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Abstract: The simulation of wave propagation and penetration inside ports and coastal areas is of
paramount importance to engineers and scientists desiring to obtain an accurate representation of
the wave field. However, this is often a rather daunting task due to the complexity of the processes
that need to be resolved, as well as the demanding levels of required computational resources. In the
present paper, the enhancements made on an existing sophisticated Boussinesq-type wave model,
concerning the accurate generation of irregular multidirectional waves, as well as an empirical
methodology to calculate wave overtopping discharges, are presented. The model was extensively
validated against 4 experimental test cases, covering a wide range of applications, namely wave
propagation over a shoal, wave penetration in ports through a breakwater gap, wave breaking on
a plane sloping beach, and wave overtopping behind breakwaters. Good agreement of the model
results with all experimental measurements was achieved, rendering the wave model a valuable
tool in real-life applications for engineers and scientists desiring to obtain accurate solutions of
the wave field in wave basins and complex coastal areas, while keeping computational times at
reasonable levels.

Keywords: Boussinesq-type wave model; wave agitation; wave transformation; irregular waves

1. Introduction

The simulation of nearshore wave propagation is of paramount importance in port
and coastal engineering projects. In the coastal environment, wind waves are one of the
most important driving factors influencing port operations by disturbing port tranquil-
ity, whilst the wave induced currents and subsequent sediment transport contribute to
coastline displacement and have strong implications to the economy, the environment and
community safety generally. It becomes evident that the wave model utilized to simulate
wave propagation in the coastal zone should be capable of resolving numerous important
wave processes such as shoaling, refraction, diffraction, reflection and nonlinear wave
interactions. However, the resolution of the abovementioned processes usually requires
high computational resources, rendering the accurate prediction of wave transformation in
the nearshore at reasonable computational times a tedious task.

In the past 50 years, major contributions have been made in the field of coastal and
ocean engineering, concentrating on the accurate description and modelling of wave
propagation, transformation and energy dissipation in coastal areas. On small scales, with
dimensions of a few km in real-field applications (i.e., the dimension of the surf zone or a
recreational harbor), waves can be described in great detail with theoretical models (even
down to small fractions of the wave period or wavelength). In these models, the basic
hydrodynamic laws can be used to estimate the motion of the water surface, the velocity
of the water particles, as well as the wave-induced pressure at any time and place in the
water body. Utilizing this approach, rapid variations in the evolution of the waves can be
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computed, often caused by abrupt bottom variations and strong current gradients. Since
this approach provides details with a resolution that is a small fraction of the wavelength
or period, it is called the phase-resolving approach [1]. Famous models in this category
are the ones based on the solution of the Mild-Slope Wave Equation [2–4], Boussinesq
Equations [5–8] or Serre Equations [9,10].

When tackling wave agitation inside port basins or wave propagation in coastal areas,
models based on the solution of the Boussinesq equations are often employed taking ad-
vantage of their high order of nonlinearity and capability to resolve multiple important
wave processes, such as diffraction, refraction, reflection and wave-structure interactions,
among others. From the initial work of [5] major contributions have been made by various
researches on the topic of developing Boussinesq-type wave models, aiming to further
expand the applicability of the theory and incorporate energy dissipation effects. Sev-
eral models have been realized from these efforts, aiming firstly to incorporate wave
breaking, either through an eddy viscosity model [11,12] or a surface roller concept [13].
Likewise, [14,15] tried to extend the applicability of Boussinesq models to deeper waters by
improving the dispersive characteristics, while [16,17] managed to increase the nonlinearity
of the equations, and strived to extend the applicability of Boussinesq-type models to any
water depth. However, the ever-increasing need of modelling additional and vital hydro-
dynamic processes along with the desire to keep computational times are reasonable levels
to restrict, somewhat, the utilization of Boussinesq type-models in real field applications.

In the present paper, the advancements made on an existing sophisticated Boussinesq-
type wave model (entitled BSQ hereinafter) capable of dealing with wave propagation
in the coastal zone and inside port basins are presented. The initial version of the model,
developed by [18], capable of simulating non-breaking and breaking waves in a variety
of bottom profiles and structures for waters of any depth, was later modified by [19],
in order to tackle wave propagation over submerged porous breakwaters. During this
study, the model has been further extended to incorporate the accurate generation of
irregular multidirectional waves, along with the inclusion of an empirical methodology to
calculate wave overtopping at the lee of coastal protection structures. The model has been
extensively validated against a variety of experimental measurements, deemed suitable to
thoroughly evaluate the performance of the newly developed model version and added
features. Ultimately, very satisfactory results were obtained, rendering the enhanced model
extremely capable of simulating irregular wave propagation and transformation inside port
basins, as well as in the coastal zone. The results have strong implications on the accurate
and efficient calculation of wave characteristics in the nearshore, ultimately leading to the
improvement of the design of coastal structures, and enhancing port operations and coastal
zone management.

2. Theoretical Background

In this section, the governing equation and features of the existing model devel-
oped by [18] and further extended by [19] are firstly laid out in Section 2.1. Conversely,
Sections 2.2 and 2.3 present the features developed and incorporated in the BSQ wave
model during this research, concerning respectively the generation of irregular multi-
directional waves, as well as the incorporation of empirical formulae to estimate wave
overtopping discharges at the lee of coastal structures.

