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Abstract: Gestational Diabetes Mellitus (GDM) is defined as any degree of glucose intolerance with
onset or first recognition during pregnancy. Regular exercise is important for a healthy pregnancy
and can lower the risk of developing GDM. For women with GDM, exercise is safe and can affect
the pregnancy outcomes beneficially. A single exercise bout increases skeletal muscle glucose
uptake, minimizing hyperglycemia. Regular exercise training promotes mitochondrial biogenesis,
improves oxidative capacity, enhances insulin sensitivity and vascular function, and reduces systemic
inflammation. Exercise may also aid in lowering the insulin dose in insulin-treated pregnant women.
Despite these benefits, women with GDM are usually inactive or have poor participation in exercise
training. Attractive individualized exercise programs that will increase adherence and result in
optimal maternal and offspring benefits are needed. However, as women with GDM have a unique
physiology, more attention is required during exercise prescription. This review (i) summarizes the
cardiovascular and metabolic adaptations due to pregnancy and outlines the mechanisms through
which exercise can improve glycemic control and overall health in insulin resistance states, (ii)
presents the pathophysiological alterations induced by GDM that affect exercise responses, and (iii)
highlights cardinal points of an exercise program for women with GDM.

Keywords: exercise endocrinology; pregnancy; exercise physiology; exercise; pregnancy endocrinol-
ogy; diabetes; hormones; women’s health

1. Introduction

Gestational Diabetes Mellitus (GDM) is a distinct subcategory of Diabetes Mellitus,
defined as any degree of glucose intolerance with onset or first recognition during preg-
nancy [1,2]. GDM may affect nearly 5–15% of pregnancies worldwide, though ethnicity
seems to also play an important role in its prevalence [3–5]. Well recognized risk factors
for developing GDM include being overweight or obese, excessive weight gain during
pregnancy, family history of GDM or Diabetes Mellitus type 2 (T2DM), high parity and ad-
vanced maternal age. Other modifiable risk factors include increased psychological stress,
use of antidepressant and psychotropic medications, smoking, and poor sleep habits [6–8].

During pregnancy, placental hormones, such as human placental lactogen and pla-
cental growth hormone, cause a progressive development of insulin resistance in order to
provide the fetus with the adequate amount of glucose. As a response to this, the num-
ber of maternal β-cells increases, and insulin synthesis and secretion increase in parallel.
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In women with GDM, the increased insulin resistance, together with a relative inabil-
ity of the pancreatic β-cells to adapt to the increased needs, are suggested as the main
pathophysiological events leading to glucose intolerance and hyperglycemia [9].

Complications of GDM include preeclampsia, macrosomia, neonatal hypoglycemia,
large for gestational age offspring and an increased risk for caesarean delivery [10]. Women
with a personal history of GDM also have an increased risk for developing T2DM later
in life [10]. Besides maternal complications, the offspring of mothers with GDM are at
increased risk of developing various diseases in later life. Although fetal programming
(i.e., how embryonic/fetal environment determines responses that carry into adulthood
and predisposes to certain postnatal diseases) is still under investigation, GDM seems to be
a disease that may directly (and indirectly through intermediate outcomes) lead to T2DM,
hypertension, obesity, and dyslipidemia in late childhood and adulthood [9,10].

2. Exercise in Pregnancy and Gestational Diabetes

Regular exercise is important for a healthy pregnancy. The American College of Ob-
stetricians and Gynecologists’ (ACOG) recommendations indicate that pregnant women
should be encouraged to commence or to continue their exercise training during preg-
nancy [11]. The recent guidelines (ACOG 2020) for exercise in pregnancy provide specific
recommendations for (a) aerobic exercise in women who were recreationally active before
pregnancy and those who were highly trained, for women who were sedentary, and those
with obesity, and (b) resistance exercise (weight limits) based on previous experience with
an emphasis on individualized exercise prescription [12]. The role of physical activity
and exercise in the prevention of pregnancy-induced complications is also highlighted.
However, the guidelines are aimed at women with uncomplicated pregnancies. For women
with GDM, the American Diabetes Association recommends that they should exercise
for approximately 30 min on most days to improve their glycemic control [13]. However,
specific exercise guidelines for GDM are currently not available.

