Figure 3. The set-up
of the FE model of chip formation is in agreement with the model of a previous study by
the authors [40], where its potential to accurately model the orthogonal cutting process
was verified.
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As boundary condition of the FE-model, an inflow of the workpiece material into the
Euler domain is used to simulate the cutting speed. The inflowing workpiece material
leaves the Euler domain either in form of the chip or in form of machined workpiece mate-
rial. To enable the formation of the chip, an additional area is meshed by the Eulerian for-
mation. Therefore, the resulting chip can be evaluated within the steady state. The Euler do-
main was meshed by EC3D8RT elements within the simulation software ABAQUS/Explicit.
Since the EC3D8RT elements are three-dimensional, a three-dimensional model of the or-
thogonal cutting process was used. The number of elements in the z-direction was set to
one, and, therefore, the model can be considered as a quasi-two-dimensional model of
the orthogonal cutting process. To discretize the Euler domain, elements with a mesh size
between 0.005 and 0.1 mm were used, whereby the smaller mesh sizes were used in the
region of chip formation. On the other side, for the Lagrangian discretization of the tool
elements of type C3D4T with a mesh size between 0.005 and 0.05 mm were utilized. A
further detailed description of the model and the utilized parameters can be found in [40].

Besides the material model, the utilized friction model and the thermo-mechanical
properties of the tool and workpiece have a crucial impact on the simulated results. To
obtain realistic results, the temperature-dependent friction model according to Puls et al.
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was utilized [66]. The underlying friction model parameters were kept constant for all
simulations presented within this paper. Further, the thermo-mechanical properties of the
workpiece material and the cutting tool material were taken from the literature [67–69].

The simulations were run on a virtual machine, of which the specifications are given
in Table 2. In order to lower the computational time of the simulations, mass scaling was
used, wherefore the material density and the specific heat was artificially increased and
decreased, respective. By using a mass scaling factor of 1000 it was possible to define a time
increment 1.6 · 10−8 s. For all the simulations, the same cutting length of lc = 0.33 mm was
used for the simulations. This cutting length showed to be sufficient to reach the steady
state within the simulations. By using the virtual machine, the computational time of a
single simulation with a cutting time of tc = 0.002 s was approximately 1:40 h.

Table 2. Specification of the virtual machine used for the simulations.

Memory 64 GB
CPU Intel® Xeon® E5-2637 v2 @3.5 GHz
Parallelization Domain parallelization
No. of CPU 16

5. Application of the Particle Swarm Optimization to the Inverse Material Model
Parameter Re-Identification

Fundamental for the application of the PSO algorithm to the inverse (re-) identification
of material model parameters from machining simulations is the definition of a fitness
function. The fitness function evaluates the deviation between the target values and the
iterative simulation results. In this study, different process observables are considered
in the fitness function. Therefore, the optimization presented here can be considered as
a multi-response optimization. Multiple process observables are considered, since just
taking the averaged cutting force as the only or main verification parameter into account
was reported in the literature to be not sufficient [63]. The process observables that are
considered in the fitness function within this study are the cutting force Fc, thrust force FD,
maximum tool temperature TT,max , and chip thickness h′. Generally, different formulation
of the cost function for the multi-response optimization appear to be conceivable. In the
state-of-the-art, different mathematical formulations were used for the multi-response
optimization. According to Sibalija, the formulations of the objective functions can be
divided into two types [70]:

• Type 1: For this type, the objective function is known, as it is the case for minimizing
the machining time by determining the cutting parameters.

• Type 2: For this type, the objective function is unknown. A feasible way to formulate
the objective function is to apply regression techniques to experimental data.

For further information on the used formulations for the multi-response optimization,
the authors refer to the review of Sibalija et al. [70] and Venkato Rao et al. [71].

For this study, the cost function to be optimized can be classified as Type 2. To use
a regression model for the inverse determination of the material model parameters, the
conduction of a vast number of simulations with small step variation of the material model
parameters would be necessary.

