
Review

Metabolic Reprogramming in Thyroid Cancer: Role of the
Epithelial-Mesenchymal Transition

Monica Fedele * , Sabrina Battista and Laura Cerchia

����������
�������

Citation: Fedele, M.; Battista, S.;

Cerchia, L. Metabolic

Reprogramming in Thyroid Cancer:

Role of the Epithelial-Mesenchymal

Transition. Endocrines 2021, 2,

427–438. https://doi.org/10.3390/

endocrines2040038

Academic Editor: Antonio Brunetti

Received: 1 July 2021

Accepted: 20 October 2021

Published: 22 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute for Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80131 Naples,
Italy; sabattis@unina.it (S.B.); cerchia@unina.it (L.C.)
* Correspondence: mfedele@unina.it or monica.fedele@cnr.it

Abstract: Thyroid cancer (TC) represents the most common endocrine malignancy, with an increasing
incidence all over the world. Papillary TC (PTC), a differentiated TC subtype, is the most common
and, even though it has an excellent prognosis following radioiodine (RAI) ablation, it shows an
aggressive behavior in 20–30% of cases, becoming RAI-resistant and/or metastatic. On the other side,
anaplastic thyroid carcinoma (ATC), the most undifferentiated TC, is a rare but devastating disease,
indicating that progression of differentiated to undifferentiated forms of TC could be responsible
for RAI-resistance and increased mortality. The epithelial-to-mesenchymal transition (EMT) plays a
pivotal role in both tumor progression and resistance to therapy. Moreover, during tumor progression,
cancer cells modify their metabolism to meet changed requirements for cellular proliferation. Through
these metabolic changes, cancer cells may adopt cancer stem cell-like properties and express an EMT
phenotype. EMT, in turn, can induce metabolic changes to which cancer cells become addicted. Here
we review metabolic reprogramming in TC highlighting the role of EMT with the aim to explore a
potential field to find out new therapeutic strategies for advanced-stage PTC. Accordingly, we discuss
the identification of the metabolic enzymes and metabolites, critical to TC progression, which can be
employed either as predicting biomarkers of tumor response to RAI therapy or possible targets in
precision medicine.

Keywords: thyroid cancer; metabolism; epithelial-mesenchymal transition; RAI-resistance; thyroid
cancer progression

1. Introduction

Thyroid cancer (TC) represents the most common endocrine malignancy all over
the world, with a steady increase in both the incidence and the mortality rate for the
more aggressive forms [1]. According to the most recent epidemiologic studies in United
States, TC incidence increased, on average, 3.6% per year during the period 1974–2013,
mainly due to an increase in the incidence of papillary thyroid carcinoma (PTC) [1], and
it has been estimated that by 2030 TC will be the fourth leading cancer diagnosis in the
United States [2]. Accordingly, a recent deep analysis of the Global Burden of Disease
2019 database has calculated that the global incidence of TC has continued to increase
in the past three decades [3]. Some of the highest TC incidence worldwide has been
reported in Italy where, under the age of 45, TC was the second most common cancer
among women (after breast cancer), and the fifth most common among men [4]. The most
frequent TC (84% of all TC) is PTC, a differentiated TC (DTC) deriving from epithelial
follicular cells. It is generally characterized by an indolent growth and a good prognosis
after adjuvant radioiodine (RAI) treatment; the 5-year relative survival rate for patients who
had TC diagnosed during the period 2008–2014 was 98%, and it refers mainly to the most
prevalent PTC [5]. However, 20–30% of PTC cases show a more aggressive behavior and
patients experience relapse/persistence and/or development of lymph node and visceral
metastases with consequent increased mortality, despite the use of targeted therapeutic
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options, such as tyrosine kinase inhibitors (TKI), including sorafenib and lenvatinib [6,7].
During 1994–2013, incidence-based mortality increased 2.9% per year for advanced-stage
PTC [1]. Due to the high global incidence of PTCs, the percentage of those RAI-resistant
(RAI-R) has a significant impact and it is therefore imperative to find new therapeutic
strategies. The aim of our review is to analyze the possibility that the intercross between
epithelial-to-mesenchymal transition (EMT) and metabolism could be exploited to find
such strategies. These aggressive forms of PTC exhibit loss of differentiation characteristics,
including loss of sodium iodine symporter expression/function, resulting in RAI treatment
failure and high mortality. At the molecular level, this loss of differentiation is related to
the degree of activation of the mitogen-activated protein kinase (MAPK), which is highest
in tumors with BRAF mutations [8].

On the other side, anaplastic thyroid carcinoma (ATC), the most undifferentiated
TC, is a rare but devastating disease. It accounts for only 2–5% of all TC cases and is
associated with a median overall survival (OS), greatly improved in the last years thanks to
the targeted therapy, of 15.7 months, a median 1-year survival of 59%, and a median 2-year
survival of 42%, despite aggressive multimodal management [9–11]. Current management
of ATC consists primarily of surgical resection, combined with adjuvant chemoradiation
followed by targeted therapy (dabrafenib and trametinib therapy in patients harboring
the BRAF V600E mutation) [12]. The pathogenesis of ATC is still debated. Most studies
support a gradual dedifferentiation from DTC to poorly differentiated thyroid carcinoma
(PDTC), and eventually to ATC, with the progressive accumulation of somatic pro-cancer
mutations. This is supported by the fact that 18–37% of ATC cases result from longstanding
goiters or DTC lesions, where ATC occurs concurrently in 30–89% of cases, and ATC
sometimes develops following treatment failure of DTC and PDTC. Genomic analyses have
further demonstrated shared mutations between co-existing ATC and DTC or PDTC lesions,
suggesting a common parent cell [13]. Another theory states that ATC could arise from
cancer stem cells (CSCs) that are derived from adult stem cells present within a thyroid
niche having accumulated genetic mutations that drive the tumor development [14]. For
both theories, EMT plays a pivotal role. In fact, a DTC could lead to ATC as a result of either
a dedifferentiation process or the development of CSCs, and both depend on EMT. CSCs
are in turn the main responsible of cancer resistance [15], and therefore EMT is a cellular
process associated with both tumor progression and TC resistance to therapy. Hence,
understanding the biology of EMT and the reverse mesenchymal-to-epithelial transition
(MET) process should lead to the design of more effective drugs to target cancer cells,
including CSCs.

