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Abstract: Friction has long been an important issue in multibody dynamics. Static friction models
apply appropriate regularization techniques to convert the stick inequality and the non-smooth
stick–slip transition of Coulomb’s approach into a continuous and smooth function of the sliding
velocity. However, a regularized friction force is not able to maintain long-term stick. That is why
dynamic friction models were developed in recent decades. The friction force depends herein not only
on the sliding velocity but also on internal states. The probably best-known representative, the LuGre
friction model, is based on a fictitious bristle but realizes a too-simple approximation. The recently
published second-order dynamic friction model describes the dynamics of a fictitious bristle more
accurately. It is based on a regularized friction force characteristic, which is continuous and smooth
but can maintain long-term stick due to an appropriate shift in the regularization. Its performance is
compared here to stick–slip friction models, developed and launched not long ago by commercial
multibody software packages. The results obtained by a virtual friction test-bench and by a more
practical festoon cable system are very promising. Thus, the second-order dynamic friction model
may serve not only as an alternative to the LuGre model but also to commercial stick–slip models.

Keywords: dynamic friction model; commercial stick–slip friction models; long-term stick; multi-
body dynamics

1. Introduction

Friction has long been an important issue in multibody dynamics. A detailed survey
and comparison of several friction force models for dynamic analysis of multibody me-
chanical systems is provided in [1]. Just as in the present work, the use of internal states
defines the difference between dynamic and static friction models. It starts with different
variations of the static Coulomb model, including viscous parts and the Stribeck effect,
discusses several regularization approaches with finite slopes at zero velocity, and ends
up with dynamic friction force models, including the probably best-known representative,
the LuGre friction model.

Static friction models, where an appropriate regularization technique converts the
stick inequality and the non-smooth stick–slip transition of Coulomb’s approach into a
continuous and smooth function of the sliding velocity, are not able to maintain long-
term stick. That is why commercial multibody software packages, like Adams, RecurDyn,
and Simpack, also offer dynamic friction models. To reproduce stick–slip effects and
maintain long-term stick, they rely on their own developments and do not simply use
models known from the literature, e.g., [1]. Just the LuGre model, as published in [2], is
implemented in the commercial software package Adams [3]. However, as demonstrated
in [4], the LuGre approach does not appear to be an engineer’s first choice because it has
too many drawbacks and is not able to reproduce a pre-defined friction characteristic in
dynamic applications.
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A second-order dynamic friction model (FrDyn2) was introduced in [4] as a reference
to the LuGre and to a standard static friction model. The FrDyn2 model produced accurate
and reliable results in standard stick–slip examples as well as in a more practical model of
a festoon cable system.

The present paper compares this model to commercial stick–slip models as as pre-
sented and analyzed in [5]. It turns out that the concepts of Adams and Recurdyn are rather
similar but different from the Simpack stick–slip model. That is why just the Adams and
the Simpack stick–slip models are used here for the comparison with the FrDyn2 model.

Section 2 illustrates a typical standard and the shifted regularization technique and
provides a short description of the FrDyn2 model, as defined in [4]. Section 3 demonstrates
the long-term stick potential of the FrDyn2 model, achieved by an appropriate shift in the
standard regularization. It also illustrates the poor performance of a static friction model
which approximates stick by slow sliding. A virtual friction test-bench was set up in Matlab
for that purpose. Section 4 compares the break-away and stick–slip transition of the FrDyn2
model with the stick–slip models of Adams and Simpack. For that purpose, the virtual
friction test-bench was also set up in Adams and Simpack. The focus of Section 5 is on
the dynamic response to step-like force excitations with different durations and a force
amplitude close to the adhesion limit. Section 6 analyzes the performance of the friction
models under consideration by the more practical model of a festoon cable system, with a
setup in Matlab, Adams, and Simpack. Section 7 summarizes and discusses the results and
and provides an outlook for future research.

Finally, Appendix A contains a Matlab script and the corresponding Matlab functions
describing the virtual friction test-bench operated with the FrDyn2 model.

2. Static and Dynamic Friction Models

The idealized friction model of Coulomb simply distinguishes between sticking and
sliding, as seen in Figure 1a. The friction force FR depends on the sliding velocity v and is
realized by combining an inequality with a simple relation

|FR| ≤ µs FN if v = 0 and FR =
v
|v| µd FN if |v| > 0 (1)

The friction force is proportional to the normal force FN and characterized by the
parameters µs and µd, which specify the static and the dynamic coefficients of friction.

Figure 1. Dry friction: (a) Coulomb’s approach, (b) regularized approximation, (c) shifted regularization.

Coulomb’s dry friction approach, as defined in Equation (1), is practically unusable
in general multibody dynamics due to the inequality representing stick. That is why
dry friction is usually approximated by an unambiguous function, as seen in Figure 1b.
The regularized characteristic FR = FR(v) introduces the fictitious velocity vs, which
defines the width of the regularization interval −vs ≤ v ≤ +vs and the dynamic veloc-
ity vd that characterizes at |v| ≥ vd the range of full sliding, where the simple relation
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FR = ±µdFN applies. The transitions from the value pairs (−vd,−µdFN)→ (−vs,−µsFN)
and (−vs,−µsFN) → (+vs,+µsFN) as well as (+vs,+µsFN) → (+vs,+µsFN), which
are usually modeled by sufficiently smooth functions, like polynomials or trigonomet-
ric functions.