2.1. Basic Equations

In their paper, [18] derived a highly non-linear Boussinesq-type model, based on the
approach of [16]. It should be stated that nonlinear differential operators of up to the fifth
order appear so that the model is optimized with respect to the nonlinear properties present
in the model formulations. The model was further extended by [19] to deal with wave
transformation and propagation over submerged porous breakwaters (SB). The continuity
and momentum governing equations of the extended model are presented below:
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where ζ is the surface elevation, U ≡ (U,V) is the depth-averaged horizontal velocity
vector in the regional outside the structure, Us ≡ (Us,Vs) is the depth-averaged velocity
vector inside the porous medium, ∇ ≡ (∂/∂x,∂/∂y) is the gradient operator, d is the
water depth above the structure (identical to the still water level h in the region outside
the porous structure), hs is the porous medium thickness, ϕ is the structure’s porosity,
ε the nonlinearity parameter equal to H/d (where H is the local wave height), and µ
is the frequency dispersion parameter equal to h/L (where L is the local wavelength
corresponding to the peak wave period). The term Rb at the right-hand side of Equation (2)
denotes wave energy dissipation due to bathymetric breaking. For the derivation and
formulation of the ΛIII terms, the reader is referred to the original paper of [16] and [18].

In the SB region, Equations (1) and (2) are solved in conjunction with a depth-averaged
Darcy–Forchheimer momentum equation describing the flow inside the porous medium.
Assuming that O((h s /L)2) << 1, (L is the local wavelength), a valid approximation in many
SB cases, the depth-averaged momentum equation expressed in terms of fluid velocity Us,
in 2DH form, (UD = ϕUs, UD is the Darcy velocity), according to [20], reduces to:

cr
∂Us

∂t
+ Us + Us∇Us + g∇ζ + α1Us + α2Us|Us| = 0 (3)

which is referred to as the nonlinear long-wave equation for porous medium. The last two
terms in Equation (3) represent the laminar friction term and the turbulent friction term,
respectively. In Equation (3), cr is the inertial coefficient, as presented in [21], given by:

cr =
1 + cm

ϕ
=

1 + γ 1 − ϕ
ϕ

ϕ
(4)

where cm is the added mass coefficient and γ is an empirical factor that accounts for the
added mass. The porous resistance coefficients α1 and a2 in Equation (3) were estimated
according to [22–24] as follows:

α1 =
ϕν

K
, α2 =

ϕ2cf√
K

(5)

where ν is the kinematic viscosity of water (~10−6 m2/s), cf is a non dimensional parameter
expressed by [21] as:

cf = β
1 − ϕ

ϕ

√
K

d50
(6)

In Equations (5) and (6), K denotes the intrinsic permeability [21,24]:

K =
d2

50ϕ
3

α(1 − ϕ)2 (7)

whereα is an empirical coefficient and d50 is the mean diameter of the armor rock protection
layer. For the cases involving permeable structures, the values of 1000 and 0.34 are advised
in [21] to be chosen for α and γ, respectively.

Depth-induced wave breaking is incorporated in the wave model utilizing a simple
eddy viscosity-type formulation following [25,26]. The wave energy dissipation term
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where: U, V are the depth-averaged velocities at the region outside the structure in x and
y dimension respectively, and νe is the eddy viscosity localized on the front face of the
breaking wave, calculated through:

νe = Eδ2
b(d + ζ)ζ (10)

where: δb is the mixing length coefficient controlling the amount of wave energy dissipation
caused by breaking waves. Quantity E controls the occurrence of energy dissipation and is
given by:

E =


1, ζt ≥ 2ζ∗t

ζt/ζ∗t− 1, ζ∗t < ζt ≤ 2ζ∗t
0, ζt ≤ ζ∗t

 (11)

Additionally, parameter ζ∗t determines the initiation and the cessation of wave break-
ing as follows:

ζ∗t =

 ζ
(F)
t , t ≥ T∗

ζ
(I)
t + t − t0

T∗

(
ζ
(F)
t − ζ(I)t

)
, 0 ≤ t − t0 < T∗

 (12)

in which T∗ = 5 (d/g)1/2 is the transition time, t0 is the time at which breaking is initiated,
and thus t − t0 denotes the age of the breaking event. It can be deduced that the basic
formulation of the breaking module involves several tuning coefficients, i.e., the mixing
length coefficient δb, and the ζ(I)t , ζ(F)t parameters controlling the wave breaking occurrence
and its duration, starting at some initial surface elevation ζ(I)t to a terminal one ζ(F)t .
The authors in [25,26] proposed ζ

(I)
t to range from 0.35 (gd)0.5 for barred beaches to

0.65 (gd)0.5 for monotone mildly sloping beaches, setting ζ(F)t = 0.15 (gd)0.5 throughout.
Regarding the mixing length coefficient, a default value equal to δb = 1.2 was proposed. The
governing equations are discretized through the finite-difference method utilizing a high-
order predictor-corrector scheme. Hence, a third-order explicit Adams–Bashforth predictor
step and a fourth-order implicit Adams–Moulton corrector step is used for the temporal
solution of the equations, following a technique presented in [6]. The model’s applicability
is, at present, limited to Cartesian grids, hence in order to resolve curvilinear geometries
(such as curvilinear coastal defense structures) a refined grid should be specified in the area
surrounding the structure to better capture the complex geometry characteristics. However,
this approach can lead to strict stability requirements, and is consequently time-inefficient.

