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Abstract: Properly modeling the shadowing effects during wireless transmissions is crucial to perform
the network quality assessment. From a mathematical point of view, using composite distributions
allows one to combine both fast fading and slow fading stochastic phenomena. Numerous statistical
distributions have been used to account for the fast fading effects. On the other hand, even though
several studies indicate the adequacy of the Lognormal distributon (LNd) as a shadowing model,
they also reveal this distribution renders some analytic tractability issues. Past works include the
combination of Rayleigh and Weibull distributions with LNd. Due to the difficulty inherent to
obtaining closed form expressions for the probability density functions involved, other authors
approximated LNd as a Gamma distribution, creating Nakagami-m/Gamma and Rayleigh/Gamma
composite distributions. In order to better mimic the LNd, approximations using the inverse Gamma
and the inverse Nakagami-m distributions have also been considered. Although all these alternatives
were discussed, it is still an open question how to effectively use the LNd in the compound models
and still get closed-form results. We present a novel understanding on how the α-µ distribution
can be reduced to a LNd by a limiting procedure, overcoming the analytic intractability inherent to
Lognormal fading processes. Interestingly, new closed-form and series representations for the PDF
and CDF of the composite distributions are derived. We build computational codes to evaluate all
the expression hereby derived as well as model real field trial results by the equations developed.
The accuracy of the codes and of the model are remarkable.

Keywords: composite fading; channel modelling; α-µ-α-µ

1. Introduction

In the path from the transmitter to the receiver, besides the propagation loss, the mobile-
radio signals can be blocked by physical obstructions—shadowing—and suffer multiple
reflections, scattering and diffraction—multipath fading. In this context, a composite fading
model, i.e., those describing the combined effects of small fading and fast fading, arises in
several opportunities and, therefore, is considered to be of great importance [1].

Composite distributions have been suggested in the technical literature to model this
compound phenomenon [2–4]. The most common composite models used in the literature are
the Rayleighl-Lognormal, composed by the fast fading modeled by Rayleigh distribution and
shadowing modeled by Lognormal distribution. Modeling the slow fading by a lognormal
process is known to render difficult analytic tractability.

In order to avoid the mathematical difficulties inherent to the Lognormal distribu-
tion, authors such as [5] opted for the Gamma distribution as substitute, due to its rather
convenient algebraic representation. This approach allowed the composition of Nakagami-
m/Gamma and Rayleigh/Gamma distribution to obtain fading models in closed-form [6].
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The shadowing phenomenon has been also modelled by inverse distribution models, as in-
verse Gamma and inverse Nakagami-m. These have shown to better approximate the
Lognormal distribution while compared to the direct Gamma distribution. This way, the lit-
erature review indicates that using better approximations to the Lognormal distribution
for shadowing modelling is of interest [7]. In a recent paper [8], the Weibull/Lognormal
composite fading was studied, once again reinforcing the importance of this distribution.

As indicated, analytic tractability issues prevent researchers from using the Lognormal
distribution as a shadowing model, mainly because the evaluation of the probability density
functions of the composite distributions require specific computational codes. Besides,
closed-form expressions are not available, which also impacts practical engineers to use
such distributions. Motivated by the opportunity to allow researchers to actually model
the shadowing effect by Lognormal distributions, by exploring a limiting procedure, this
work is committed to further discuss the applicability of the α-µ distribution as a surrogate
Lognormal shadowing fading model.

Furthermore, besides exploring the connection between α-µ and Lognormal random
variables, in the present article, we derive alternative expressions for the PDF and CDF of
composite α-µ/α-µ distribution. We obtain new closed-form results which complement
previous studies and also provide their simple fast converging series representations. In or-
der to enhance the usability of the expressions hereby proposed, we provide computational
codes for their numerical evaluation.

This article is organized as follows: Section 2 revisits the α-µ distribution and its
relation to Lognormal random variables. In Section 3, the model formulations used to
obtain the product and composite distributions of α-µ random variables are presented.
Section 4 presents a discussion about the numerical implementations of the expressions
proposed. In Section 5, real world field trials are modelled by the new formulas, indicating
a remarkable adequacy. Finally, in Section 6 final conclusions are presented.

2. The α-µ Distribution

Even though other distributions have been recently discussed as models for fast
and slow fading processes [9], the α-µ distribution is still of great importance due to its
simplicity easy of use. The α-µ fading model [10] has been proposed in order to provide a
more realistic analysis of the propagated signal [11]. In several propagation environments,
the α-µ model better accommodates the statistical variations of the propagated signal [12].
In this sense, the α-µ/α-µ composite distribution offer a flexible and powerful model that
can be used to model the wireless channel in a remarkable accurate form [1].