Static friction models are widely used in multibody dynamics and control theory. They
are able to reproduce stick–slip effects in standard and in a more practical application [4].
Even much simpler regularizations, assuming by µ = µs = µd just one unique friction
value, are in good conformity to dynamic measurements [6]. However, static friction
models cannot maintain long-term stick. They describe the friction force just as a function
of the sliding velocity FR = FR(v). Figure 1b defines a commonly used regularized friction
characteristics FR = FR(v) by a set of “static” (µs, vs) and “dynamic” (µd, vd) friction
parameters. However, the use of dynamic friction parameters is no essential criteria for a
dynamic friction model, as erroneously assumed in [7]. Here, a static friction force defined
by Ff = Ff (µs, vs, µd, Fn) making use of the dynamic friction value µd is already supposed
to define a dynamic friction force.

Dynamic friction models are characterized by the use of internal states. The friction
force is then defined by a more complex function FR = FR(v, s), where s collects the internal
states. Dynamic friction models are able to reproduce stick–slip effects and maintain
long-term stick [8].

A software-capable formulation of a friction force model also takes the friction model
parameters into account. Then, FR = FR(v, p) characterizes a static and FR = FR(v, s, p) a
dynamic friction model, where p collects the friction model parameters.

The well-known LuGre friction model uses the displacement z of a fictitious bristle
as an internal state. However, as demonstrated in [4], the LuGre approach represents just
a first step approximation to the dynamics of a massless bristle, which results in several
drawbacks of this dynamic friction model. If the mass of the fictitious bristle is also taken
into account, this results in a second-order dynamic friction model (FrDyn2), which was
introduced in [4] as a reference. The FrDyn2 model exhibits none of the LuGre drawbacks
and performed well in standard stick–slip examples and in a more practical model of a
festoon cable system.

The second-order bristle dynamics is defined by

mb z̈ = FR − FB = FR(vC − ż)− (σ0 z + σ1 ż) (2)

where mb z̈ approximates the inertia force of the fictitious bristle, FR = FR(vC − ż) describes
the friction force, FB = σ0 z + σ1 ż models the bristle as a visco-elastic element, and vC
represents the component of the contact point velocity that is perpendicular to the contact
normal. Just as with the LuGre model, σ0 and σ1 describe the stiffness and the damping of
the fictitious bristle. The fictitious mass of the bristle is defined by

mb =
σ2

1
4 σ0

(3)

which represents the aperiodic case of the homogenous second-order differential Equation (2),
thus avoiding unwanted oscillations in the fictitious bristle. The FrDyn2 model implies
with s = [z, ż] two internal states. It is provided as a Matlab function in Appendix A
by Listing A4.

The stick–slip models of Adams and RecurDyn describe the dynamic friction force
just as a function of the contact point velocity FRd = FN µd(vC) and approximate the static
friction force by a two-dimensional function FRs = FN µs(vC, x), where x is a fictitious dis-
placement [5]. A smooth function of the contact point velocity vC, which is not explained in
detail in the user manual, describes the transition from µs to µd. The fictitious displacement
serves as an internal state and generates the static friction force FRs or the static friction
coefficient µs as a nonlinear function of x by adding a viscous damping term.
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Simpack provides a stick–slip model which realizes, like Coulomb’s approach in
Figure 1a, a sudden drop from the static µs to the dynamic friction coefficient µd [5]. In
the adhesion region, the friction force is approximated by a visco-elastic element whose
deflection again represents an internal state of this stick–slip model.

3. Long-Term Stick of the Second-Order Dynamic Friction Model

By applying an appropriate horizontal shift to the regularized friction characteristics,
as indicated in Figure 1c, the second-order dynamic friction model can maintain long-term
stick. The steady state solution (z̈ = 0 and ż = vC) of the fictitious bristle dynamics (2)
provides the required sticking force as

F0 = FR(0) = σ0 z + σ1 vC (4)

The FrDyn2 model describes here the transition from the static to the dynamic fric-
tion force (µs, Fs) → (µd, Fd) by a cubic polynomial and defines the friction force in the
regularization range −vs ≤ v ≤ +vs by a parabolic function. Then,

∆v =
F0

|F0|
vs wF with wF =

{
1−

√
1− |F0|/Fs if |F0| ≤ Fs

1 elsewhere
(5)

delivers the corresponding horizontal shift. The static friction force is defined by Fs = FN µs
and F0/|F0| adjusts the horizontal shift to the sign of the required sticking force value.

Figure 2 provides a virtual test-bench which is used here to demonstrate the long-term
sticking quality of the FrDyn2 model and in the following for a comparison to the stick–slip
models of Adams and Simpack.

Figure 2. Virtual friction test-bench.

A body of unit mass m = 1 kg is in contact to a horizontal rough plate, as seen in
Figure 2a. It is exposed to a horizontal force F = F(t), which is continously increased
in the interval 0 ≤ t ≤ tE from F = 0 to the final value F = FE, as defined by Figure 2d.
The friction parameters µs, vs and µd, vd, provided by Figure 2c, model a regularized
friction characteristic as defined in Figure 1b. The FrDyn2 model uses the states z and ż
of a fictitious bristle, where mb denotes its fictitious mass and σ0 and σ1 characterize the
visco-elastic properties of the bristle, as seen in Figure 2b. The bristle parameters, as defined
by Figure 2c, are adjusted to the body and the friction parameters by estimating a reference
friction force of FRre f ≈ 5 N and defining a reference bristle deflection of zre f = 1 · 10−6 m.
Then, σ0 = FRre f /zre f = 5 · 106 N/m provides the bristle stiffness. The reference friction
force corresponds to a reference mass of mre f = FRre f /g = 0.51 kg. It provides in a first
guess the damping of the fictitious bristle as σ1 = 2√mre f σ0 = 3192.75 N/(m/s), when
the aperiodic case of a fictitious oscillator consisting of mre f , σ1, and σ0 is assumed hereby.