2.2. Irregular Multidirectional Wave Generation

The model was initially capable of simulating the propagation of either regular or
irregular unidirectional waves. For the case of irregular multidirectional waves, which has
been a focal point of the recent developments, the free surface elevation is considered as a
superposition of regular wave components, utilizing the single summation method of [27],
as follows:

ζI(x, y, t) =
Mf

∑
m = 1

Nθ

∑
j = 1

amjcos[k mj(xcos θ j + ysin θj)− 2πfmjt + εmj

]
(13)



Modelling 2021, 2 690

with:
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1
2

∆f +
(
j − 1 + RANmj

)
∆f/Nθ (14)

amj =
√

2 S
(̂

f m̂, θj
)
∆f∆θ (15)

∆f =
fmax − fmin

Mf
, ∆θ =

θmax − θmin

Nθ
(16)

In the above equations, f̂m is the centre frequency of the mth frequency band, (f min, fmax)
and (θmin, θmax) are the ranges of frequency and direction of the incident directional
wave spectrum respectively, Mf and Nθ are the number of frequency and directional bands
in the discretized directional spectrum respectively, εmj the random wave phase which
is distributed uniformly in (0,2π), and RANmj is a random number in the range (0, 1),
which is incorporated to introduce a random component to fmj. The frequency spectrum
S(f) can be expressed in the model through a Pierson–Moskowitz, Jonswap or TMA [28]
source function.

The directional wave spectrum Ŝ(f, θ) can be expressed as the product of the frequency
spectrum S(f) and directional spreading function G(f, θ), i.e.,

Ŝ(f, θ) = S(f)G(f, θ) (17)

The directional spreading function G(f,θ) in turn satisfies the following two conditions:

S(f) =
∫ θmax

θmin

Ŝ(f, θ)dθ (18)

∫ θmax

θmin

G(f, θ)dθ = 1 (19)

In the model, the Mitsuyasu-type directional spreading function [29] is used:

G(f, θ) = G0 cos2s
(
θ − θ0

2

)
(20)

where θ0 is the principal wave direction and G0 is a constant introduced to satisfy the
condition in Equation (18) presented above.

It should be stated that the newly added irregular multidirectional wave generation
source function is also utilized hereafter to generate unidirectional irregular waves in a
more concise manner.

2.3. Calculation of Wave Overtopping Discharges

Taking into consideration that the model has been proven capable of simulating wave
transmission over an SB [19], an integration of empirical formulae to be used alongside the
model’s governing equations, in order to efficiently predict wave overtopping discharges
at the lee of an emerged smooth sloping structure or a vertical wall, has been undertaken.
The methodology to calculate wave overtopping discharges centers around the calculation
of the incident wave heights at the toe of the structure in the numerical model, and then
utilizing empirical formulations [30,31] to estimate the non-dimensional wave overtopping
discharge (Q∗).

For a smooth sloping structure (characterized with a slope gradient of tanβ), the dimen-
sionless wave overtopping discharge is calculated through the following relationship [30]:

Q∗ =
q√

gH3
mo

= a exp
[
−
(

b
Rc

Hmo

)c]
(21)
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where a = 0.09 − 0.01(2 − cot β)2.1 for cot β < 2 and a = 0.09 for cot β ≥ 2,
b = 1.5 + 0.42(2 − cot β)1.5, with a maximum of b = 2.35 and b = 1.5 for cot β ≥ 2,
c = 1.3, Rc is the structure’s freeboard and Hmo is the wave height at the toe of the structure.

For the case of a vertical wall, the dimensionless wave overtopping discharge is
calculated through the following relationship [31]:

Q∗ =
q√

gH3
mo

= 0.05 exp
[
−
(

2.78
Rc

Hmo

)]
(22)

The empirical formulation presented above can provide a computationally efficient
and reliable method to estimate wave overtopping discharges at the lee of various structure
configurations.

A special note should be taken on the way in which incident wave height at the toe of
the structure is extracted in the model, taking into consideration that the back scattering
of waves is inherently included in the model formulations. Consequently, a distinction
between the incident and reflected waves in the signal is desirable. In the model, two
options are offered for the distinction of the incident wave height:

1. A “simplified parametric” methodology, where averaging of the wave surface eleva-
tion takes place before the initiation of wave reflection at the structure’s face occurs.

2. A “reference domain” simulation, in which the presence of the structure is omitted
and an indicative simulation is executed to extract the wave characteristics at the
position where the structure’s toe is to be located.

For the first option, the wave height at the toe of the structure is obtained by averaging
between two time instances denoted as t0 and te, as follows:

Hmo = 2
√

2

√∫ te

t0

ζt(t)dt (23)

where t0 indicates the time that it takes the wave trains associated with the peak wave
period to reach the cell where the toe of the structure is located and te denotes the time over
which the water surface elevation reaches the cell located waveward the face of the vertical
wall or the crown of the smooth structure, signifying the initiation of wave reflection
due to the presence of the structure. This methodology has the advantage of requiring
minimal computational resources since this ad hoc calculation occurs simultaneously with
the temporal solution of the wave propagation. Some numerical errors due to the presence
of reflected wave trains can be observed especially for the case of a broad frequency
spectrum or a smooth structure configuration, where waves are expected to be subjected to
bottom scattering as they propagate along the slope. On the contrary, the second method
ensures that no such numerical errors exist since the “reference domain” simulation is
executed without the presence of the structure thus wave reflection does not take place,
however it greatly increases the numerical burden, since it essentially requires executing
the model for several time steps until the waves reach the toe of the structure on an already
computationally demanding highly nonlinear Boussinesq-type model.