The literature seems to have overlooked the relation between the α-µ and the general-
ized Gamma distribution (GGD). This relation is, in general, only briefly indicated, as seen
in [13,14], for example. In the work of [15], approximate expressions have been proposed
to model the composition of GGD and Lognormal distributions, but no mention has been
made to the α-µ distribution. On the other hand, ref. [1] studied the composition of α-µ
distributions but the relation to the GGD continued to be a neglected.

As shall be subsequently indicated, α-µ distributions are nothing but reparametrized
GGDs. The latter distribution has been extensively studied [16] and some of its properties
are of great interest to the modelling of wireless transmission systems. For example,
by a limiting procedure the GGD can be transformed into a Lognormal distribution [16].
Therefore, the α-µ distribution can also be transformed into a Lognormal distribution,
which indicates its correctness as a candidate for a shadowing distribution.

In a recent paper [1], mathematical expressions for the product and composition of
α-µ random variables were derived. Their result was given in terms of pFq hypergeometric
functions for particular values of the parameters involved. Furthermore, ref. [15] obtained
approximate expressions to model the composition of GGD and lognormal distributions.

A complete paper on the α-µ composite distribution was also recently published [14].
In their work, the author presented general and simple closed-form expressions for the PDF
and CDF of this composite fading distribution. The expressions were presented in terms
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of the well known Fox H-function, and are valid for arbitrary values of the fading parame-
ters. The author also presented simplified expressions when the ratio of the nonlinearity
parameters α are integers.

In order to build our main results, some mathematical definitions are needed.

Mathematical Definitions

Let the random variable R ≥ 0 designate the signal envelope following the α-µ
distribution. The PDF fR(r) of R is expressed as [10]

fR(r) =
αµµ

Γ(µ)
rαµ−1

r̂αµ exp
[
−µ
( r

r̂

)α]
, (1)

in which α > 0 denotes the nonlinearity parameter, µ > 0 is related to the number of

multipath clusters, Γ(·) is the gamma function, r̂ , α
√

E{Rα} = r̄ α
√

µΓ(µ)
Γ(µ+ 1

α )
, r̄ = E{R} and E·

denotes the expectation operator.
The α-µ distribution includes as special cases other important distributions [1,14].

Besides, as previously indicated, the α-µ distribution can be also a reparametrization of the
GGD. Let T be a generalized Gamma random variable, then its PDF fT(t) can be expressed
as [16]:

fT(t) =
β

Γ(k)θ

(
t
θ

)kβ−1
exp

(
−
(

t
θ

)β
)

, (2)

in which θ > 0 is a scale parameter and β, k > 0 are shape parameters.
By directly comparing Equations (1) and (2), it is easy to see that k = µ, β = α and

θ = r̂µ−1/α. On the other hand, ref. [16] reveals that when k = λ−2, β = σ−1λ and
θ = exp

(
µLN − λ−1σ ln(λ−2)

)
, by making λ→ 0, the GGD reduces to a Lognormal distri-

bution with location parameter µLN and scale parameter σ. Thus, for an α-µ distribution,
by making µ = λ−2, α = σ−1λ and r̂ = λ−2σ/λ exp

(
µLN − λ−1σ ln(λ−2)

)
and letting

λ→ 0, the α-µ distribution also reduces to a Lognormal one.
This way, the composition of α-µ random variables have, as a special case, the com-

position between an α-µ and a Lognormal random variable. As will be demonstrated
in the next section, there exist general closed form expressions for the composition of
α-µ random variables, which finally properly addressed the analytic tractability issues
regarding Lognormal shadowing models.

3. Composite Fading Model

It is known that in order to build the composition of two random variables (RVs), one
may obtain the product of such RVs and then simply take the mean value of one of the Rvs
as 1. Thus, at first, we shall obtain the product of two α-µ RVs.

Let X and Y be two statistically independent α-µ random variables RVs, with average
values x̄ = E{X} and ȳ = E{Y}, and W , X × Y their product. Using basic statistical
procedures concerning the transformation of random variables, the PDF of W can be
calculated as [1,14]:

fW(w; x̄, ȳ) =
∫ ∞

0

1
y

fX

(
w
y

; x̄
)

fY(y; ȳ)dy, (3)

in which fX(.) and fY(.) denote the PDFs of X and Y, respectively. One may obtain the
CDF of the distribution by simply integrating (3).