The Matlab script, provided in Appendix A by Listing A1, performs simulations with
different step durations. It applies the standard implicit solver ode15s where the default
tolerances are changed to RelTol = 1·10−6 and AbsTol = 1·10−9. The reference bristle
deflection was chosen very small in this example. The Matlab function dyn_fr_test_bench,
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provided in Appendix A by Listing A2, computes the dynamics of the virtual friction
test-bench including the FrDyn2 model as a set of first-order differential equations. The
Matlab functions Step3 and FrDyn2, defined in Appendix A by Listings A3 and A4, provide
the step input and the dynamics of the FrDyn2 model. The simulation results, plotted in
Figure 3, demonstrate that the FrDyn2 model perfectly maintains long-term stick.

Figure 3. Long-term stick potential of second-order dynamic friction model.

The excitation force is slowly increased in the time interval 0 s ≤ t ≤ 30 s from
F = 0 to 99% of the static friction force Fs, which is given here by Fs = µs FN = 0.6 ·
1 kg · 9.81 m/s2 = 5.886 N. In the subsequent time interval 30 s ≤ t ≤ 300 s, the force
FE = 0.99 · 5.886 N = 5.827 N is kept constant. The friction force FR(t), generated by the
FrDyn2 model, counteracts the excitation force FR = F, as seen in the upper-left plot in
Figure 3. It is worth noting that the friction force, as defined by the free-body diagram in
Figure 3b, points in the opposite direction of the contact point velocity. The tip of the bristle
sticks to the ground because the excitation force does not exceed the static friction force.
Then, the bristle deflection z coincides with the body displacement u and provides the
friction force as a function of the bristle deflection z = u, as demonstrated by the lower-right
plot in Figure 3. As a consequence, the body shifts slightly and comes to a stand-still at the
steady state value of zst = ust = FE/σ0 = 5.827 N/5.0 · 106 N/m = 1.1654 · 10−6 m. The
friction force diagram FR(v), in the upper-right plot of Figure 3, shows that the FrDyn2
model can reproduce the ambiguous part of Coulomb’s friction law at vanishing contact
point velocities v = 0.

A static friction model describes the friction force just as a function of the sliding
velocity, FR = FR(v). A typical regularization without any horizontal shift is illustrated
in Figure 1. A static friction model can reproduce the required friction force FR = F but
definitely cannot maintain stick for longer time intervals, as seen in Figure 4.

In the regularization range, the friction force characteristic FR = FR(v) is described
by a parabolic function. This pre-defined function, plotted in the right graph of Figure 4
by a thin dashed line, perfectly coincides with the computed friction force FR plotted
by a solid thick line. The parabola delivers the required steady state friction force of
FR = Fst = 0.99 · Fs at the velocity of vst = 0.9 · vs = 0.9 · 10−3 m/s. As a consequence,
the body does not come to rest but continues to move inexorably at this velocity.
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Figure 4. Slow sliding approximates sticking at a standard static friction model.

4. Break-Away and Stick–Slip Transition

The virtual friction test-bench, defined in Figure 2, consists of a body in contact to a
horizontal rough plate. The excitation force F = F(t) is now slowly increased within 10 s
from F = 0 to the final value F = FE = 1.05 Fs = 6.180 N, which exceeds the adhesion limit
of Fs by 5%. The excitation force F = F(t), modeled by a third-order polynomial, reaches
the adhesion limit F = Fs = 5.886 N at time t = tB = 8.6808 s.

The simulation results are plotted in Figure 5. The dashed blue line, the solid black
line, and the dotted red line represent the results computed with the FrDyn2 model, the
Adams stick–slip model, and the Simpack stick–slip model.

Figure 5. Virtual friction test-bench simulation results with a force that exceeds the adhesion limit.

At first (0 ≤ t ≤ tB), the body remains in a quasi-static equilibrium, where the slowly
increasing excitation force F(t) is perfectly counteracted by a friction force FR(t) = F(t)
generated by each of the friction models, as demonstrated in Figure 5a, where the lines for
F(t) and FR(t) perfectly coincide in the time interval 0 ≤ t ≤ tB. In general, the friction
models under consideration generate friction forces depending not only on the contact
velocity but also on internal states. The FrDyn2 model uses the displacement z of a
fictitious bristle and its time derivative ż as internal states s = [ z, ż ]. In the quasi-static
equilibrium mode, the velocity of the body and the time derivative of the bristle deflection
are negligibly small v ≈ 0 and ż ≈ 0. In this mode, the tip of the fictitious bristle sticks to the
ground, which results in a bristle deflection that equals the body displacement z = u. The
compliance of the fictitious bristle is modeled by a viscous force element, FB = σ0 z + σ1 ż.
In the quasi-static equilibrium mode, the body acceleration a = ü is negligibly small too,
as indicated in Figure 5b by the time history a = a(t) in the time interval 0 ≤ t ≤ tB.
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According to Equation (2), the friction force generated by the FrDyn2 model corresponds
then to the elastic part of the bristle force, FR → σ0 z = σ0 u. The quasi-static force FR = σ0 u
equals the static friction force Fs at the reference displacement of

u = xR =
Fs

σ0
=

5.886 N
5 · 106 N/m

= 1.1772 · 10−6 m (6)