3. Model Verification
3.1. Wave Breaking on a Plane Sloping Beach (Mase and Kirby, 1992)

The test cases presented in the following section concern experiments on wave trans-
formation and breaking on a plane sloping beach characterized with an impermeable
slope of 1 : 20 conducted by [32]. In the experiments, irregular unidirectional waves
were generated using a Pierson–Moskowitz spectrum source function. In particular, two
series of tests were conducted; one utilizing a spectrum with peak frequency fp = 0.6
(Case 1), and a second one with a peak frequency fp = 1.0 (Case 2). In the experimental
layout, waves propagate for 10 m on a bed with constant water depth of 0.47 m, before
propagating up a sloped beach starting at x = 0 m. The free surface was measured by 12
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probes located at 0, 2.4, 3.4, 4.4, 5.4, 5.9, 6.4, 6.9, 7.4, 7.9, 8.4, and 8.9 m, respectively. The
scope of the experimental tests was to investigate wave breaking on a mildly sloping beach
for unidirectional wave fields, which will serve as an important verification of the wave
energy dissipation mechanisms employed in the numerical model to simulate bathymetric
breaking.

Both cases were simulated with the BSQ numerical model by discretizing the bathymetry
through a regular grid of spatial step of 0.1 m in both the cross-shore and alongshore direc-
tions. The wave energy spectrum was discretized using 25 frequencies, with a minimum
frequency (fmin) of 0.1 Hz and a maximum frequency (fmax) of 2.5 Hz. The total simulation
time was set at 160 s, with a time step of 0.0025 s to ensure numerical stability. Results of
the simulated significant wave heights (Hs) along the measuring locations for Case 1 and 2
of are depicted in Figure 1 and compared to the experimental measurements of [32]. At
the bottom of the same Figure, the bathymetry of the experiments, along with the relative
positions of the measuring probes, are showcased.
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Figure 1. Computed (solid red line) and measured (circular markers) values of Case 1 (top), Case 2 (middle) for the
experiments of Mase and Kirby 1992, along with the bathymetry (solid blue line) and probe positions (markers) at
the bottom.

From Figure 1 above, it can be deduced that an excellent agreement is obtained
between model results and experimental measurements for both test cases simulated,
validating the ability of the model in reproducing accurately the wave energy dissipation
rates for irregular wave fields for the case of spilling breakers (Case 1), as well as plunging
breakers (Case 2). This case is of significant importance since it shows the capability of the
newly added irregular wave generation source function (which has been incorporated in
the enhanced version of the model developed during this research) to function smoothly
in tandem with the existing wave energy dissipation mechanism. 3.2. Irregular wave
propagation over a shoal (Vincent and Briggs, 1989).

The authors in [33] performed experiments on monochromatic and random wave
propagation and transformation over a submerged elliptic shoal. The experiments were
conducted in the U.S. Army Coastal Engineering Research Center’s in Vicksburg, MS, USA,
29 m long by 35 m wide directional wave basin. The shoal was characterized by a major
radius of 3.96 m, a minor radius of 3.05 m with a minimum water depth of approximately
0.15 m at the top, while the depth at the region outside the shoal was kept constant at
0.457 m. Several tests were performed, including the generation of unidirectional and
multidirectional irregular waves utilizing a TMA spectrum [28]. The temporal evolution
of the surface elevation was measured using an array of nine parallel-wire resistance-
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type sensors. The layout of the bathymetry along with the control sections where wave
characteristics were measured is depicted in Figure 2.
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Figure 2. Layout of the experiments of Vincent and Briggs, 1989, and control sections (S1−S9) where
wave characteristics were measured.

In total 17 test cases were reported in [33] covering a wide range of both non-breaking
and breaking wave conditions. Firstly, a series of five initial tests corresponding to non-
breaking monochromatic and irregular multidirectional waves with broad and narrow
directional spreading were performed. Nine tests of non-breaking waves consisting of
monochromatic, unidirectional and multidirectional waves followed the initial tests. Lastly,
three series of tests concerning waves breaking over the shoal for monochromatic and
multidirectional random waves were conducted. In the present paper, the cases denoted
as N1 and B1 in [33] corresponding to random wave propagation with narrow and broad
directional spreading respectively, were reproduced utilizing the BSQ wave model. The
incident wave conditions for each test are shown in Table 1. Validating model results in
this experimental setup is extremely important in assessing the capability of the model to
capture the wave propagation and transformation in environments were the combined
effect of diffraction and refraction is dominant.



Modelling 2021, 2 694

Table 1. Incident wave conditions and spectrum parametrization for the two cases in Vincent and
Briggs, 1989, simulated with the BSQ wave model.