Previous investigations have shown that women with GDM who systematically
participated in exercise programs during their pregnancy (2–7 days per week, for 30–60 min
per session) had favorable results in fasting blood glucose and post-prandial glycemia
and in fetal outcomes (lower birth weight) [14–18]. In some cases, exercise even delayed
treatment with insulin [19]. Exercise is safe, with no reports showing increased maternal
or neonatal complications in GDM [14]. However, women with GDM, like patients with
T2DM [20], are usually inactive and have poor participation in exercise training programs.
Thus, appropriate individualized exercise programs that will benefit maternal and offspring
metabolic adaptations, but will be attractive and increase adherence, are still needed. As
women with GDM represent a population with a unique physiology, they require more
attention and monitoring during exercise. The altered responses of insulin-antagonistic
hormones and the glucose fluctuations that exist due to obesity and hyperglycemia may
modify the acute responses to exercise and exercise tolerance. In insulin treated GDM
patients, the increasing insulin resistance during pregnancy causes specific challenges for
exercise prescription, as adjustments on insulin doses and carbohydrate intake are required
to prevent hypoglycemia during and after training.

In light of the prior findings, this review aims to summarize the physiological adapta-
tions due to pregnancy and to update the mechanisms through which exercise can improve
glycemic control and overall health in insulin resistance states. In addition, the patho-
physiological alterations induced by GDM that can affect the exercise responses will be
presented. Finally, the key points in the design of an exercise program for women with
GDM will be highlighted.

3. The Role of Exercise in Improving Glycemic Control and Overall Health in Insulin
Resistance States

Several studies highlight the beneficial effect of exercise in the prevention and treat-
ment of GDM; however, the exact mechanisms underlying the exercise-induced benefits in
pregnancy complicated by diabetes have been extrapolated mostly from human studies in
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prediabetes or T2DM and experimental data in animal models. This section summarizes
how acute and chronic exercise can improve glycemic control and enhance overall health
in normoglycemic and in insulin resistance states.

3.1. The Acute Effects of Exercise in Facilitating Greater Glucose Uptake by the Skeletal Muscles

Exercise significantly increases muscle glucose uptake (approximately a 100 fold in-
crease from resting levels has been reported) [21]. This augmented glucose uptake by
the skeletal muscle cells during contraction is the result of the greater glucose delivery,
greater membrane permeability to glucose, and enhanced intracellular metabolism of glu-
cose [22–25]. During exercise, hepatic glucose production increases to ensure its sufficient
plasma concentrations. Although during exercise pancreatic insulin output decreases, there
is enough insulin to stimulate a greater microvascular perfusion at the skeletal muscle
level [26,27]. Thus, the increase in blood flow and capillary recruitment during exercise
facilitate a greater glucose delivery to the contracting skeletal muscles [27]. The rapid
translocation of glucose transporters type 4 (GLUT4) from intracellular storage sites to
the sarcolemma and t-tubules is considered the fundamental event for promoting glucose
diffusion from the interstitial space to the cytoplasm of the skeletal myocyte. During the
initial exercise stages, glucose phosphorylation to glucose 6-phosphate by hexokinase is an
important step initiating muscle glucose metabolism [27,28].