The adhesion range is characterized by a vanishing sliding velocity (v ≈ 0) and
extends here to displacements in the range of 0 ≤ u ≤ xR. In this range, the friction force is
generated as a function of the displacement, where the FrDyn2 model and the stick–slip
model of Simpack apply a linear and the stick–slip model of Adams a nonlinear digressive
function, as seen in Figure 5f. The Adams manual does not specify the type of nonlinearity
but, as indicated by the solid black line in Figure 5f, it approaches the limit value FR = Fs
at the reference displacement xR defined in (6) with a vanishing inclination.

The stick–slip model of Simpack is based on Coulomb’s approach, where the friction
force drops in an instant from the static to the dynamic value as soon as the excitation force
exceeds the static friction force at t = tB, as seen in Figure 5a,d in particular. The transition
from the static to the dynamic friction force Fs → Fd are modeled in the FrDyn2 and the
Adams stick–slip models as functions of the velocity v controlled by the parameters vs
and vd. The FrDyn2 model applies a cubic polynomial which is shifted in the horizontal
direction to maintain stick at v = 0, as indicated in Figure 1. As can be seen by inspecting
Figure 5e, the FrDyn2 model generates a friction force characteristic (dashed blue line)
which reproduces the pre-defined and horizontally shifted one (magenta colored circles)
nearly perfectly. The friction characteristics produced by the Adams stick–slip model is
rather similar (solid black line). Most likely, Adams models the transition Fs → Fd by a
fifth-order polynomial. As a consequence, the FrDyn2 and the Adams stick–slip models
produce slightly more delayed drops in the time histories of the computed friction forces,
as seen in Figure 5d.

Figure 5b,c illustrate the break-away effect at t = tB by the time histories of the body
acceleration ü = a = a(t) and the body displacement u = u(t). All friction models under
consideration approximate sliding at v ≥ vd by a constant friction force FR(v ≥ vd) = Fd =
2.943 N. Viscous components in the friction force are not considered here. The free body
diagram in Figure 2b delivers the linear momentum

m ü = F− FR (7)

for the body of mass m = 1 kg. At t > 10 s which includes t > tB, the applied force is
defined by F = FE = 1.05Fs = 6.180 N and the friction force is represented by its dynamic
value FR = Fd = 2.943 N. Then, the maximum acceleration of the body is defined by

amax = ü(t > 10 s) = (FE − Fd)/m = (6.180 N− 2.943 N)/1 kg = 3.237 m/s2 (8)

which is exactly reproduced by the friction models, as seen in Figure 5b.

5. Dynamic Response

A pulse load excitation, performed in [4], revealed the tendency of dynamic friction
models to produce dynamic overshoots in the friction force time histories. That is why
the virtual test-bench defined in Figure 2 is now exposed to excitation forces where the
amplitude FE = 0.95 Fs = 5.592 N is 5% less than the static friction force Fs = 5.886 N
and the step duration is varied from tE = 0.1 s to tE = 0.0001 s. The corresponding
simulation results are shown in Figure 6. The solid thin gray line represents the excitation
force F = F(t), the dashed blue line, the solid black line, and the dotted red line mark
the friction forces FR = FR(t) computed with the FrDyn2, the Adams stick–slip, and the
Simpack stick–slip models.
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Figure 6. Dynamic friction forces resulting from step force excitation with different durations.

The time histories of the friction forces perfectly coincide with the excitation force
FR(t) = F(t) at a step duration of tE = 0.1 s, as seen in Figure 6a. All friction models operate
here in a quasi-static sticking mode where the friction forces are practically generated as a
function of the body displacement, as already illustrated in Figure 5e, and in this specific
case by Figure 7.

Figure 7. Friction force characteristics and body displacements at a step duration of tE = 0.1 s.

The forces FR generated by the friction models depend here practically not on the
velocity v = u̇ but only on the displacement of the body u, as seen in Figure 7a,b. In
case of the FrDyn2 and the Simpack stick–slip models FR = σ0 u holds, which provides
the friction force FR = FE = 5.592 N at the steady state displacement u = xD2

st = xS
st =

5.592 N/5·106 N/m = 1.12·10−6 m, as indicated in Figure 7b,c by thin dashed black lines.
Adams models the friction force a quasi-static sticking mode by a strongly nonlinear and
degressive function of the displacement. The Adams manual does not specify this function
but the simulation results provide the friction force FR = FE = 5.592 N at the steady state
displacement u = xA

st = 0.71·10−6 m, as seen in Figure 7b,c. As expected from the time
histories FR = FR(t) plotted in Figure 6a, the time histories of the body displacement reach
their steady state values u = xD2

st = xS
st and u = xA

st at t > tE without any overshoots, as
seen in Figure 7c.