Here, the cost function is formulated based on the sum of the weighted relative
deviations of the considered process observables (Equation (9)). Thereby, the utilized
formulation is in agreement with the formulation of a previous study [40], and, therefore,
the results of these approaches can be compared. The definition of the weighting factors
based on a pairwise comparison, whereby the dependence of the process observables on
the material model was evaluated on the basis of empirical values and experience. Their
values were set to ωFc = 0.30, ωFcN = 0.15, ωTT,max = 0.35, and ω′h = 0.20. The choice of the
weighting factors is based on empirically established values and takes the dependence of
the process observables on the material model parameters into account, determined from
a pairwise comparison. For example, the thrust force was weighted less than the cutting
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force because the thrust force was found in several investigations to be strongly dependent
on the friction model [72–77]. However, it has to be stated that the error function used for
the optimization here depends on the weighting factors. Varying the weighting factors can
result in distinct differences in the determined results. Their impact need to be evaluated
in future studies.

ξ =
N

∑
i=1

ωi ·
∣∣∣∣∣ x

target
i − xsim

i

xtarget
i

∣∣∣∣∣ · 100% (9)

For the PSO, the three hyper-parameters C1, C2, and w have to be properly selected
in order to provide the global optimum within a decent number of iterations [70]. The
determination of the optimal PSO parameters requires fine tuning of these parameters,
which has to be done specifically for the optimization problem the PSO is applied to [70,78].
However, an adequate determination of the PSO parameters for the inverse parameter
determination would require a vast number of simulations and with it countless computa-
tional times. This is why the determination of the most suitable PSO parameters is beyond
the scope of this study. In order to utilized reasonable PSO parameters for the present
multi-response problem, PSO parameters were taken from the scientific literature [70,79].
Therefore, the inertia coefficient was set to w = 1, the personal acceleration coefficient to
C1 = 2, and the social acceleration coefficient to C2 = 2.

Additional to the inertia coefficient, a damping factor wdamp was multiplied to the in-
ertia velocity that reduces the inertia coefficient after each iteration, Equation (10). Thereby,
the damping factor was set to wdamp = 0.99. The definition of this value bases on the
assumption that the step size is reduced after each iteration in order to achieve a finer
search with increasing number of iterations. However, values that were too low would
affect the step size after a few iterations to a large extent, which might cause higher number
of iterations. The used value was further determined based on preliminary tests conducted
by the authors.

However, it is important to state that the coefficients used for the PSO do not necessar-
ily represent the optimum values. Instead, the values were identified to be practical for
applying the PSO to the inverse problem. In order to determine the best PSO parameters,
extensive investigations are required, considering the application case. These investigations
are left for future research activities.

vk
w = wdamp · wk · vk (10)

A further important factor that affects the results of the PSO is the initial population.
In the scientific literature, different techniques were utilized for the initialization of the
particles. These techniques can be divided into those where the initial particles are ran-
domly assigned and those where the initialization technique follows a defined scheme [78].
In this context, however, it should be noted that computers cannot specify truly random
numbers. Within the investigations of the present paper, the position of the initial particles
was “randomly” determined. The random positions were normally distributed with a
mean of zero and a standard deviation of one. As for the other boundary conditions of the
PSO, the choice of the initial particle is entirely problem specific [78].

The PSO algorithm was implemented into a MATLAB to generate and to update the
particles of the population. The calculated material model parameters were inserted into
the FEM chip formation simulation using ABAQUS/Explicit 6.14–6. The simulation results
were extracted and used as input in the MATLAB program. Thereby, the valuated cutting
force components were evaluated in their steady state, the maximum tool temperature was
evaluated from the same region, and the chip thickness was averaged from five manual
measurements that were done in the post-processor of ABAQUS.

In this study, the PSO algorithm was used to re-identify the five JC material model
parameters A, B, C, n, and m. The domain of the parameters to be identified were limited
within physical meaningful boundaries. The upper and lower value of the parameter
domains are summarized in Table 3. In case the algorithm calculates a parameter outside of
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the pre-defined domain, the parameter is set to a value close to the boundary. The dynamic
boundaries, defined by Equations (11) and (12), were modeled according to Adewumi
et al. [80].

I f xi < xmin : xi ← xmin + (xmin − xi) · random(0, 1) (11)

I f xi > xmin : xi ← xmax − (xi − xmax) · random(0, 1) (12)

Table 3. Parameter domains of the Johnson–Cook material model parameters to be identified.