By using (1) with appropriate subscripts, the PDFs of X and Y will be written in terms
of the parameters αx, µx, x̄ and αy, µy, ȳ, respectively. Thus, the product PDF α-µ-α-µ
can be expressed by considering (3). After some algebraic manipulations, the following
expression is obtained

fW(w) =
αxwαyµy−1

Γ(µx)Γ(µy)
(
uxuy

)αyµy

∫ ∞

0
t

αxµx−αyµy
αy −1

exp
(
−t

αx
αy − wαy

(uxuy)
αy t

)
dt, (4)
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in which ux = x̄Γ(µx)/Γ(µx + α−1
x ) and uy = ȳΓ(µy)/Γ(µy + α−1

y ).
One may notice that (4) is an alternative representation of Equation (12) in [1]. Further-

more, the authors of [1] indicated that no closed-form representation of (4) was available,
which is not true, as indicated by [14]. The integral in the right hand side of Equation (4)
can be expressed in terms of the Kratzel function [17] Zν

ρ(x) as

fW(w) =
αxwαyµy−1

Γ(µx)Γ(µy)
(
uxuy

)αyµy Z
αxµx−αyµy

αy
αx
αy

(
wαy

(uxuy)
αy

)
. (5)

in which [17] Zν
ρ(x) =

∫ ∞
0 tν−1 exp(−tρ − x/t)dt. On the other hand, the Kratzel function

can be also expressed in terms of the H-function as [17]

fW(w) =
αywαyµy−1

Γ(µx)Γ(µy)
(
uxuy

)αyµy H2,0
0,2

[
wαy

(uxuy)
αy

∣∣∣∣ ()

(0, 1),
(

µx −
αyµy

αx
, αy

αx

) ], (6)

in which the H-function (see [18]) is defined as a contour complex integral which con-
tain Gamma functions in their integrands. This special function has been extensively
applied to study communication problems, as seen on recent works [9,19,20]. In (6), empty
parentheses indicates there are no parameters of the specific type.

Thus, the PDF of the product of α-µ random variables can be analytically expressed
in closed-forms by using well-known special functions, as indicated in [14] and in the
present work. In fact, the representations in (5) and (6) are equivalent to the one presented
in [14]. Regarding the composite CDF of the α-µ/α-µ product distribution, it can be readily
calculated by integrating (6). Thus, for the CDF one obtains:

FW(w) =
wαyµy

Γ(µx)Γ(µy)
(
uxuy

)αyµy×

H2,1
1,3

[
wαy

(uxuy)
αy

∣∣∣∣ (1− µy, 1)
(0, 1),

(
µx −

αyµy
αx

, αy
αx

)
, (−µy, 1)

]
. (7)

The result in (7) easily follows from (6) by considering the contour integral representa-
tion of the H-function. If one still wants to consider the real integral representation in (4),
the following formula is obtained for the CDF of the composite distribution:

FW(w) =
αx

Γ(µx)Γ(µy)αy

∫ ∞

0
t

αxµx
αy −1

exp
(
−t

αx
αy
)

γ

(
µy,

wαy

(uxuy)
αy t

)
dt (8)

in which γ(s, x) stands for the lower incomplete Gamma function [18].
All the equations above do not rely on any restrictions on the parameters involved,

as the results of [1] did. The results above have been previously presented in an alternative
version in [14]. Besides, except for (8), the expression are all in closed forms in terms of
well-known special functions.

Simplified Results When αx/αy = p/q

In order to obtain their results, the authors in [1] considered that αx/αy = p/q, in which
p ≥ 1 and q ≥ 1 are co-prime integers. Their results were in terms of two summations
of hypergeometric functions of the type 1Fp+q for the PDF and of the type 2Fp+q+1 for
the CDF. The author in [14], on the other hand, considered the cases when αx/αy = m,
where m is a non-null natural number. The summations presented in [1] can be hard to
implement and the cases where αx/αy = m reported by [14] are not general enough. We can
generalize the results presented by [14] in terms of Meijer-G function to account for cases
where αx/αy = p/q, in which p ≥ 1 and q ≥ 1 are co-prime integers.
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By definition, the Meijer-G function is a special case of the H-function. Thus, by con-
sidering the representation in (6) and using the multiplication theorem of the Gamma
function [18], when αx/αy = p/q, the PDF of the product of α-µ random variables is
expressed in (9).

fW(w) =
αxwαyµy−1q1/2+µx−

qµy
p

Γ(µx)Γ(µy)
(
uxuy

)αyµy p1/2(2π)
p+q−2

2

×

Gp+q,0
0,p+q

[
wαy p p−pq−q

(uxuy)
αy p

∣∣∣∣ ()(
0, 1

p , ..., p−1
p , µx

q −
µy
p , 1+µx

q − µy
p , ..., q−1+µx

q − µy
p

) ] (9)

The same procedure can be carried out to express the CDF of the product of α-µ
random variables. The resulting expression is presented in (10).