Specifically, during exercise, the redistribution of GLUT4 glucose transporters from
the cell interior to the cell surface facilitates glucose uptake by two separate, but additive
pathways (Figure 1) [22,24–26,29–32]. The first pathway is the insulin-dependent pathway
that begins with insulin binding to its receptor (IRS) and the phosphorylation of intracellu-
lar tyrosine residues in IRS. This phosphorylation activates the phosphoinositide 3-kinase
(PI3K) pathway, which in turn catalyzes the formation of phosphatidylinositol (3,4,5)-
trisphosphate (PI3P). PI3P activates the protein kinase B isoform (Akt) and the protein
kinase C (aPKC) and triggers the translocation of GLUT4 to the cell membrane [33]. The
second pathway that facilitates glucose uptake during exercise is a non-insulin dependent
pathway which is mediated by several cellular events related to muscle contraction per
se [22,25,28,29]. Potential signals mediating this exercise-induced GLUT4 translocation
include: (a) the release of Ca2+ by the sarcoplasmic reticulum to be used for muscle con-
traction, which causes an increase in intracellular Ca2+ concentration and activates the
Ca2+/calmodulin-dependent protein kinase (CaMK), (b) the reduction in the ATP/ADP
ratio and the activation of AMP-protein kinase (AMPK), and (c) the transient increase in ox-
idative stress [28,34,35]. Additional exercise-induced mechanisms that have been described
include increased activity of endothelial nitric oxide, the activation of mitogen-activated
protein kinase (MAPK), the activation of protein kinase C (PKC), bradykinin, hypoxia,
and the increase in muscle temperature along with the mechanical deformation during
muscle contraction [21,36,37]. The synergistic action of the above mechanisms stimulates
an effective translocation of GLUT4 to the cell’s membrane during muscle contraction and
relaxation [28].

During the post-exercise period, there is a persistent increase in insulin-independent
glucose uptake for approximately 2–3 h [37]. An enhanced muscle and whole-body insulin
sensitivity, however, can persist for up to 24–48 h, depending on the type and duration
of the exercise stimulus [27,33,38–40]. For this reason, the frequency of exercise is an
important component to consider when designing an exercise program for insulin resis-
tant individuals. Insulin resistance results in a dysfunctional insulin-stimulated GLUT4
pathway in the skeletal muscle of obese, T2DM, and GDM patients [41,42]; however, the
non-insulin dependent pathway seems to remain intact in obesity and insulin resistant
stages [22,43,44]. Therefore, exercise can provide an alternate pathway to increase glucose
uptake and lessen blood hyperglycemia in insulin resistant individuals. In addition, the
release of myokines during exercise, such as irisin, interleukin (IL)-15, IL-7, brain-derived
neurotrophic factor (BDNF), and myonectin, also plays an anti-inflammatory role [32].
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Figure 1. During exercise, the increase in skeletal muscle blood flow and capillary recruitment
increase glucose delivery. Glucose uptake by the skeletal muscle cell is facilitated by two separate
pathways: (i) an insulin-dependent pathway (which begins with insulin binding to its receptor (IRS),
followed by its phosphorylation (1–2). In turn, the phosphoinositide 3-kinase (PI3K) pathway (3)
is activated, and through a series of reactions, the translocation of GLUT4 to the cell membrane
is stimulated (4)) and (ii) a contraction dependent pathway (which is mediated by several cellular
events related to muscle contraction per se (1), such as the release of Ca2+ by the sarcoplasmic
reticulum to be used for muscle contraction and the activation the Ca2+/calmodulin-dependent
protein kinase (CaMK), the reduction in the ATP/ADP ratio and the activation of AMP-protein kinase
(AMPK), the transient increase in oxidative stress), which triggers the translocation of GLUT4 to the
cell membrane. Although in insulin resistance states the insulin dependent pathway is dysfunctional,
the contraction dependent pathway seems to remain intact. Therefore, exercise can promote greater
glucose uptake and reduce hyperglycemia. A greater glucose uptake (vs. pre-exercise) remains in
the post-exercise recovery period (depending on the characteristics of the exercise session). ROS:
Reactive oxygen species; GLUT4: Glucose transporters 4.

3.2. The Long-Term Effects of Regular Exercise on Glycemic Control and Overall Health in Insulin
Resistance States

The repeated, transient increases in GLUT transcription during an acute exercise
bout lead to a gradual increase in GLUT4 protein after short-term exercise training [23].
Increased expression and protein content of GLUT4 have been described in response to
training in T2DM [28,45,46]. In addition to the increase in GLUT4 expression and protein
levels, the increases in muscle glycogen synthase, glycogen content, and hexokinase II all
contribute to increased insulin sensitivity in response to training [47]. Notably, regular
exercise also promotes adaptations (in blood vessels and muscle cells) that facilitate greater
delivery, uptake, and utilization of glucose and nutrients during a physical task, which are
presented in more detail below.