Case Ho (cm) Tp (s) α Γ σ (◦)

N1 7.75 1.30 0.0144 2 10
B1 7.75 1.30 0.0144 2 30

The computational grid was discretized utilizing a spatial step in both directions of
∆x = ∆y = 0.05 m and a time step of ∆t = 0.01 s. The model was executed for 80 s and
the last 5 periods were used to extract the numerical results of wave heights. For case
N1, corresponding to a TMA spectrum with narrow directional spreading, comparisons
between model results and experimental measurements concerning normalized wave
heights (H/Ho) at the Sections 3,4,6 and 8 are shown in Figure 3a–d respectively.
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Accordingly, model results corresponding to case B1 which refers to random waves
with a broad directional spreading are depicted and compared to the experimental mea-
surements in Figure 4.
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Overall, a satisfactory agreement is observed between model results and measure-
ments for both cases shown above, validating the ability of the BSQ wave model in
accurately simulating the propagation of irregular multidirectional waves under the effect
of combined refraction/diffraction.

To further assess the capability of the BSQ wave model to adequately simulate the
combined effect of refraction/diffraction the instantaneous wave field as well as the surface
elevation obtained at the last time step is also showcased in Figure 5a,b. The obtained
results are further discussed and analyzed in Section 4.
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3.2. Irregular Wave Diffraction through a Breakwater Gap (Yu et al., 2000)

Yu et al. [34] conducted a series of experiments on wave diffraction though a break-
water gap. The experiments were carried out at the 55 m long, 34 m wide and 1.3 m deep
wave basin at the Dalian University of Technology, Dalian, China. The breakwater was
placed parallel to the wavemaker and at a distance measuring 7 m from the position of the
wavemaker. The depth was kept constant at 0.4 m throughout the domain. The thickness
of the breakwater was 0.35 m, with a gap at the center formed by two semi-circular tips.
Two alternative gap widths of 3.92 m and 7.85 m were examined in the experiments. Ab-
sorbing layers 0.8 m wide were placed at waveward side of the breakwater (except from a
small area around the circular tips) in order to minimize wave reflection. Several angles
of wave attack in relation to the breakwater’s placement (i.e., 90◦, 75◦, 60◦ and 45◦) were
considered to assess the effect of diffraction in a thorough manner. Wave heights were
extracted at two cross sections parallel to the breakwater and at a normalized distance of
Y/L = 3.0 (Section 1) and Y/L = 6.0 (Section 2) shoreward the breakwater, (with L being
the wavelength corresponding to the wave peak period). The cross sections, along with the
experimental layout and bathymetry, are illustrated in Figure 6.
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In total, 16 test cases for each incident wave direction were carried out corresponding
to monochromatic, random unidirectional or multidirectional wave conditions with broad
and narrow directional spreading. Numerical validation of the BSQ wave model was
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carried out for the breakwater forming a gap of 3.92 m, with a wave incidence of 90◦ (direct
wave attack) and 45◦ (oblique wave attack), and for the cases of random unidirectional and
multidirectional waves, with a broad and narrow directional spreading, respectively. The
generated waves are obtained through a Jonswap source function. An overview of the test
cases reproduced in the numerical model is given in Table 2.

Table 2. Incident wave conditions and spectrum parametrization for the six cases in Yu et al. 2000,
simulated with the BSQ wave model.

Case Ho(cm) Tp(s) θo(◦) α Γ s

U1 5.0 1.20 90 0.0081 4 -
N1 5.0 1.20 90 0.0081 4 19
B1 5.0 1.20 90 0.0081 4 6
U2 5.0 1.20 45 0.0081 4 -
N2 5.0 1.20 45 0.0081 4 19
B2 5.0 1.20 45 0.0081 4 6

The computational grid was discretized utilizing a spatial step in both directions
of ∆x = ∆y = 0.05 m and a time step of ∆t = 0.01 s. The model was executed for 150 s,
and the last 5 periods were used to extract the numerical results of wave heights. Model
results concerning diffraction coefficients (Kd = H/Ho) along Section 1 are showcased
in Figure 7.
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Overall, a satisfactory agreement is obtained between model results and experimental
measurements for all cases shown above, with the biggest discrepancies observed in the
case of oblique wave attack for the unidirectional wave case. All in all, the BSQ wave
model seems capable of accurately simulating the effect of wave diffraction through a
breakwater gap, therefore it is rendered capable to accurately simulate wave transformation
and propagation inside port basins.

In order to provide a better overview of the wave transformation processes and the
BSQ model’s capability to reproduce the effect of diffraction through a breakwater gap, the
instantaneous spatial distribution of the significant wave height, as well as the free surface
elevation obtained through the numerical model simulation for case U1, are showcased in
Figure 8a,b The results are further discussed and analyzed in Section 4.
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Yu et al., 2000, extracted at the end of the BSQ model simulation.