FW(w) =
wαyµy qµx−

qµy
p −1/2

Γ(µx)Γ(µy)
(
uxuy

)αyµy p1/2(2π)
p+q−2

2

×

Gp+q,1
1,p+q+1

wαy p p−pq−q

(uxuy)
αy p

∣∣∣∣
(

1− µy
p

)(
0, 1

p , ..., p−1
p , µx

q −
µy
p , 1+µx

q − µy
p , ..., q−1+µx

q − µy
p ,− µy

p

)  (10)

In order to obtain the composite PDF and CDF, one may simply set x̄ = 1 in (5) or (6)
or (9) and (7) or (8) or (10), respectively. This will only affect ux.

All the equations hereby presented are in terms of integrals. These formulas can
be easily evaluated as shall be seen in the next section. The numerical codes needed to
evaluate the new solutions are presented in order to enhance their usability. Besides, series
representations are also presented to provide quick and accurate evaluations.

4. Numerical Evaluation of the Expressions
4.1. Integral Representations

As previously indicated, the PDF of the composite distribution is expressible in terms
of both the Kratzel function as well as the H-function. When αx/αy = p/q, the results are
also expressible in terms of the Meijer-G function. The most direct way to evaluate the PDF
and CDF of the composite distributions is to numerically calculate the integrals involved.

For the PDF, if one uses (5), the real integral in (4) needs to be evaluated. This is straight-
forward to be achieved by softwares such as Mathematica. On the other hand, if one wants to
use (6), the contour integral definition of the H-function presented in [18] shall be considered.
Contour integrals are easily evaluated in math softwares such as Wolfram Mathematica. On the
other hand, one has to pay close attention to the contour chosen. By the definition of the
H-function in (6), the contour L can considered as the line from c− i∞ to c + i∞ for any c > 0.
Furthermore, if αx/αy = p/q, the Meijer-G function can be used to perform the calculations.
This function is implemented in numerous mathematical software. In the present paper, its
Mathematica implementation is considered.

Regarding the CDF, if the real integral is to be considered, (8) can be evaluated by means
of standard mathematical softwares. However, if the contour integral is chosen, the contour
used to evaluate the H-function in (7) must be taken as the line from c− i∞ to c + i∞ for any
0,< c < µy. This choice is important to separate the poles of the Gamma functions in the
numerator of the definition of the H-function. Furthermore, if αx/αy = p/q, the Meijer-G
function can again be used to perform the calculations.

Numerical experiments have shown that both the real integrals and the Meijer-G
functions behave nicely for all the possible values of the parameters involved. On the other
hand, directly calculating the contour integral may not be the best choice, as high precision
must be set to get correct results.
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A set of parameters has been chosen to illustrate the applicability of the expressions
hereby developed. These are presented in Table 1. In this Table, the rational approximations
to αx/αy present the rational number with smallest denominator that lies within 0.003 of
the real ratio. Numerical experiments have shown that this tolerance is enough to correctly
approximate the expressions for practical applications.

Table 1. Random variables considered for numerical analyses.

Set X(αx, µx, x̄) Y(αy, µy, ȳ) αx
αy

S1 X(1.279, 4.011, 1) Y(3.486, 4.981, 3.581) 7
19

S2 X(3.195, 3.598, 1) Y(3.723, 0.767, 4.069) 6
7

S3 X(3.327, 0.373, 1) Y(3.151, 4.829, 0.915) 19
18

S4 X(2.415, 3.321, 1) Y(0.318, 100, 2.810) 91
12

One shall notice that for the set S4, the shadowing distribution given by the RV Y is
approximately Lognormal. It has been obtained by letting λ = 0.10, σ = π/10 and µLN = 1
in the parametrization of the α-µ distribution discussed on Section 2. To illustrate how
the approximation behaves, Figure 1 has been plotted. This figure presents the difference
between the PDFs of a Lognormal RV, fLN(r), and an α-µ RV, fR(r), with σ = π/10 and
µLN = 1.