Exercise training improves insulin-mediated increases in capillary recruitment in
combination with augmented muscle glucose uptake [27,48]. Studies in diabetic humans
showed that exercise training increased skeletal muscle vasculature content and limb
blood flow and improved effective blood flow/oxygen delivery [49]. At the skeletal mus-
cle level, an important chronic adaptation to exercise (mainly aerobic) is mitochondrial
biogenesis [50–52]. The increased activity of CaMK and AMPK kinases during an acute ex-
ercise bout activates peroxisome proliferator-activated receptor gamma coactivator 1-alpha
(PGC-1α) [53,54]. Through the processes of fusion (merging of the outer and the inner mito-
chondrial membranes of two originally distinct mitochondria) and fission (fragmentation
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of mitochondria), the mitochondria become more capable to overcome energetic chal-
lenges [55,56]. Furthermore, dysfunctional mitochondrial sites are removed through mi-
tophagy [55,56], reducing the negative effects of oxidative stress on mitochondrial DNA.
These exercise-induced changes in mitochondrial dynamics seem to be specific to muscle
fiber type, as exercise induces mitochondrial elongation in oxidative fibers (Type I, IIA) and
more fused mitochondria in glycolytic (Type IIX, IIB) fibers [50,51]. As obesity and diabetes
reduce mitochondrial biogenesis in skeletal muscle and increase the accumulation of dys-
functional cellular organelles, exercise training can attenuate mitochondrial dysfunction,
allowing the mitochondria to maintain the balance between mitochondrial dynamics and
mitophagy [57–60]. These chronic training adaptations increase the ability for oxidative
metabolism (providing energy for a longer exercise time) and result in less accumulation of
fatty acids and lipid byproducts in blood caused by the diabetic phenotype [61,62].

A combination of caloric restriction and exercise can also reduce obesity-associated
inflammation [63]. Animal data (in high-fat diet-fed mice) suggest that exercise alleviates
inflammation in the adipose tissue by inducing a macrophage phenotype switch from M1-
to M2-macrophages and by suppressing the infiltration of inflammatory macrophages in
adipose tissue [64,65]. Data in diabetic mice also suggest that exercise alleviates the inflam-
mation and oxidative stress of perivascular adipose tissue, contributing to improvements
in endothelial vascular function [66]. Exercise training can also improve brain function
in insulin resistance states. In diabetes, advanced glycation end-products (AGEs) are
considered to contribute to the development of alterations in cerebral capillaries, leading
to a disruption of the blood–brain barrier [67]. Briefly, AGEs (macromolecules formed
by a process known as glycation that occurs when glucose reacts with proteins, lipids,
and nucleic acids after chronic exposure to hyperglycemia) are widely distributed in the
body and their accumulation can affect the vascular basement membrane and extracellular
matrices [68]. The accumulation of AGEs in the brain upregulates inflammatory cytokines
and adhesion molecules, leading to chronic inflammation, amplified oxidative stress, and
cerebral microvascular endothelial cell damage [67,69]. While AGEs increase during nor-
mal aging [70], their formation accelerates in diabetes, and this has been considered one of
the possible links of diabetes and the development of cognitive impairments [69]. Regular
exercise promotes neuroplasticity, improves metabolic efficiency, and reduces oxidative
stress; thus, exercise training can beneficially affect brain function [71–73]. Although the
exact mechanisms of these adaptations and the role of exercise in reducing AGEs are still
under investigation, the release of neurotrophic factors during repeated exercise stim-
uli promotes neurogenesis, increases capillarization, decreases oxidative damage, and
increases proteolytic degradation by proteasome and neprilysin [73]. These changes lead
to a decreased accumulation of carbonyls and amyloid beta-proteins and can possibly
improve memory. Collectively, it appears that exercise-induced alterations of the redox
state are important means by which exercise benefits brain function, increases oxidative
stress tolerance, and promotes faster recovery from oxidative stress [72,73]. Exercise train-
ing can also modify hepatic gene expression and hepatic pathways related to metabolic
disease [74]. Regular exercise has been shown to reduce liver fat content, independently
of weight loss (for a review, see [75]). This effect of exercise on the liver may be related to
the improvement in insulin sensitivity and lipid metabolism; however, the exact impact
of exercise on insulin-stimulated hepatic insulin sensitivity remains unclear. In recent
years, the influence of exercise training on the dysbiotic gut microbiota associated with
obesity and insulin resistance has also been investigated. Exercise training improved gut
microbiota profiles and reduced endotoxemia in individuals with insulin resistance or
diabetes [76]. However, the exact mechanisms underlying the potential cross link between
exercise and the diabetic gut microbiota require further studies.