JC-Parameter Lower Limit Upper Limit

A/MPa 300 700
B/MPa 350 750
n/- 0.10 0.90
m/- 0.10 0.85
C/- 0.005 0.150

To investigate the applicability and performance of the PSO, different approaches
were conducted and are outlined in the following subchapters. The approaches address
both the underlying cutting conditions as well as the boundary conditions of the PSO.
The characteristics of the approaches are summarized in Table 4. The reasons using these
boundary conditions will be discussed in the following subchapters, where the results of
the three approaches will be presented.

Table 4. Cutting conditions and PSO characteristics used for the investigated approaches of this study.

A
pp

ro
ac

h Cutting Conditions Particle-Swarm-Optimization

Cutting Speed
vc/m/min

Un-Deformed Chip
Thickness h/mm

Number of
Particles

Velocity Step
vn+1

1 100 0.05 6 ≤7.5
2 100 0.05 6 ≤40
3 50, 150 0.05 4 ≤7.5

For the PSO, three criteria for termination were defined:

1. Error criteria: the error values of all investigated cutting conditions for one particle of
a single iteration are smaller than ξlim ≤ 1%.

2. Convergence criterion I: the iteratively determined parameter sets deviate by less
than 1% in terms of the individual parameters between two iterations following
one another.

3. Convergence criterion II: the resulting error values differ by less than ∆ξ ≤ 0.1% for
two consecutive iterations.

5.1. Approach 1

Within the first approach, a single cutting condition with a cutting speed of
vc = 100 m/min and an un-deformed chip thickness of h = 0.05 mm was utilized for the
inverse parameter re-identification. For the PSO, six different particles were utilized, which
were randomly assigned. The values of the initially assigned parameters are summarized
in Table 5. The velocity parameter of the PSO algorithm was limited to an upper value of
vn+1

max = 7.5%. This was done in order to limit the step size of the particles, since pre-runs
showed that too high velocity parameters result in the tendency of the particles to reach
and remain at the boundary of the parameter domain. The choice of the step size within a
reasonable area (see also Approach 2) was arbitrary.
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Table 5. Initial particles and their randomly assigned material model parameters used for the
investigated approaches.

Particle A/MPa B/MPa n/- C/- m/-

1 625.89 712.32 0.202 0.097 0.785
2 339.02 461.40 0.538 0.145 0.818
3 363.05 738.24 0.866 0.121 0.464
4 356.75 518.70 0.833 0.144 0.694
5 562.30 364.28 0.779 0.013 0.801
6 603.10 647.25 0.414 0.030 0.592

The results of the first approach are illustrated in Figure 4, showing the resulting error
value of each of the particles over the number of iterations. The approach was terminated
after 36 iterations, whereby the error criteria was the abortion criteria. The error value
in this case was ξ1 = 0.96%. The evolution of the error value for the individual particles
shows a distinct initial decrease, which flattens out after approximately ten iterations. For
the initial, randomly assigned particles, Particle 6 resulted in the lowest error value, which
represents for this iteration the global best value. This is why the other initial particles that
resulted in a higher error value tend into the direction of Particle 6. In the second iteration
the error value of Particle 6 increases, whereas the error values of the other particles
decrease. In the third iteration, the error value of Particle 6 decreases and develops into the
reverse direction due the experience of the particle. For the further iterations, all particles
tend to decrease to an error value below ξmax < 10% within ten iteration. However, for
this approach 26 more iterations were necessary to fulfill one of the abortion criteria.
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Figure 4. Development of the error value over the number of iterations for the different particles
used for the Particle Swarm Optimization of Approach 1.

The determined parameter set of Approach 1, given in Table 6, deviates from the target
parameter set. This observation can be attributed to the existence of multiple local minima
within the domain of investigation as identified in previous studies [69]. The comparison
of the individual parameters shows a close agreement for the JC parameters A, B, and m,
whereas the deviation for the parameters n and C are around 20%. It is assumed that the
parameters and their influence on the materials flow stress compensate each other, which
results in turn in comparable simulation results for the domain of investigation.
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Table 6. Determined parameter sets of the conducted approaches in comparison to the target
parameter set.