λ = 0.80

λ = 0.55

λ = 0.30

λ = 0.10

0 1 2 3 4 5 6 7

-0.10

-0.05

0.00

0.05

r

f L
N
(r
)-
f R
(r
)

Figure 1. Comparing the Lognormal distribution and the corresponding α-µ RV.

It can be seen from Figure 1 that, for practical purposes, it is sufficient to take λ = 0.10
to get a good agreement to the Lognormal distribution.

For the sets presented in Table 1, the PDFs and CDFs of the composite distributions
are plotted in Figure 2. The plots and calculations have been performed by the real integral
representations as these are the most stable numerical implementation found. For the set S4,
both the H-function contour integral and the Meijer-G function built-in implementations
do not behave well. This comes from the fact that Gamma functions of large arguments
appear, making the calculations lose precision.

Now that the possible integral evaluations have been discussed, it is of interest to present
series expansions of the function involved. This shall be discussed in the next subsection.
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Figure 2. PDFs and CDFs Plotted Using the Integral Representations Provided.

4.2. Series Representations

In [17], the following series representation was presented for the Kratzel’s function
when l 6= ν + ρm for any l, m ∈ N0 = {0, 1, 2, ...}

Zν
ρ(x) =

1
ρ

∞

∑
m=0

Γ
(

ν−m
ρ

)
(−x)m

m!
+ xν

∞

∑
m=0

Γ(−ν− ρm)
(−xρ)m

m!
. (11)

The restrictions on ν and ρ are easily surpassed when any of these numbers is an
irrational number or when the number of decimal digits of the numbers involved is high
enough such that the remaining terms of the summation are negligible. The series in (11)
can also be obtained for the H-function representation in (6) by using the residue theorem
to evaluate the contour integral [18] (with simple poles). Thus, a series representation for
the PDF of the composite α-µ/α-µ distribution can be given in (12).

fW(w) =
αxwαyµy−1

Γ(µx)Γ(µy)
(
uxuy

)αyµy×αy

αx

∞

∑
m=0

(−1)mΓ
(

µx −
αy(µy+m)

αx

)
m!

(
w

uxuy

)αym
+

∞

∑
m=0

(−1)mΓ
(

µy − αx(µx+m)
αy

)
m!

(
w

uxuy

)αx(µx+m)−αyµy

 (12)

On the other hand, considering (12), simple integration provides that the CDF of the
composite distribution is expressed in (13).

FW(w) =
wαyµy

Γ(µx)Γ(µy)
(
uxuy

)αyµy× ∞

∑
m=0

Γ
(

µx −
αy(µy+m)

αx

)
(µy + m)

(−1)m

m!

(
w

uxuy

)αym
+

∞

∑
m=0

Γ
(

µy − αx(µx+m)
αy

)
(µx + m)

(−1)m

m!

(
w

uxuy

)αx(µx+m)−αyµy

 (13)

Both (12) and (13) are way simpler than the series presented in [1]. Besides, the only
possible restriction to the usage of the series in (12) and (13) is that all the poles of the Gamma
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functions involved are simple. This is achieved whenever: αyl 6= αxµx − αyµy + αxm for any
l, m ∈ N0 = {0, 1, 2, ...}. In general, when the parameters αx,µx,αy,µy are all different and
any of them is an irrational number, the restrictions are satisfied.

It should be noticed that when these parameters are considered with 2 or 3 decimal
digits, for example, the restrictions above will only fail for l, m of about 100 and 1000,
respectively. In these cases, the residues over the remaining poles will become negligible.
Therefore, this is not quite a drawback, as, in general, estimation procedures will produce
rational numbers with as many decimal digits as desired for the parameters. Besides,
the series converge for every value of w > 0.

Numerical experiments show that the series obtained nicely converge to their limiting
value. In general, by taking about 30 terms is sufficient for practical purposes, as Table 2
indicates.

Table 2. Convergence analyses at w = 2.

(a) Equation (12)

Set Exact Value 10 Terms 30 Terms 100 Terms

S1 0.207465 0.204785 0.207465 0.207465
S2 0.127178 0.127178 0.127178 0.127178
S3 0.126769 0.275901 0.126769 0.126769
S4* 0.383627 8.42× 107 0.391774 0.391728

(b) Equation (13)

Set Exact Value 10 Terms 30 Terms 100 Terms

S1 0.130012 0.129598 0.130012 0.130012
S2 0.0926511 0.0926511 0.0926511 0.0926511
S3 0.959844 0.96768 0.959844 0.959844
S4* 0.248891 6.85× 106 0.272829 0.272827

It can be seen in Table 2 that the series behaves well for all the sets, except S4. When
the limiting procedure to get a Lognormal RV is carried out, the number of significant
figures which must be considered to properly evaluate the summation increases rapidly,
as the series involved contain gamma functions. Therefore, the last computable value using
Mathematica’s regular precision (53 binary digits of precision) is when λ = 0.3. Regarding
the CDF, the same behavior observed for the series PDF is observed for the series CDF.
Once again, for S4, from λ = 0.3 on, the number of significant figures is increasingly high.