In a quasi-static mode, the tip of the fictitious bristle, which forms the basis of the
FrDyn2 model, sticks to the ground. Then, the linear momentum (7) of the body in the
virtual friction test-bench simplifies to

m ü = F(t)− σ0 u or m ü + σ0 u = F(t) (9)

where the quasi-static friction force is generated by the bristle compliance FR = σ0 z and
z = u holds in addition. The simplified equation of motion (9) is characterized by the
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eigen-frequency ω0 =
√

σ0/m and delivers the value and its corresponding oscillation
period as

ω0 =
√
(5·106 N/m)/(1 kg) = 2236 s−1 and T =

2π

ω0
= 0.003 s (10)

As a consequence, even a rather short step duration of tE = 0.01 s will still represent
a subcritical excitation of the virtual friction test-bench. The time histories of the friction
forces FR(t) exhibit just a small overshoot at t > tE = 0.01 s, as seen in Figure 6b.

The situation becomes complicated for step durations tE < T, as seen in Figure 6c,d.
The Simpack stick–slip model (dotted red line) generates now significant overshoots, which
amount to

FRmax
∣∣tE=0.001 s
Simpack = 6.61 N and FRmax

∣∣tE=0.0001 s
Simpack = 6.75 N (11)

The values exceed the steady state value FRst = FE = 5.592 N by 18.2% and 20.7% and
even the static friction value Fs = 5.886 N by 12.3% and 14.5%, which calls into question the
physical basis of this stick–slip model. The time histories of the friction forces generated
by the FrDyn2 and the Adams stick–slip models (dashed blue and solid black lines) differ
somehow. But both models limit the friction force to the static value |FR| ≤ Fs, as expected
from friction models in general.

The friction models now generate friction forces which strongly depend on the body
velocity v = u̇ and the body displacement u, as seen in Figure 8a,b.

Figure 8. Friction force characteristics and body displacements at a step duration of tE = 0.001 s.

The Simpack stick–slip model (dotted red line) generates a time history of the body
displacement which approaches the quasi steady state value u = xst = 1.12·10−6 m with
a small overshoot shortly after the step duration of tE = 0.001 s, as seen in Figure 8c.
The FrDyn2 model overshoots and partly slides, resulting in displacements at t > tE
which exceed with uD2

st = 2.27·10−6 m the quasi steady state value of xst = 1.12·10−6 m
significantly. Hence, the FrDyn2 model generates a dynamic break-away effect at high
frequent excitation loads, which are close (here, 95%) to the static friction force. The time
history of the body displacement u = u(t) shows a strange behavior for the Adams stick–
slip model, as exemplified by the solid black line in Figure 8c. At first (t < 3.5·10−3 s), it
approaches the quasi steady state value u = xD2

st = xS
st = 1.12·10−6 m of the FrDyn2 and

Simpack solution and then (4·10−3 s < t ≤ 10·10−3 s) it starts to decrease very slowly, but
the simulated time interval 0 ≤ t ≤ 10·10−3 s is too short to indicate a limit value.

A simulation with the Adams stick–slip model over a longer time period results in the
time history of the body displacement u = u(t), as plotted in Figure 9.
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Figure 9. Body displacements generated with Adams at a step duration of tE = 0.001 s.

The section shown in Figure 8c has a light gray background. It seems that Adams
applies in its stick–slip model different time constants for the increase and decrease in the
body displacement u = u(t). The force excitation with a step duration of tE = 0.001 s is
much faster than the dynamics of the virtual friction test-bench. The body displacement
reaches its maximum value at t ≈ 0.0035 s, which corresponds to the oscillation period
computed in (10). The decay from the maximum displacement to the steady state value
takes about 0.05 s, which is fourteen times as much. This strange behavior was also reported
in [5], wherein pulse loads are applied to a single mass resting on a horizontal plate. At
the end of a series of impulse loads each of magnitude 0.8Fs, the body is returned to its
initial position. However, in the present example, a small but permanent deviation of
δu = uA

st − xA
st = 0.12·10−6 m remains, as seen in Figure 9. This indicates that the Adams

stick–slip model also tends to partly slip, when high frequent excitation loads close to the
static friction force are applied.

6. The Festoon Cable System Model

A planar model of a festoon cable system is used in [4] to asses different friction
models in a more practical example. The model consists of three cable mC and two trolley
mT masses, as seen in Figure 10.

Figure 10. Multibody model of a crane festoon system as defined in [4].

At the beginning (t = 0), the towing trolley is fixed at uTT(0) = 1.5529 m. The equilibrium
position of the cable system places the trolleys at xT1(0) = uTT(0)/3, xT2(0) = 2 uTT(0)/3, and
locates the cable masses at xC1(0) = uTT(0)/6, xC2(0) = uTT(0)/2, xC3(0) = 5 uTT(0)/6, as
well as zC1(0) = zC2(0) = zC3(0) = 0.96698 m. The non-holonomic constraint u̇TT = vTT
relates the movements of the towing trolley to a pre-defined velocity profile vTT = vTT(t).
The velocity profile, defined by the solid gray lines in Figure 11a, models an extension
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maneuver, which moves the towing trolley from the initial position u(t = 0) = uTT(0) =
1.5529 m to a final position of uTT(t > 5 s) = 5.553 m.

Figure 11. Results of a simulated festoon extension maneuver.

The Matlab simulation with the FrDyn2 model generates the output at every simula-
tion step. It applies the Matlab standard solver for stiff differential equations ode15swith
error tolerances of RelTol = 1·10−6 and AbsTol = 1·10−9.