Importantly, the role of exercise training in preventing/minimizing the negative
effects of maternal obesity and diabetic exposure in the offspring of GDM (i.e., reduce
obesity, insulin resistance, and hepatic steatosis in the offspring) has been highlighted
by recent studies in animals. Specifically, gestational exercise in GDM animals reduced
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offspring hepatic triglycerides accumulation and improved liver mitochondrial respiratory
capacity [77]. These beneficial effects were preserved even after the cessation of the exercise
training program. In rats, maternal exercise attenuated the lower skeletal muscle glucose
uptake and insulin secretion caused by paternal obesity in female adult offspring [78].
These studies show the importance of gestational exercise as a preventive tool against
maternal diet-induced metabolic alterations.

In summary, exercise can play an important role in improving metabolic disturbances
and mitochondrial quality, reducing inflammation and chronic oxidative stress induced by
obesity and hyperglycemia, and enhancing overall health in insulin resistance states.

4. Exercise Prescription in Gestational Diabetes Mellitus

Describing the physiological changes in pregnancy is important for understanding
the acute and chronic adaptations to exercise in pregnancy. Below, we present physi-
ological/metabolic alterations of GDM that should be considered when designing the
exercise program.

4.1. Acute Cardiovascular and Metabolic Adaptations to Exercise in Pregnant Women with
Uncomplicated Pregnancies
4.1.1. Physiological Alterations in Pregnancy

During pregnancy, several physiological, but also anatomical, changes occur to sup-
port the greater metabolic demands of the developing fetus. The uterus enlarges, there
is an increase in vascularization, and blood flow to the placenta increases to meet the
needs of the fetus. To accommodate these greater demands and altered metabolic status,
the cardiovascular system of the woman must also undergo appropriate structural and
hemodynamic adaptations [79]. Due to the upward displacement of the diaphragm (due to
the growing fetus), the heart is pushed upward and rotated forward [80]. As early as at
4-weeks of gestation, the maternal heart rate increases beyond pre-pregnancy levels (via
an increased sympathetic tone and/or a decreased parasympathetic) and progressively
increases up to the third trimester when a plateau in heart rate is observed. Overall, a
20–25% increase in heart rate compared to pre-pregnancy levels occurs and contractility
and stroke volume increase due to the greater myocardial preload [79]. As a result of the
higher cardiac output, the heart undergoes remodeling. Left ventricular wall thickness and
mass increase, and a reversible, physiological hypertrophy develops (non-pathological).