Parameter Set A/MPa B/MPa n/- C/- m/-

Target set 546.0 487.0 0.250 0.027 0.631
Approach 1 593.2 459.1 0.299 0.021 0.672
Approach 2 650.5 515.2 0.336 0.025 0.520
Approach 3 534.8 603.7 0.178 0.014 0.713

One crucial factor that has to be taken into account when evaluating inverse ap-
proaches is the computational effort. The computational effort is evaluated in this study by
means of the computational time. For the first approach, 216 simulations were conducted,
which resulted in a computational time of over 23 days. The relatively high number of
required simulations, especially in comparison to previously conducted approaches where
the Downhill Simplex Algorithm was used [39–41], is attributed to the number of particles
that are used for the PSO.

5.2. Approach 2

The maximum PSO velocity parameter in Approach 1 was limited to vn+1
max = 7.5%.

During the iterative parameter determination, the upper value for the PSO velocity param-
eter was reached in three iterations. In Approach 2, the maximum PSO velocity parameter
was increased to vn+1

max = 40%. Further, the calculation of the PSO velocity parameter for a
particle was related to the results of the error value of the previous iteration. Thereby, the
PSO velocity parameter was linked in a linear relationship to the error value, Equations
(13) and (14). This results in an PSO velocity parameter of vn+1

max = 40% for an error value of
ξ = 100%. With a reduction of the error value, the velocity parameter also decreases. This
procedure was implemented into the algorithm in order to increase the step size for high
error values and decrease the step size for small error values. However, a drawback of
this procedure could be that the search space is reduced to the vicinity of a local minimum.
Small PSO velocity parameters, as a result of small error values, could mean that the
particles cannot search outside this region. Therefore, the particles might not reach the
global minimum. On the other hand, by using this modification of the PSO, it is expected
that a parameter set can be determined in a reduced number of iterations. The results of
the Approach 2 are shown in Figure 5, where the error value of each particle is plotted over
the number of iterations.

For ξ ≤ 100% : vn+1 = 0.4 · ξn (13)

For ξ > 100% : vn+1 = 40% (14)

Approach 2 was terminated after 16 iterations due to the fulfilment of the error criteria.
Therefore, a total of 96 simulations were conducted, which resulted in a computational
time of more than 9 days. For Iteration 16, the error value was ξ = 0.99%. Therefore, by
increasing the PSO velocity parameter it was possible to decrease the number of iterations
by more than the half in comparison to Approach 1. The comparison between the devel-
opment of the error value over the number of iterations for Approach 1 and Approach
2 shows similarities in terms of the characteristic asymptotical evolution. Further, both
approaches show a rapid initial decrease of the error value. However, for Approach 2,
the flattened area of the error value development is much less pronounced. This can be
ascribed to the adaptive PSO velocity parameter, which allows the algorithm to proceed
with a step size that depends on the current error value. Albeit, the risk of overstepping a
local minimum has to be considered when selecting the PSO velocity parameter.

The Approach 2 resulted in a parameter set, given in Table 6, which deviated dis-
tinctively from the target parameter set and from the parameter set of Approach 1. The
large deviation can be ascribed to the following factors: the non-uniqueness of the ma-
terial model parameters [41], to the single cutting condition that underlies the inverse
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re-identification, and to the error function that evaluates the deviation of the simulated
results from their target values.
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Figure 5. Development of the error value over the number of iterations for the different particles
used for the Particle Swarm Optimization of Approach 2.

5.3. Approach 3

For Approach 3, the procedure of the PSO was extended to evaluate two cutting
conditions per particle per iteration. The extension to consider multiple cutting conditions
was done in order to extend the domain of occurring thermo-mechanical loads within
the chip formation process. In the scientific literature, it was reported that extending
the domain of cutting conditions increases the reliability and validity of the determined
material model parameters [31,81]. In this approach, the same un-deformed chip thickness
as in the previous two approaches was used in combination with two cutting speeds, as
summarized in Table 4. This allows the critical analysis of the validity of the determined
material model parameters to cut conditions within the domain of calibration.

To decrease the computational effort, the number of the initial particles was reduced to
four, whereby the particles 1, 2, 5, and 6 were used, Table 5. In order to compare the results
of this approach with Approach 1, the maximum PSO velocity parameter was limited to
vn+1

max = 7.5% as well. The results of Approach 3 are illustrated in Figure 6.
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Figure 6. Development of the error value over the number of iterations for the different particles
used for the Particle Swarm Optimization of Approach 3.