The Adams and Simpack simulations were performed with an output step size of
∆t=1·10−4 s. The dashed blue, the solid black, and the dotted red lines mark the results
obtained by the FrDyn2, the Adams, and the Simpack stick–slip models.

The movement of the towing trolley ends at t = 5 s. After that, the trolleys perform
to and fro motions which at t ≥ 5 s are indicated by sign changes in the time histories of
trolley velocities vT1(t) and vT2(t). An arrow pointing from vT1(t ≈ 6.47 s) = 0 over FN1
down to FR1 highlights such an event, in particular. The dynamic motions of the cable
masses induce variations in the normal forces FN1 and FN2 acting between the trolleys and
the rail, as seen in Figure 11b. The time histories of the velocities vT1(t), vT2(t) and the
normal forces FN1(t), FN2(t) generated with FrDyn2 and the stick–slip models of Adams
and Simpack match nearly perfectly. However, the time histories of the friction forces FR1(t)
and FR2(t) exhibit some discrepancies, as seen in Figure 11c. In particular, when the trolley
velocities change their signs or during a sticking period of trolley 2.

The plots in Figure 12 focus on a sign change in the trolley velocity vT1 at t ≈ 6.47 s
and a sticking period of trolley 2 in the time interval 7.2 s ≤ t ≤ 7.8 s.
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Figure 12. Friction forces in specific time intervals.

In the very short time interval 6.45 s ≤ t ≤ 6.48 s, the normal force between trolley 1
and the rail amounts to FN1 = 21.2 N, as indicated in Figure 11b. The friction values defined
in Figure 10 provide in this case a static friction force of Fs = µs FN1 = 0.08·21.2 = 1.696 N
and a dynamic friction force of Fd = µd FN1 = 0.05·21.2 = 1.06 N. At times t = 6.45 s
and t = 6.48 s, the first trolley is in a full sliding mode, as indicated in Figure 12a by the
friction forces FR1(t = 6.45 s) = +Fd = 1.06 N and FR1(t = 6.48 s) = −Fd = −1.06 N.
These sliding modes are perfectly reproduced by the friction models under consideration.
Shortly before the sign change in the trolley velocity, the friction forces computed by the
FrDyn2 and the Adams stick–slip model make use of the Stribeck effect, which models a
velocity-dependent transition from the static to the dynamic friction force and vice versa.
The Simpack stick–slip model approaches vT1 → 0 with the dynamic force value and does
not reproduce a potential velocity-dependent increase in the friction force. The FrDyn2
and the Simpack stick–slip models describe the friction force at v = 0 by a linear spring,
whereas the Adams stick–slip model uses a nonlinear approach. That is why, the FrDyn2
model (dashed blue line) corresponds in the time interval 6.46 s ≤ t ≤ 6.47 s more to
the Simpack (dotted red line) than to the Adams stick–slip model (solid black line). The
friction forces of the FrDyn2 and the Adams stick–slip models are limited to the static
value |FR1| ≤ Fs, which results in FD2

R1 = FA
R1 = −1.696 N at t ≈ 6.47 s. However, The

Simpack stick–slip model overshoots and produces the peak value of FS
R1 = −2.685 N,

which exceeds by nearly 60% the static friction force Fs or −FS, respectively.
The sticking period 7.2 s ≤ t ≤ 7.8 s is represented rather similarly by the friction

models under consideration, as seen in Figure 12b. Again, the FrDyn2 and the Adams
stick–slip models increase the friction forces from the dynamic to the static value when
approaching stand-still at t ≈ 7.2 s. However, the small time delay of the peak values
visible in Figure 12a is not noticeable due to the large time interval applied in this plot.
The Simpack stick–slip model is based on Coulomb’s approach, which results in the
discontinuities at the slip–stick and stick–slip transitions in the dotted red line.

7. Discussion

The present manuscript compares a second-order dynamic friction (FrDyn2) model
with the commercial stick–slip models of Adams and Simpack. The comparison is per-
formed here with a virtual friction test-bench and a more practical model of a festoon
cable system.

All models can maintain long-term stick. The FrDyn2 model corresponds partly to the
Adams and partly to the Simpack stick–slip models. The FrDyn2 and the Adams stick–slip
models show dynamic break-away effects at high frequent excitation loads, which are
close (here 95%) to the static friction force. The Simpack stick–slip model avoids dynamic
break-away effects by overshoots in the friction force that far exceed the static friction
force. Adams models the decay of a friction force overshoot much slower than the increase,
whereas the FrDyn2 model considers in both cases the dynamics of the fictitious bristle.

The FrDyn2 model is based on a fictitious bristle characterized by its mass, stiffness,
and damping. The fictitious mass of the bristle is automatically adjusted to the stiffness and
damping parameters. The pre-defined friction force characteristic FR = FR(v) is described
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here by piecewise-defined polynomials but not limited to this. The bristle parameters can
easily be derived from estimated reference friction forces and estimated bristle deflections.

The results obtained by the FrDyn2 model are reliable and based on the physical
nature of the friction model approach, which makes the second order dynamic friction
model a suitable alternative to commercial stick–slip models.

The dynamics of the FrDyn2 model are governed by the friction characteristics. A
rapid transition from the static to the dynamic force, modeling the Stribeck effect, results in
a stiff performance of the FrDyn2 model. But the shifted regularized friction characteristic
is completely continuous and smooth, which makes it possible to apply any standard stiff
ode solver for a multibody system which incorporates the FrDyn model.