In the early gestational weeks, hormonal changes (i.e., increased estradiol, activation
of the renin-angiotensin-aldosterone system, increased erythropoietin) result in water
retention and hematological adaptations, such as increases in plasma and red blood cell
volume. In addition, the increased progesterone, nitric oxide, relaxin, and prostaglandins
lead to a systemic vasorelaxation (decreased systemic vascular resistance), and thus, a
slight reduction in systemic blood pressure. Mean arterial blood pressure decreases by
approximately 5 to 10 mmHg during the second trimester; however, as gestation progresses,
blood pressure gradually increases to pre-pregnancy levels [79]. Water retention and
gestation-dependent edema is a common finding in a large percentage of pregnant women.
The hormonal changes and placenta ensure the delivery of glucose to the fetus during
pregnancy. Briefly, the maternal production of glucose increases, while insulin resistance
at the skeletal muscle level increases (especially during the second and third trimester) to
facilitate greater glucose delivery to the developing fetus [14,81]. Even a normal pregnancy
has been considered as a “diabetogenic state” because of the progressive rise in postprandial
glucose and insulin levels in late gestation, a decrease in insulin-mediated glucose disposal
(by approximately 50%), and a significant increase in insulin secretion (by 200–250%) to
maintain euglycemia in the mother [82,83]. However, the early gestational period can
also be considered as an anabolic condition because of the increase in maternal fat stores
and the decrease in free fatty acid levels [82,83]. During late pregnancy, insulin lessens its
ability to suppress whole-body lipolysis; thus, in the postprandial period, greater increases



Endocrines 2021, 2 71

in fatty acids and greater hepatic glucose production are observed, and this effect is more
pronounced in women with insulin resistance/GDM [82,84].

4.1.2. Physiology of Exercise in Uncomplicated Pregnancies

The physiological changes during pregnancy affect some acute adaptations to exercise [79].
For example, even healthy women experience faster fatigue during pregnancy compared to
their pre-pregnancy levels and a slight shortness of breath on exertion. Despite the greater
cardiac output at rest, the maximal cardiac output during exercise is attained at lower work
levels [85]. Oxygen uptake (VO2) and minute ventilation at resting conditions and during
submaximal weight-supported exercise (walking, treadmill) are higher compared to the
pre-pregnancy values. In fact, for weight bearing activities, VO2 increases in proportion
to the maternal weight gain. For this reason, non-weight bearing activities (bicycle or
water-based activities) might be more pleasant and tolerable in unfit pregnant women.
Although resting heart rate is higher during pregnancy, maximal heart rate is lower at late
pregnancy [79,85]. This translates to a lower heart rate reserve, which should be considered
when designing the exercise program.

4.2. Metabolic, Neural, and Vascular Alterations that Can Affect the Responses to Exercise in
Gestational Diabetes

The ability to perform exercise depends on the optimal oxygen delivery and utilization,
which is a result of an interplay of multiple physiological functions and reflexes, such
as pulmonary ventilation and gas exchange, cardiac output, blood flow and diffusion,
skeletal muscle oxidative and force-generating capacity, as well as fatigue perception. In
obesity and insulin resistance states, alterations have been described in the majority of
these functions (for a review, see Nesti et al. [86]).

Accumulating evidence in non-pregnant individuals suggests that the blood pressure
response to exercise is often exaggerated in obesity or insulin resistance (T2DM), in part,
due to an exaggerated exercise pressor reflex [87–91]. An increased sympathetic stimu-
lation can increase peripheral resistance and attenuate blood flow to the active muscles
during exercise. Furthermore, the impaired cardiac autonomic function in insulin resis-
tance/obesity [92,93] can result in unfavorable alterations in the heart rate at rest and
during exercise.

Endothelial dysfunction is another well described phenomenon in insulin resis-
tance/diabetes that can limit exercise performance. Although in women with GDM the
metabolic insult is relatively short term (as diabetes develops during pregnancy), research
findings suggest that even this short exposure to the hyperglycemic environment is suffi-
cient to induce vascular dysfunction [94–96]. Macro- and microvascular dysfunction can
induce changes in blood flow and impede exercise performance. A sluggish hyperemic
response in the microvessels of the skeletal muscles in GDM has been reported, suggest-
ing an inability of small vessels (i.e., terminal arterioles) to dilate in response to stimuli
and/or a capillary rarefaction [96]. These microvascular alterations in GDM can hinder
the fundamental pregnancy adaptations for vasodilatation and induce premature fatigue
during exercise.