3.3. Wave Overtopping on a Smooth Sloping or Vertical Breakwater (Williams et al., 2019)

In the following section, the experiments of wave overtopping over an emerged
smooth sloping breakwater or a vertical wall reported in [35] were reproduced with the
BSQ wave model to evaluate its capability to estimate wave overtopping discharge at the
lee of coastal protection structures. The experiments were conducted in the wave flume at
the University of Nottingham, Nottingham, UK, which is approximately 15 m long and
0.23 m wide, with an operating depth of up to 0.22 m. The bottom of the flume was flat,
but for the purpose of these experiments, a stainless-steel foreshore was placed, starting
at x = 6.75 m from the position of the piston-type wavemaker at x = 0 m. Two different
structure configurations were tested, namely a smooth sloping structure with a gradient of
1:255 and a vertical wall for the second series of tests. Both structures were characterized
with an identical freeboard (Rc = 0.06). The experimental layout for both configurations is
depicted in Figure 9.
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A variety of incident wave conditions were generated at the wavemaker (4 distinct
tests for each structure configuration) to ensure a wide range of overtopping magnitudes.
Three series of wave conditions were initially tested during the experimental procedure,
namely TS01, TS02 and TS05, which were deemed suitable for both the structure geome-
tries, and were therefore tested. Due to the differing wave-structure interaction for each
configuration, the fourth wave condition for each case varied. For the smooth slope, a com-
bination of wave characteristics that lead to low overtopping volumes (TS03) was chosen;
however, this resulted in no overtopping of the vertical wall structure, and therefore, it
could not be used for this configuration. Instead, a more energetic wave condition was
chosen for the vertical structure only (TS07). Waves were generated through a Jonswap
spectrum source function, with a peak factor of γ = 3.3, for all the test cases examined. A
compiled list of the incident wave conditions of each test case that was reproduced with
the BSQ wave model is showcased in Table 3.

Table 3. Incident wave conditions and spectrum parametrization for the two cases in Williams et al.,
2019, simulated with the BSQ wave model.

Case Structure Type Hmo,i (cm) Tp (s) Rc (cm) Rc/Hmo,i (-)

TS01-SS Smooth
Sloping 6.0 1.01 6.0 1.00

TS05-SS Smooth
Sloping 5.0 0.93 6.0 1.20

TS02-SS Smooth
Sloping 4.0 0.86 6.0 1.50

TS03-SS Smooth
Sloping 3.0 0.70 6.0 2.00

TS01-VW Vertical Wall 6.0 1.01 6.0 1.00
TS07-VW Vertical Wall 5.0 1.24 6.0 1.20
TS05-VW Vertical Wall 5.0 0.93 6.0 1.20
TS02-VW Vertical Wall 4.0 0.86 6.0 1.50

For the case of the vertical structure, a fully reflecting boundary at the wall’s face
was considered, whereas for the smooth structure, an additional constant eddy viscosity
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coefficient (vh = 0.01) was specified to emulate partial reflection along the slope. In order
to obtain incident wave conditions at the structure’s toe wave averaging of the surface
elevation signal at the wave model was carried out at a time interval spanning between
the time step corresponding to the arrival of the peak period wave components and up
until the “first wave” reaches the face of the structure, signifying the initiation of wave
reflection. For the case of the smooth sloping structure, bottom scattering is expected to
occur as waves propagate along the structures toe, which may inadvertently influence the
incident wave at the structure’s toe. The total model run-time for all simulations was set
at 41.0 s.

The obtained results concern the computed spectral wave height at the toe of the struc-
ture Hmo,c (at the position of WG3 of Figure 9), along with the calculated normalized wave
overtopping discharge Q∗,c. For the calculation of the overtopping discharge, Equation (21)
was utilized for the case of the smooth sloping structure, whereas Equation (22) was imple-
mented for the case of the vertical wall. In order to quantify the difference between the
measured and computed values, the absolute relative difference between each measured
quantity (Xm) and the computed one (Xc) was obtained through the following relationship:

Xdiff =
|Xm − Xc|

Xm
(24)

The computed and measured values concerning wave heights at the toe of the structure
and normalized overtopping discharge along with the corresponding absolute relative
difference for each quantity are shown in Table 4.

Table 4. Incident wave conditions and spectrum parametrization for the six cases in Williams et al.,
2019, simulated with the BSQ wave model.

Case Hmo,m (cm) Hmo,c (cm) Hmo,diff (%) Q*,m (-) Q*,c (cm) Q*,diff (%)

TS01-SS 4.30 4.36 1.44% 0.008655 0.006929 19.94%
TS05-SS 3.80 3.92 3.22% 0.005362 0.004739 11.62%
TS02-SS 3.20 3.33 4.06% 0.00233 0.002358 1.20%
TS03-SS 2.00 1.98 1.17% 0.000543 0.000069 87.30%

TS01-VW 4.30 4.24 1.42% 0.004571 0.00098 78.62%
TS07-VW 4.00 4.07 1.70% 0.004268 0.00083 80.59%
TS05-VW 3.80 3.72 2.11% 0.002192 0.00056 74.24%
TS02-VW 3.20 3.22 0.51% 0.00082 0.00028 65.91%

As shown in Table 4, the prediction error for the computed incident wave heights at
the toe of the structure is relatively small, validating the use of the “parametric simplified”
methodology for the purpose of distinguishing incident wave conditions from the reflected
ones. Larger prediction errors can be observed for the case of the smooth sloping structure,
which can be attributed to the inherent presence of bottom scattering in the governing
equation. On the other hand, the prediction errors of the normalized overtopping discharge
are significantly larger, especially for the case of the vertical wall. Taking into account
that the errors in the calculated wave heights are minimal, the errors in the calculation of
overtopping discharges stem from the utilization of the empirical formulae employed to
calculate the wave overtopping discharges. Although the relative error is quite significant
at first sight, each test falls within the 90% confidence band of the empirical formulae, as
specified in [30], and further clarified in [35]. Therefore, the performance of each empirical
relationship depends on the structure’s configuration (the empirical method for smooth
sloping structures performs generally better than the vertical wall), as well as on the total
volume of overtopping and the severity of the event, as stated in [35]. From the above, given
the minimal computational effort required by the integration of the empirical calculation
formulae for wave overtopping, as well as the acceptable accuracy of the obtained results,
the BSQ model is deemed to perform quite satisfactorily in predicting the wave overtopping
discharge for a variety of incident wave conditions and structure configurations.
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4. Discussion

In the previous section, an extensive validation of the BSQ wave model was provided,
in order to access the capability of the wave model to deal with the propagation of irregular
waves in the coastal zone, with or without the presence of coastal protection structures.