Figure 3 presents the codes used to implement the special functions and series used in
the present paper.

From Figure 3, we can see that:

• The function KratzelF[x, ν, ρ] implements the numerical integral definition of the
Kratzel function given right below (5).

• KratzelG[x, ν, p, q] implements the Meijer G-function alternative representation of the
Kratzel function used to obtain (9) whenever ρ = p/q.

• H2002F[x, ν, ρ] implements the H-function alternative definition of the Kratzel func-
tion used to obtain (6).

• KratzelSF[x, ν, ρ, mmax] implements the series representation of the Kratzel function
given in (11). Here, mmax represents the number of terms to be considered for the
summation.

• H2113F[x, ν, ρ, µ] implements the H-function used in (7).
• H2113SF[x, ν, ρ, µ, mmax] implements the series expression of the H function used

in (13) after integrating (12).Here, mmax represents the number of terms to be consid-
ered for the summation.

• H2113G[x, ν, p, q, µ] implements the Meijer G-function simplification of the H function
used in (7) when ρ = p/q and presented in (10).
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KratzelF[x_, ν_, ρ_] :=

NIntegratetν-1 * Exp-tρ - x/ t, {t, 0, Infinity}

KratzelG[x_, ν_, p_, q_] :=

q1/2+ν*q/p p1/2 *(2* Pi)(p+q-2)/2
*

MeijerG{{}, {}},

{Join[Table[j/ p, {j, 0, p - 1}], Table[ν / p + j/ q, {j, 0, q - 1}]],

{}}, xp * p-p * q-q

H2002F[z_, ν_, ρ_] :=

Chop(2* Pi* I*ρ)-1
* NIntegrateGamma[s]* Gamma[(s + ν)/ρ]* z-s,

{s, 1/ 2 - I* 1000, 1/ 2 + I* 1000}

KratzelSF[z_, ν_, ρ_, mmax_] :=

ρ-1
* SumGamma[(ν - k)/ρ]*(-z)k

 Gamma[k + 1], {k, 0, mmax} +

zν * SumGamma[-ν - ρ * k]*-zρ
k
 Gamma[k + 1], {k, 0, mmax}

H2113F[z_, ν_, ρ_, μ_] :=

Chop(2* Pi* I)-1
* NIntegrateGamma[s]* Gamma[(s + ν)/ρ]* z-s (μ - s),

{s, μ / 2 - I* 2000, μ / 2 + I* 2000}, MaxRecursion → 50

H2113SF[z_, ν_, ρ_, μ_, mmax_] :=

SumGamma[(ν - k)/ρ]*(-z)k
((μ + k)* Gamma[k + 1]), {k, 0, mmax} +

ρ * zν * SumGamma[-ν - ρ * k]*-zρ
k
((μ + k*ρ + ν)* Gamma[k + 1]),

{k, 0, mmax}

H2113G[x_, ν_, p_, q_, μ_] :=

qν*q/p-1/2 p1/2 *(2* Pi)(p+q-2)/2
*

MeijerG{{1 - μ / p}, {}},

{Join[Table[j/ p, {j, 0, p - 1}], Table[ν / p + j/ q, {j, 0, q - 1}]],

{-μ / p}}, xp * p-p * q-q

Figure 3. Algorithms used to implement the special functions used in the present paper.

On the other hand, we can see how the functions presented in Figure 3 were used to
implement the PDF computational codes in Figure 4.

• The function PDFKratzel[w, αx, µx, xbar, αy, µy, ybar] implements the PDF of the com-
posed distribution when the numerical integral definition of the Kratzel function
is used.

• PDFH2002[w, αx, µx, xbar, αy, µy, ybar] implements the PDF of the composed distri-
bution when the H-function alternative definition of the Kratzel function is used.

• PDFG[w, αx, µx, xbar, αy, µy, ybar] implements the PDF of the composed distribution
when αx/αy = p/q and the Meijer G-function alternative definition of the Kratzel
function is used. In order to obtain the rational approximations to αx/αy, we automat-
ically calculate the rational number with smallest denominator that lies within 0.003
of the real ratio.