Approach 3 was terminated after 31 iterations since the algorithm determined a
parameter set, which resulted in an error value of ξ50 = 0.92% and ξ150 = 0.82%. The
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development of the error value over the number of iterations is in close agreement with
the development of Approach 1, albeit the two determined material parameter sets deviate
from each other. The close agreement between the two approaches is attributed to the
same maximum PSO velocity parameter as well as to the partly same particles that were
used. For both approaches, Particle 1 was used, which resulted in the lowest error value
for the first iteration. Therefore, the other particles tend to evolve into the direction of
Particle 1 and the development of Particle 1 is solely influenced by its personal best and its
inertia. Further, the lower maximum error values for Approach 3 in comparison to those
of the Approach 1 are due to the selected particles. In the Approach 1, the highest error
values were calculated for Particle 3 and Particle 4. These particles were not considered in
Approach 3.

For high error values, it was found that a parameter set resulted in a significantly
lower value for one cutting speed than for the other cutting speed. In contrast, a parameter
set that resulted in a low mean error value describes both cutting speeds well. This shows
that a good parameter set describes both cutting speeds reasonable well.

For Approach 3, the computational time added up to 30 days. Due to multi-threading
of the simulation and parallel simulations of the different cutting conditions, the time to
determine the material model parameter set was reduced to approximately 23 days. Since
the same cutting length of lc = 3.33 mm was used for the simulations underlying this study,
the highest computational times occurred for the lowest cutting speed. For the cutting
speed of vc = 50 m/min the average computational time was approximately 4:15 h. In
comparison to Approach 1, two cutting conditions and four particles were used in this
approach. Due to this, it is not reasonable to compare the computational time of Approach
3 with the other two approaches.

6. Discussion

When comparing the results of the three conducted approaches regarding their de-
termined parameter sets, distinct differences are obvious. The determined parameter sets
and the target parameter set are summarized in Table 6. Although the order of magnitude
of the individual model parameters is the same, the values differ from each other by up
to 48%. The deviations of the individual material models and their parameters from the
target set are not uniform. For example, as for Parameter set 3, one model parameter can
deviate by only 2%, while other model parameter deviates by almost 50%.

However, because of the small error values after the iterative parameter determination,
it can be stated that the determined parameter sets result in a close agreement in terms of
the evaluated process observables. For comparison, the results after the iterative procedure
are contrasted to their target counterparts, Figure 7. It can be seen that simulations of
the iterative parameter determination result in a very close agreement in terms of the
temperature field, and the chip form. However, the chip form shows slight deviations
regarding the chip radius. For one part, these differences can be attributed to the error
function, which did not consider the chip form as a process observable. Based on the
comparison of the simulated results with their target simulations it can be concluded that
even though the inverse parameter determination resulted in partly significant different
material model parameters, a close agreement in terms of the evaluated process observables
for the underlying cutting conditions was achieved.

The mismatch between the determined material model parameter sets and the target
parameter set can be attributed, to some extent, to the utilized optimization algorithm
and its boundary conditions. The influence of the boundary conditions was discussed
in Section 5. Besides that, the investigated domain and the underlying material model
can affect the results of the inverse optimization. In terms of the model, one can expect
a mutual compensation of the considered effects. In the JC material model the effects of
strain hardening, strain rate hardening, and thermal softening are considered. For a certain
domain of occurring thermo-mechanical loads, it is possible that the hardening effects
can be compensated by the softening effect and vice versa. This suggests the existence of
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multiple local minima within the investigated parameter domain. A possible approach
to reduce that effect could be the extension of the domain of investigation, by taking a
broader range of cutting conditions into account. A further possibility would be to take
results from established material tests into account.
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Since the material model parameters of this paper were calibrated for different cutting
speeds, there are uncertainties regarding the suitability of these parameter sets to ade-
quately represent the material behavior for other cutting conditions. Within this paper, two
different sets of cutting conditions were used for the inverse re-identification of material
model parameters. In Approach 1 and Approach 2, a single cutting condition was used.
The parameter sets that were determined for this cutting condition are utilized to simulate
cutting conditions outside of the domain of calibration. Therefore, the cutting conditions of
Approach 3 are used. Conversely, the parameter set of Approach 3 is used to examine how
well it can describe a cutting condition within the domain of calibration. The results of this
investigation are illustrated in Figure 8.
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validity. Therefore, in order to increase the range of validity, a wide range of cutting pa-
rameters should be used for the inverse parameter determination. 
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Figure 8. Simulated process observables for the determined parameter sets for cutting conditions
outside and inside the domain of calibration, (a) Approach 1, (b) Approach 2, (c) Approach 3.