At the skeletal muscle level, obesity and diabetes can alter mitochondrial dynam-
ics [53,59,97,98]. In women with GDM, a reduced capacity for muscle oxygen extraction
during an arterial occlusion maneuver was reported (vs. women with uncomplicated
pregnancies), implying a reduced muscle oxidative capacity [96]. Even when pregnant
women with and without diabetes were matched for body mass index, the rate of oxygen
uptake by the skeletal muscles (as assessed by near-infrared spectroscopy (NIRS) during an
arterial occlusion) was still lower in women with GDM [96]. In accordance with that study,
reduced skeletal muscle oxidative phosphorylation and disordered calcium homeostasis
(as suggested by a 75% reduction in AMPK phosphorylation) in obese women with GDM
were also shown [59]. The alterations in the balance between oxygen delivery and utiliza-
tion as well as in the muscles’ metabolism may partially contribute to the blunted muscle
oxygenation and exercise intolerance in women with GDM [96]. Besides the metabolic
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disturbances, blood flow dysregulation can also have profound effects on brain structure
and vasculature. In fact, lower cerebral oxygenation (as assessed by NIRS) and increased
fatigability during exercise have been described in non-pregnant adults with T2DM [99].
In GDM, blunted cortical oxygenation during exercise and a delayed recovery compared
with women with uncomplicated pregnancies were reported [100]. Of note, women with
GDM were able to maintain a lower average force output despite reaching similar fatigue
levels as their control counterparts. These findings suggest a possible link of exercise
intolerance with the reduced cerebral oxygenation/cortical activation during physiological
stress in women with GDM that should be taken into consideration when designing the
exercise program. Interestingly, the alterations in vascular parameters and muscle/cerebral
oxygenation in women with GDM were not entirely reversed post-partum (6–9 months
following delivery) [101], suggesting that special consideration in exercise prescription
should also be given in the post-partum period.

4.3. Exercise Prescription Characteristics in Gestational Diabetes Mellitus
4.3.1. Important Characteristics of the Exercise Program

As noted above, exercise enhances glucose uptake; however, this effect is short-lived
(up to 24 h, depending on the exercise characteristics). Therefore, exercise specialists should
aim to prescribe daily exercise sessions in GDM. For boosting insulin sensitivity, women
should not stay for more than 2 days without exercise. Monitoring the exercise intensity
is another important point to consider. For identifying the appropriate intensity, heart
rate reserve is the preferred method over the percentage of maximal heart rate. In general,
consideration should be given when choosing the appropriate training “zone” based on
heart rate. As presented above, both obesity and insulin resistance can result in alterations
in autonomic nervous system function. Thus, the heart rate responses to exercise might be
altered. In some women, heart rate might be higher during light intensity exercise, while
at high/maximal exercise, heart rate might be blunted [102]. For this reason, monitoring
the rate of perceived exertion (RPE) is important. The perceived exertion should be at
12–14 (20-point scale; somewhat hard) on the Borg scale. Thus, both heart rate and RPE
scale should be considered when monitoring the exercise intensity. The “talk test” is
an alternative easy and practical tool for monitoring exercise intensity (the intensity is
considered below the ventilatory threshold when the individual is able to freely converse
without “pausing“ her breath) [103].

Current ACOG guidelines suggest that women with uncomplicated pregnancies who
were regularly exercising before pregnancy could engage in moderate to high intensity
exercise [12]. In general, higher intensity and volume of exercise provide better benefits in
glycemic control. However, for women with GDM, especially those that were sedentary
before pregnancy and are overweight or obese, the first stages of exercise training should
involve low intensity tasks. For the initial exercise sessions (during the first couple of
weeks, depending on the participant), a short duration aerobic exercise session (12–15 min)
is preferred in overweight/obese and unfit women without training experience, so that
they become accustomed to exercising. As the training progresses, sessions >30 min of
aerobic (fast walking, bicycling) or circuit training should be an ideal target [104]. In the
first trimester of pregnancy, a duration of ≥38 min per day of moderate-intensity exercise
or ≥264 min per week of moderate exercise has been recently suggested for preventing
GDM [105]. To summarize, the first goal in the training program should be to increase
the frequency, up to at least five times per week, and then increase the exercise session
duration to at least 30 min. Finally, the intensity should gradually increase, as tolerated.