Wave breaking of unidirectional waves was investigated by reproducing the exper-
iments of [32]. It can be seen from Figure 1 that the model predicts the shoaling and
subsequent decay, due to wave breaking fairly well. For Case 1 of [32], corresponding to a
peak frequency fp = 0.6 Hz, a small discrepancy between measurements and model results
can be observed in the wave stations close to the shoreline. This can be attributed to the
underprediction of the wave setup magnitude in the wave model. For Case 2 of [32], which
corresponds to a peak frequency of fp = 1.0 Hz, model results are almost identical to the
experimental measurements, validating the capability of the model to predict the onset of
breaking as well as the magnitude of wave energy dissipation on a plane sloping beach in
a very accurate manner.

The second case serves the purpose of evaluating the propagation of irregular multidi-
rectional wave fields over an elliptic shoal under the combined effect of wave refraction-
diffraction [33]. It can be deduced from Figure 3 that the model results are in very satisfac-
tory agreement with the experimental measurements when examining the propagation of
irregular multidirectional waves of a narrow directional spreading. The biggest discrep-
ancy can be observed in Section 3. In particular, a higher peak and focusing of wave energy
can be observed at Y = 12.5 m in the model results of normalized wave height. This can be
attributed to an overestimation of wave refraction/diffraction in the numerical model for
the particular Section, since it is located at the northern end of the shoal. Conversely, the
agreement is excellent on Section 4, which is located further away from the shoal, capturing
the transformation of the wave height due to the refraction and diffraction of wave rays in
a very satisfying manner. The same holds true for the transverse Sections 6 and 8, where
the performance of the wave model is excellent compared to the measured values. For
the propagation of irregular multidirectional waves with a broad directional spreading,
model results are deemed very satisfactory. In particular, due to the broad directional
spreading, the normalized wave height variations, especially along Sections 3 and 4, have
smoother peaks, and are smaller in magnitude. In accordance to the conclusions drawn for
the case of narrow directional spreading, the biggest discrepancy is observed once again in
Section 3, with a sharper peak being present in model results due to the increased effect
of wave diffraction from the shoal. It should be noted that selecting few wave directional
divisions can lead to a deterioration of model results associated with an inadequate res-
olution of the wave directional spreading function for the single summation method of
spectrum discretization. Specifying a number of wave directional divisions at a number
from 13–26 was deemed accurate for the particular test case, and led to accurate results
for all cases examined. All in all, the BSQ wave model is considered to reproduce the
combined effect of refraction/diffraction in a very adequate manner.

The third validation case concerned the propagation of irregular unidirectional and
multidirectional waves through a breakwater gap [34]. This test case is of paramount
importance, since it serves as a thorough evaluation of the wave-structure interaction
mechanisms present in the BSQ wave model. Cases of direct and oblique wave attack
were simulated with the wave model for a variety of incident wave conditions concern-
ing unidirectional and multidirectional wave fields with narrow and broad directional
spreading, respectively. For the case of perpendicular wave propagation in relation to the
breakwater gap, a satisfactory agreement is achieved for all cases of incident waves. More
specifically, for the unidirectional wave case (U1), the normalized wave heights are in good
agreement with respect to the magnitude of the experimental measurements, as can be
seen from Figure 7. A small underestimation of the diffraction coefficient behind the tips of
the breakwater can be observed in Section 1 (at X/L = −2.0 and X/L = 2.0), with secondary
peaks being present in the experimental measurements. This underestimation can also be
observed in tests N1 and B1, and can be attributed to the difference of the absorbing layer
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between the model and experiment, leading to different patterns of wave reflection from
the tip of the breakwater. This is particularly evident in case U2, where a difference at the
location of the peak of the diffraction coefficient is observed, due to the increased presence
of reflected waves from the tip and lee of the breakwater, which are more prevalent in the
oblique wave attack cases. However, for the multidirectional wave cases (N2 and B2), the
effect of wave reflection from the breakwater’s tip is not as prevalent, due to the variety
of angles with which waves approach the breakwater, counterbalancing the focusing of
the wave energy associated with a singular wave angle for the unidirectional wave case.
In general, a very good agreement is observed between model results and experimental
measurements, rendering the BSQ wave model a valuable tool for the estimation of wave
agitation and propagation inside port basins.