Future works will implement the FrDyn2 model as an external force element in Adams
and Simpack. Then, the run-time performance of this model can also be compared to the
corresponding commercial stick–slip models. The influence of the velocities vs and vd,
which model the regularization and the Stribeck effect on the results and on the run-time
performance, will be studied in addition.
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Appendix A. Virtual Friction Test-Bench Realized in Matlab

Listing A1. Virtual friction test-bench exposed to step-like force inputs.

1 % This Matlab script is part of the paper
2 % Rill , G.; Schuderer , M. A second order dynamic friction model.
3 % Modelling 2023, 4(3), 366 -381; https :// doi.org /10.3390/ modelling4030021
4 % It performs simulations with the virtual friction test -bench operated with
5 % the second order dynamic friction model as defined by Figure 2, described
6 % in Section 5, and provided by the Matlab function dyn_fr_test_bench.
7 % It displays the time histories of the excitation force f and the dynamic
8 % friction force fr generated by the second order dynamics friction model
9 % as displayed in Figure 6 by the dashed blue lines. The displacements u,
10 % the velocity v, and the acceleration a of the body are plotted in addition.
11
12 clear , close all
13
14 % define options for the Matlab ode solver ode15s
15 opts = odeset(RelTol= 1.e-6, AbsTol =1.e-9);
16
17 % define force amplitude relative to the static friction force
18 amp = 0.95;
19
20 % define 4 different durations of the step force excitation
21 te = [ 0.1, 0.01, 0.001, 0.0001 ]; % in s
22
23 % define body parameters as specified in Figure 2c
24 bp.g = 9.81; % gravity in m/s^2
25 bp.m = 1; % mass in kg
26
27 % define friction model parameters as specified in Figure 2c
28 fp.sigma0 = 5.0e6; % stiffness of fictitious bristle in N/m
29 fp.sigma1 = 3192.75; % bristle damping in N/(m/s)
30 fp.mus = 0.6; % static friction
31 fp.vs = 1e-3; % velocity where mu(vs)=mus
32 fp.mud = 0.3; % dynamic friction
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33 fp.vd = 10e-3; % velocity where mu(vd)=mud
34
35 % compute static friction force
36 fs = fp.mus*bp.m*bp.g;
37
38 % compute steady state bristle deflection at f=fs
39 zb = fs/fp.sigma0;
40
41 % define step force excitation with different durations
42 sp.ts = 0.0; % time in s where step starts
43 sp.te = []; % time(s) in s where step ends to be defined
44 sp.fa = amp*fs; % compute amplitude of excertation force in N
45
46 % solve the dynamics of the virtual friction test -bench with the
47 % second order dynamic friction model for different step durations
48
49 for k = 1:4 % loop according to the number of step durations
50
51 % assign actual time where step ends to element of structure
52 sp.te = te(k);
53
54 % set trivial initial conditions
55 t0 = 0; x0 = [ 0; 0; 0; 0 ];
56
57 % define an appropriate time interval and perform simulation
58 tspan = [ 0, (sp.te + 0.75* sp.te-sp.ts + 15*fp.sigma1/fp.sigma0) ];
59 [t,x] = ode15s( @(t,x) dyn_fr_test_bench(t,x,bp,fp,sp),tspan ,x0,opts );
60
61 % get excitation force f, friction force fr, and body acceleration a
62 f=zeros(size(t)); fr=f; a=f;
63 for i=1: length(t)
64 [ dxdt , out ] = dyn_fr_test_bench(t(i),x(i,:).’,bp,fp,sp);
65 f(i) = out.f; fr(i) = out.fr; a(i) = dxdt (2);
66 end
67
68 % generate plots
69 subplot (4,4,k) % f(t) and fr(t) as part of Figure 6
70 plot(t,f,’k’,LineWidth =1),hold on ,grid on
71 plot(t,fr ,’:b’,LineWidth =3), xlabel(’t/s’),ylabel(’N’)
72 title([’Forces @ tE=’,num2str(sp.te),’ s’]),ylim ([0 ,1.05*fs])
73 legend(’F(t)’,’Fr(t)’,’Location ’,’southeast ’)
74 subplot (4,4,k+4) % body displacement u(t) as additional information
75 plot(t,x(:,1),’r’,LineWidth =2),grid on ,xlabel(’t/s’),ylabel(’u/m’)
76 title([’Body position @ tE=’,num2str(sp.te),’ s’]),ylim([0,zb])
77 subplot (4,4,k+8) % body velocity v(t) as additional information
78 plot(t,x(:,2),’g’,LineWidth =2),grid on ,xlabel(’t/s’),ylabel(’v/(m/s)’)
79 title([’Body velocity @ tE=’,num2str(sp.te),’ s’])
80 subplot (4,4,k+12) % body acceleration a(t) as additional information
81 plot(t,a,’m’,LineWidth =2),grid on ,xlabel(’t/s’),ylabel(’a/(m/s^2)’)
82 title([’Body acceleration @ tE=’,num2str(sp.te),’ s’])
83
84 end

Listing A2. Dynamics of a virtual friction test-bench operated with the FrDyn2 model.