• PDFSeries[w, αx, µx, xbar, αy, µy, ybar] implements the series expression of the PDF
by considering mmax terms into the summation.

Furthermore, by using the functions presented in Figure 3, we show how to implement
the CDF computational codes in Figure 5.

• The function CDFHInt[w, αx, µx, xbar, αy, µy, ybar] implements the CDF of the com-
posed distribution when the numerical integral definition of the Kratzel function
is used.

• CDFH2113[w, αx, µx, xbar, αy, µy, ybar] implements the CDF of the composed distri-
bution when the numerical integral definition of the H-function is used.

• CDFG[w, αx, µx, xbar, αy, µy, ybar] implements the CDF of the composed distribution
when αx/αy = p/q and the Meijer G-function alternative definition of the Kratzel
function is used. In order to obtain the rational approximations to αx/αy, we automat-
ically calculate the rational number with smallest denominator that lies within 0.003
of the real ratio.

• CDFSeries[w, αx, µx, xbar, αy, µy, ybar, mmax] implements the series expression of the
CDF by considering mmax terms into the summation.
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PDFKratzel[w_, αx_, μx_, xbar_, αy_, μy_, ybar_] :=

Moduleux = xbar * Gamma[μx] Gammaμx + αx-1,

uy = ybar * Gamma[μy] Gammaμy + αy-1,

αx* wαy*μy-1Gamma[μx]* Gamma[μy]*(ux* uy)αy*μy
*

KratzelF(w/(ux* uy))αy, (αx*μx - αy*μy)/αy, αx/αy

PDFH2002[w_, αx_, μx_, xbar_, αy_, μy_, ybar_] :=

Moduleux = xbar * Gamma[μx] Gammaμx + αx-1,

uy = ybar * Gamma[μy] Gammaμy + αy-1,

αy* wαy*μy-1Gamma[μx]* Gamma[μy]*(ux* uy)αy*μy
*

H2002F(w/(ux* uy))αy, (αx*μx - αy*μy)/αy, αx/αy

PDFG[w_, αx_, μx_, xbar_, αy_, μy_, ybar_] :=

Moduleux = xbar * Gamma[μx] Gammaμx + αx-1,

uy = ybar * Gamma[μy] Gammaμy + αy-1,

p = Numerator[Rationalize[αx/αy, 0.003]],

q = Denominator[Rationalize[αx/αy, 0.003]],

αx* wαy*μy-1Gamma[μx]* Gamma[μy]*(ux* uy)αy*μy
*

KratzelG(w/(ux* uy))αy, (αx*μx - αy*μy)/αy, p, q

PDFSeries[w_, αx_, μx_, xbar_, αy_, μy_, ybar_, mmax_] :=

Moduleux = xbar * Gamma[μx] Gammaμx + αx-1,

uy = ybar * Gamma[μy] Gammaμy + αy-1,

αx* wαy*μy-1Gamma[μx]* Gamma[μy]*(ux* uy)αy*μy
*

KratzelSF(w/(ux* uy))αy, (αx*μx - αy*μy)/αy, αx/αy, mmax

Figure 4. Algorithms used to implement the PDFs used in the present paper.