4.3.2. Avoiding Exercise-Induced Hypoglycemia in Insulin Treated Women

The exogenous administration of insulin results in a lack of a decline in blood insulin
during exercise and an inappropriate magnification of the effects of insulin on the liver and
peripheral tissues [106]. It must be considered that during exercise the increase in blood
flow can accelerate the absorption of the subcutaneous injected insulin, especially if insulin
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is injected at a site near the active muscles [106]. Thus, prolonged (>45 min) or high-volume
exercise can result in hypoglycemia in insulin treated women with GDM if adjustments
in insulin dose are not made. If the woman plans to exercise, appropriate reductions in
insulin levels based on the characteristics of exercise (duration and intensity) should be
made. Glucose should be monitored before the start of the exercise session; adequate
caloric supplementation is important to minimize the hypoglycemia risk before, during
and after exercise [107] depending on the insulin analogs utilized [108]. Additionally,
postprandial walking (up to 2 h after the meal) can be beneficial in reducing post-prandial
glucose levels [108]. Exercising late in the evening should be avoided in order to minimize
the risk of nocturnal hypoglycemia.

4.3.3. Which Type of Exercise Can Result in the Most Favorable Glycemic and Health Benefits?

Several studies in animals and humans have shown that aerobic exercise improves
mitochondrial function, reduces oxidative stress and inflammation, improves vascular
function, and stimulates angiogenesis. Thus, large muscle mass aerobic type activities
(fast walking, stationary cycling, water aerobics) can improve aerobic fitness in pregnant
women [12,109,110]. Furthermore, resistance exercise (light weights and elastic bands) can
result in beneficial effects in muscle mass and stimulate greater glucose uptake. Muscle
strengthening can minimize the risk for low back pain and falls [111].

Meta-analytic data by Huang et al. suggested that aerobic exercise reduced fast-
ing and postprandial blood glucose and glycosylated hemoglobin levels in women with
GDM [112]. Resistance exercise or combined aerobic and resistance exercise resulted in
significant reductions in the required dosage of insulin in insulin-treated women with
GDM. Combined training also reduced postprandial blood glucose [112]. Results from
another meta-analysis also showed that exercising three times per week for 40–60 min at
65–75% of age-predicted maximum heart rate using cycling, walking or combined (circuit)
training improved glycemic control in GDM patients and reduced the incidence of GDM
in pregnant women with obesity [104]. In Figure 2, an example of an exercise program
considering the recommendations for pregnant women and adjustments for women with
GDM, and recommendations for improving glycemic control in patients with T2DM, is
presented. Further studies that will specifically investigate the exercise characteristics
and the effects of different exercise modalities to maximize benefits for GDM pregnancies
are needed.
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5. Conclusions

In conclusion, regular exercise during pregnancy results in beneficial effects in GDM.
A single acute exercise bout can induce short-term glycemic control improvement. Regular
exercise training during pregnancy promotes adaptations in the skeletal muscles, resulting
in improved oxidative capacity, increased expression of proteins involved in mitochondrial
biogenesis, enhanced lipid oxidation, and improved insulin sensitivity and glucose uptake.
These adaptations, in turn, result in less inflammation and better vascular function in
women with GDM. Thus, exercise has a positive impact on the metabolic profile and overall
health of women with GDM. The participation of insulin-treated women with GDM in
exercise training sessions may lower insulin doses. The exercise induced maternal benefits
during pregnancy also induce positive effects in the later life of the mother and of the
developing fetus. The efficacy of the exercise interventions depends on the characteristics
of the exercise program. Exercise specialists should take into consideration the metabolic
and vascular alterations induced by GDM, along with the considerations in pregnancy
when designing the exercise program. Individualized exercise programs can markedly
increase the adherence and the effectiveness of the exercise program for pregnant woman.
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