1 function ... % === out (<--) and in (-->) in SI -Units
2 [ xdot ... % <-- state derivatives
3 , out ... % <-- additional output structure
4 ] = dyn_fr_test_bench ... % === dynamics of a body on a fixed plate
5 ( t ... % --> time
6 , x ... % --> states of virtual friction test -bench
7 , bp ... % --> body parameter structure
8 , fp ... % --> friction model parameter structure
9 , sp ... % --> simulation control parameter structure
10 )
11 % This Matlab function is part of the paper
12 % Rill , G.; Schuderer , M. A second order dynamic friction model.
13 % Modelling 2023, 4(3), 366 -381; https :// doi.org /10.3390/ modelling4030021
14 % It computes the dynamics of the virtual friction test -bench and
15 % the dynamics of the second order friction model exposed to a step -like
16 % excitation force as defined by Figure 2
17 % The vector x = [ xb; vb; s ] collects the states of the body (xb,vb)
18 % and the states s = [ zb, zbdot ] of the fictitios bristle.
19 % The Matlab functions Step3 and FrDyn2 provide the step -like
20 % force excitation and the dynamic friction force
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21
22 % extract body velocity and bristle states
23 udot = x(2); s = x(3:4);
24
25 % compute external force applied step -like to body
26 f = Step3( t, sp.ts , 0, sp.te, sp.fa );
27
28 % normal force
29 fn = bp.m*bp.g;
30
31 % contact velocity (body versus plate)
32 vc = udot;
33
34 % dynamic friction force generated by the FrDyn2 model
35 [sdot ,fr] = FrDyn2( fn, vc, s, fp );
36
37 % compute acceleration of body according to
38 % free body diagram in Figure 2a and Equation (7)
39 a = ( f - fr ) / bp.m;
40
41 % derivatives of body and bristle states
42 xdot = [ udot; a; sdot ];
43
44 % excitation and friction forces as elements of the output structure
45 out.f=f; out.fr=fr;
46
47 end

Listing A3. Smoothed step by a third-order polynomial.

1 function y = Step3(x,x0,y0,xS,yS)
2 % This Matlab function provides a cubic polynomial y=y(x), which
3 % realizes a smooth step starting at y(x0)=y0 and ending at y(xS)=yS
4 % where dydx(x0)=0 and dydx(xS)=0 hold in addition.
5
6 % defaults
7 if x < x0 , y = y0; return , end
8 if x > xS , y = yS; return , end
9
10 % cubic polynomial as smooth step approximation
11 if xS > x0
12 xi = (x-x0)/(xS -x0);
13 y = y0 + (yS-y0)*(3 -2*xi)*xi^2;
14 end
15
16 end

Listing A4. Second-order dynamic friction model including shifted regularization.

1 function ... % === out (<--) and in (-->) in SI-Units
2 [ sdot ... % <-- derivatives of bristle states
3 , fr ... % <-- friction force
4 ] = FrDyn2 ... % === second order dynamic friction model
5 ( fn ... % --> normal force
6 , vc ... % --> contact velocity (body versus body)
7 , s ... % --> bristle states [ z; zdot ]
8 , fp ... % --> friction model parameter structure
9 )
10 % This Matlab function is part of the paper
11 % Rill , G.; Schuderer , M. A second order dynamic friction model.
12 % Modelling 2023, 4(3), 366 -381; https :// doi.org /10.3390/ modelling4030021
13 % It computes the dynamics of the second order friction model
14
15 % defaults for the derivatives of the bristle states and the friction force
16 sdot = [ 0; 0 ]; fr = 0;
17
18 % extract bristle states (displacement z and velocity zdot)
19 z = s(1); zdot = s(2);
20
21 % friction characteristics with shifted regularization
22
23 if fn > 0 % perform comptation only if contact is detected
24
25 % shift characteristics according to parabolic regularisation
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26 f0 = fp.sigma0*z + fp.sigma1*vc; % Equation (4)
27 dis = 1.0 - abs(f0)/(fp.mus*fn);
28 if dis < 0; dis =0; end
29 vshift = fp.vs * ( 1.0 - sqrt(dis) ); % Equation (5)
30 if f0 < 0; vshift=-vshift; end
31
32 % slidung velocity including appropriate velocity shift
33 vs = ( vc - zdot ) + vshift; % according to Figures 1c and 2b
34 vsa = abs(vs);
35
36 % force characteristic according to Figs. 1b and 1c
37 if vsa <= fp.vs % parabola
38 xi = vsa/fp.vs;
39 fr = xi*(2.0-xi)*fp.mus*fn;
40 elseif vsa > fp.vs && vsa < fp.vd % cubic transition
41 xi = ( vsa -fp.vs ) / (fp.vd -fp.vs);
42 mu = fp.mud + (fp.mus -fp.mud)*(1-xi^2*(3 -2*xi));
43 fr = mu*fn;
44 else
45 fr = fp.mud*fn; % straight line for full sliding
46 end
47
48 % adjust sign
49 if vs < 0 ; fr = -fr; end
50
51 end
52
53 % visco -elastic bristle force as defined by Equation (4)
54 fb = fp.sigma0*z + fp.sigma1*zdot;
55
56 % bristle velocity
57 sdot (1) = zdot;
58
59 % inverse of fictitious mass and bristle acceleration from Equations (2) and (3)
60 mbi = 4*fp.sigma0 / fp.sigma1 ^2;
61 sdot (2) = ( fr - fb ) * mbi;
62
63 end
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