CDFHInt[w_, αx_, μx_, xbar_, αy_, μy_, ybar_] :=

Moduleux = xbar * Gamma[μx] Gammaμx + αx-1,

uy = ybar * Gamma[μy] Gammaμy + αy-1,

1 - ((αx)/(Gamma[μx]* Gamma[μy]*αy))*

NIntegratet(αx*μx/αy)-1 * Exp-tαx/αy*

Gammaμy, (w/(ux* uy))αy
 t, {t, 0, Infinity}

CDFH2113[w_, αx_, μx_, xbar_, αy_, μy_, ybar_] :=

Moduleux = xbar * Gamma[μx] Gammaμx + αx-1,

uy = ybar * Gamma[μy] Gammaμy + αy-1,

wαy*μyGamma[μx]* Gamma[μy]*(ux* uy)αy*μy
*

H2113F(w/(ux* uy))αy, (αx*μx - αy*μy)/αy, αx/αy, μy

CDFG[w_, αx_, μx_, xbar_, αy_, μy_, ybar_] :=

Moduleux = xbar * Gamma[μx] Gammaμx + αx-1,

uy = ybar * Gamma[μy] Gammaμy + αy-1,

p = Numerator[Rationalize[αx/αy, 0.003]],

q = Denominator[Rationalize[αx/αy, 0.003]],

wαy*μyGamma[μx]* Gamma[μy]*(ux* uy)αy*μy
*

H2113G(w/(ux* uy))αy, (αx*μx - αy*μy)/αy, p, q, μy

CDFSeries[w_, αx_, μx_, xbar_, αy_, μy_, ybar_, mmax_] :=

Moduleux = xbar * Gamma[μx] Gammaμx + αx-1,

uy = ybar * Gamma[μy] Gammaμy + αy-1,

wαy*μyGamma[μx]* Gamma[μy]*(ux* uy)αy*μy
*

H2113SF(w/(ux* uy))αy, (αx*μx - αy*μy)/αy, αx/αy, μy, mmax

Figure 5. Algorithms used to implement the CDFs used in the present paper.

5. Application to Experimental Data

Literature presents the results of a series of outdoors field trials which were conducted
at the University of Brasília (UnB) and at the University of Campinas (Unicamp), Brazil,
in order to obtain the empirical PDFs of the composite multipath/shadowing phenom-
ena [21]. In short, the experiments consisted in placing a transmitter on the rooftop of a
building and moving the receiver through the campus of each university [21]. The mobile
reception equipment was especially assembled for this purpose and consisted of a vertically
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polarized omnidirectional receiving antenna, a low noise amplifier, a spectrum analyzer,
a data acquisition equipment and a notebook computer [21].

Regarding the transmission, it consisted of a continuous wave tone at 2500 MHz
and 780 MHz at UnB and at 1800 MHz at Unicamp. The spectrum analyzer was set to
zero span and centered at the desired frequency, and its video output used as the input
of the data acquisition equipment with a sampling interval of 300 samples per second.
From the collected data, the short term, the long term and the path loss were isolated, then
a composite envelope was made by adding the short and the long terms.

Figure 6 reveals the remarkable accuracy of the model. Actually, the best fit distribu-
tions were X(2.31, 3.41, 0.95) and Y(1.4, 90, 1.13) for the 1800 MHz case and X(3.2, 4.5, 0.91)
and Y(0.22, 115, 1.255) for the 780 MHz. By looking at the estimated values, it can be seen
that a nearly Lognormal distribution was fitted for the shadowing distributions, as the
equivalent parameters were λ = 0.105409, σ = 0.0752923, µLN = 0.123351 for Y at 1800 MHz
and λ = 0.0932505, σ = 0.423866 and µLN = 0.157875 for Y at 780 MHz. One may notice that
Figure 1 reveals that for λ ≈ 0.10, the α-µ surrogate Lognormal approximation is already
pretty close to the actual Lognormal distribution.

Best-fit model for 1800MHz

Experimental value for 1800MHz

Best-fit model for 780MHz

Experimental value for 780MHz
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Figure 6. Empirical and Fitted PDFs for field trials.

6. Conclusions

While studying wireless communication systems, it is known that correctly modeling
the shadowing effect is crucial to perform the network quality assessment. Besides, litera-
ture reveals that composite distributions have shown to be good alternatives to combine
both fast fading and slow fading stochastic phenomena.

In the present paper, we discuss the applicability of the α-µ distribution as a surro-
gate Lognormal shadowing model. At first, we revisited α-µ distributions and showed
their connection to Generalized Gamma distributions. Furthermore, by pointing out this
link, we could prove that, by a limiting procedure, α-µ distributions can be reduced to
Lognormal distributions.

We also revisited the analytical mathematical formulas of the combination of α-µ
distributions as both fast and slow fading models. This issue has been explored in the
past by [1], which present some intricate expressions. Besides, the equations in [1] rely on
considering special values for the parameters involved, which restricts the applicability to
practical situations. Furthermore, those authors did not indicate that the α-µ distribution
can be converted to a Lognormal one by a limiting procedure. The author in [14] presented
the exact expressions for the PDF and CDF of the α-µ composite distribution but only
presented results in terms of the Meijer-G function when the ratio of α’s was a non-null
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natural number. We extended their results to cases when such ratio is a rational number
p/q, were p and q are coprime integers.

We also obtained new closed-form and series representations for the PDF and CDF
of the composite distributions. In order to enhance the applicability of the expression
hereby derived, we present the Mathematica codes used to evaluate them. Real field trials
were also modelled using the expressions and codes presented, revealing a remarkable
modelling accuracy. By using the codes and expressions presented, we believe practitioners
will be able to better model Lognormal shadowing effects.
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