For the parameter set of Approach 1 and Approach 2, the simulations outside the
domain of calibration were shown to result in larger deviations in comparison to the results
with the target parameter set. The deviations from the target values are the highest for
the cutting force and the chip thickness. This can be attributed to the strong dependence
of these process observables on the material model and its parameters. The thrust force
on the other side depends strongly on the friction model [72]. For the parameter set
of Approach 1, the simulations outside the domain of calibration resulted in an error
value of ξ50,PS1 = 6.29% for vc = 50 m/min and ξ150,PS1 = 1.91% for vc = 150 m/min,
Figure 8a. The parameter set of Approach 2 resulted in an error value of ξ50,PS2 = 6.43%
for vc = 50 m/min and ξ150,PS2 = 1.91% for vc = 150 m/min, Figure 8b. Besides the large
differences in terms of the material model parameter sets of Approach 1 and Approach 2,
both parameter sets resulted in similar error values for the investigated cutting conditions
outside the domain of calibration.

In deviation to the parameter set of Approach 1 and Approach 2, the parameter set of
Approach 3 resulted in an error value that was comparably low. However, the error value
within the domain of calibration is higher than the error value of the cutting conditions
that were used for the calibration, Figure 8c. The error value of the investigated cutting
condition was ξ100,PS3 = 1.94%. The results of the simulations indicate that the calibration
range of the material model parameters has a distinct influence on the range of validity.
Therefore, in order to increase the range of validity, a wide range of cutting parameters
should be used for the inverse parameter determination.
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7. Summary, Conclusion, and Outlook

In this study, an approach for the inverse determination of material model parameters
was presented, which is based on the application of the Particle Swarm Optimization (PSO)
algorithm. In order to apply the well-established PSO to the present inverse optimization
problem, a multi-response formulation was utilized. Further, the PSO was modified by
using dynamic boundaries in order to keep the parameters to be determined within physical
meaningful boundaries. To investigate the applicability of the algorithm and to evaluate
the determined parameter sets, the algorithm was used for the inverse re-identification of
material model parameters. The findings of this study can be summarized as follows:

• The applicability of the PSO algorithm to the inverse material model parameter
determination was successfully realized.

• When using the PSO algorithm, material model parameters can be calculated within
less than 40 iterations while taking various process observables that can be measured
from cutting experiments into account.

• The maximum PSO velocity parameter influences the number of required iterations
distinctively and has to be selected carefully.

• The drawback of the existence of multiple local minima was further revealed for the
domain of investigation. However, the comparison of the simulation results revealed
only small differences in terms of the process observables as well as regarding the
local temperature field.

• The validity of the determined material model parameters is a crucial factor for the
inverse parameter determination and has to be considered when using the material
model parameters outside the range of calibration.

Based on the results of this paper, considering the obtained results as well as the
required computation time, it can be concluded that the PSO provides an efficient way
for the inverse material model parameter determination. By applying this methodology,
material model parameters can be determined with high reliability in a relatively short
computation time in the future. In addition, the determination of model parameters for
materials of small batches can be achieved in a cost-efficient way. Therefore, the presented
methodology presents an attractive tool to be applied in industry.

In the future, further investigations regarding the influencing factors on the PSO, such
as the number of particles, the maximum PSO velocity parameter, or the PSO parameters,
will be investigated. To investigate the algorithm over a wide range of conditions, the algo-
rithm will be implemented into a fully automatized program that is capable of analyzing
the results and conducting iterations user-independently.

In comparison to the previously applied Downhill Simplex Algorithm [40,41], the PSO
resulted in a smaller number of iterations and was characterized by a more pronounced
regressive trend. However, due to the number of particles, the PSO resulted in higher total
numbers of simulations and, therefore, in higher computational efforts. A combination of
the DSA and the PSO, i.e., a hybrid algorithm, appears to be a possible way to utilize the
advantages of both algorithms.
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