Lastly, the experiments of [35] concerning wave overtopping over a smooth sloping
structure as well as a vertical wall were reproduced with the BSQ wave model in order to
evaluate its capability to predict wave overtopping discharges at the lee of the structure.
The purpose of this evaluation is twofold, as firstly it is important to assess the capability
of the model to predict incident wave heights at the toe of the structure by minimizing
the presence of reflected waves from the boundaries in the signal. A parametric simplified
methodology consisting of wave averaging between the time interval for which the peak
period reaches the computational cell of the structure’s toe until the time step for which
waves reach the face of the structure and are hence reflected was utilized in the context of
this research. As seen in Table 4, the predicted wave heights at the toe of the structure are
in good agreement with the experimental measurements for both structure configurations.
The relative errors are higher for the case of smooth sloping structures, due to partial
reflection as waves propagate along the structure’s slope. It should be noted that this
simplified methodology is valid for the cases of narrow frequency wave spectra, as a broad
spectrum can lead to an overestimation or underestimation of the incident wave heights
since several wave components travel with different phase velocities. Another possibility
is offered in the BSQ wave model, namely executing a “reference domain” simulation
without the presence of the structure, in order to compute incident wave height at its
toe, however this approach significantly increases numerical burden, especially for large
computational domains. Regarding the estimation of overtopping discharges, the empirical
formulae in [30] and [31] were utilized for the smooth sloping breakwater and vertical wall,
respectively. The relative difference between measurements and model predictions are
quite significant, especially for the case of vertical breakwaters. This difference is dependent
on the magnitude of overtopping volumes (i.e., higher discrepancies are observed for the
smooth sloping structure for TS03-SS, which corresponds to low overtopping discharge).
This can be caused by the fact that the formula of [30] was calibrated for the case of a small
freeboard (low-crested structure configuration), which is not the case in TS03-SS [35]. For
all cases examined though, the obtained results lie well within the confidence intervals
of the empirical methods [35]. Taking all the above into account, it is considered that the
methodology to calculate wave overtopping in the BSQ wave model offers a very good
compromise between accuracy, simulation efficiency, and speed.

5. Conclusions

In the present paper, a highly nonlinear Boussinesq wave model (BSQ) initially devel-
oped by [18] and later extended by [19] to account for wave propagation over submerged
porous mediums was presented. The model was further extended to incorporate the
estimation of wave overtopping discharges at the lee of coastal protection works utilizing
an ad hoc incorporation of empirical relationships [30,31]. The model has been thoroughly
validated against four series of experiments covering a wide range of coastal engineering
applications, namely irregular wave breaking on a plane beach [32], wave propagation
over a shoal [33], wave penetration through a breakwater gap [34] and wave overtopping
at the lee of a breakwater [35]. For all the test cases, examined model results were in very
good agreement with the experimental measurements.
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The first case simulated with the BSQ model concerned irregular wave breaking on a
plane sloping beach, as presented in [32]. Model results were in excellent agreement with
experimental measurements, providing an accurate estimation of wave energy dissipation,
due to bathymetric breaking for both the cases of spilling and plunging breakers.

For the next experiment of [33], which was reproduced with the wave model, the
obtained results were in excellent agreement with the experimental measurements for the
case of irregular multidirectional wave propagation over a submerged shoal with narrow
and broad directional spreading, respectively. The focusing of wave energy behind the
shoal was adequately captured, validating the capability of the wave model to simulate the
combined effect of refraction/diffraction, due to its improved dispersion characteristics. A
slight overestimation of wave heights was observed at Section 3, which was positioned
directly behind the submerged shoal.

In the penultimate case, the model’s capability to simulate wave penetration through
a breakwater gap, as presented in [34], was investigated. Diffraction coefficients obtained
by the numerical model simulations for the cases of unidirectional and multidirectional
wave fields with narrow and broad directional spreading respectively, were in general in a
very good agreement with the experimental measurements. The wave agitation at the lee
of the breakwater was also predicted quite satisfactorily by the numerical model. Some
small discrepancies between measurements and model predictions can be attributed to
the different absorbing layers’ characteristics present in the experimental layout and the
numerical model, leading to the presence of reflected waves, which influence the results,
especially for the case of oblique wave attack of unidirectional waves.

Lastly, the experiments of [35] concerning wave overtopping on a smooth sloping
structure or a vertical wall were simulated with the BSQ model. An ad hoc “simplified
parametric” methodology to distinguish incident wave heights from reflected ones was
proven to be adequate to provide an efficient and accurate estimation of the incident
wave heights at the toe of the structure. Differences between the calculated and measured
overtopping discharges were larger, in particular for the case of vertical wall, however
the results were well within the confidence intervals of the empirical formulations [35].
Given the computational efficiency of integrating the empirical overtopping formulae in
the model formulations, this addition is considered valuable in providing calculations of
wave overtopping for various incident wave conditions and structure configurations with
respectable accuracy.

Taking into consideration the extensive validation of the BSQ wave model presented
herein, it is considered to be capable of accurately simulating the complex wave transfor-
mation processes taking place in the coastal zone, with or without the presence of coastal
protection works, as well as inside wave basins. Therefore, the model is rendered to be a
valuable tool at the disposal of coastal engineers and scientists desiring to obtain accurate
solutions on wave propagation in complex domains, and for a variety of incident wave
conditions at reasonable computations times.

Regarding possible future research aspects and developments, the generalization of
the numerical solution to a curvilinear coordinate system as described in [36] is to be
undertaken, in order to better describe complex and curved geometries such as shorelines
and coastal defense structures. Furthermore, the inclusion of ship-borne wakes in the BSQ
wave model [37], as well as their subsequent interaction with coastal structures, can further
enhance the computation of wave agitation inside port basins.
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