During tumor progression, cancer cells modify their metabolism to meet the changed
requests for cellular proliferation [16]. Several studies have shown similar metabolic alter-
ations occurring in and between cancer cells, including changes in glucose metabolism that
result in the Warburg effect, and an increase in biosynthetic activities (such as the synthesis
of nucleotides, lipids and amino-acids), which are important for cellular proliferation [15].
Through these metabolic changes, cancer cells may adopt CSC-like properties and express
an EMT phenotype [17]. In particular, most tumor cells show highly activated glycolysis
through increased expression of glycolytic enzymes or the expression of enzyme isoforms
that are not expressed in normal differentiated cells [18]. Indeed, increased glycolysis and
glutaminolysis are necessary to maintain rapid cell proliferation, tumor progression, and
resistance to cell death [19]. Consequently, tumor cells secrete acidic products, such as
lactic acid, thus creating an acidic microenvironment, which has been reported to induce
EMT in tumor cells [20,21]. EMT, in turn, strengthen the glycolytic pathway by inducing
lactate dehydrogenase gene expression [22].

2. The Warburg and Reverse Warburg Effects

Carcinoma cells show preferential use of lactate-generating glycolysis over the more
energy-efficient route of oxidative phosphorylation (OXPHOS), which produces more ATP
per glucose molecule than glycolysis [23–27]. This altered metabolism, named “Warburg
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effect”, implies that cancer cells have increased glucose uptake and lactate secretion, and
allows cancer cells to gain an advantage in terms of growth and survival, possibly due to
increased carbon utilization, hypoxic adaptation, and increased rate of ATP production [28].
More recently, similar metabolic changes have been described in cancer-associated fibrob-
lasts (CAFs) present in the tumor microenvironment (TME), often as a result of oxidative
stress induced by hydrogen peroxide secreted by cancer cells. CAFs in turn increase their
own production of reactive oxygen species (ROS), resulting in the induction of aerobic
glycolysis and consequent production and secretion of lactate and pyruvate. These metabo-
lites are transferred to cancer cells via inflammation, where they are metabolized into
mitochondria to generate new ATP, which assists tumor progression. This metabolic in-
terplay between different tumor cell compartments is called “reverse Warburg effect” and
facilitates cancer cell anabolism through catabolic reactions pursued by the TME [29–33].
The reverse Warburg effect can occur not only between CAFs and tumor cells but also
between different tumor cells, one of which being hypoxic and hypersecreting intermediate
catabolites such as lactate and glutamine. Metabolic coupling with glycolysis occurring
in some cancer cells and OXPHOS in other cancer cells promotes cell proliferation and
survival. In this multi-compartment metabolism, a key role is played by the lactate mono-
carboxylate transporters MCT-1 and MCT-4, which mediate the influx into the cell and the
efflux from the cell, respectively [34] (Figure 1).

Figure 1. Warburg and reverse Warburg effect. The cancer cell on the left is undergoing the Warburg effect consisting
in the metabolic switch from OXPHOS to aerobic glycolysis, which implies increased glucose uptake and secretion of
lactate. Cancers cells also establish a metabolic coupling with cancer-associated fibroblasts (CAFs) and other cancer cells:
secretion of reactive species, such as hydrogen peroxide in the tumor microenvironment (TME) induces oxidative stress
into a neighboring CAF, which hence engages aerobic glycolysis and generates lactate. This in turn is secreted into the
TME and fuels OXPHOS in the cancer cell on the right, thus getting efficient ATP production and promoting survival and
proliferation. Lactate monocarboxylate transporters mediate efflux (MCT-4) and the influx (MCT-1) of the lactate from and
into the cell.

3. Metabolic Reprogramming in Thyroid Cancer

Thyroid gland is actively involved in thyroid hormone synthesis, an oxidative process
that requires a lot of energy. For this reason, thyroid cells are always metabolically active
and employ mitochondria to produce the necessary energy through OXPHOS while re-
leasing ROS. Therefore, to counteract the high levels of ROS, they have evolved several
antioxidant systems, which are enhanced in DTC but result inactivated in poorly differen-
tiated TC where, consequently, an increase in oxidative damage is observed [35,36]. One
of the major antioxidative systems is the Warburg effect that enhances biosynthetic fluxes
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and antioxidant defense during rapid proliferation of cancer cells. This metabolic repro-
gramming is regulated by transcription factors such as the hypoxia inducible factor 1 alpha
(HIF-1α) that activates either glycolytic enzymes or glucose and lactate transporters while
inhibiting OXPHOS [37,38]. Consistently, overexpression of HIF-1α, as well as hexokinase
2 (HK2), phosphoglycerate kinase (PGK), glucose-6-phosphate dehydrogenase (G6PDH),
lactate dehydrogenase A (LDHA), glucose transporter 1 (GLUT1), and MCT4 has been
observed in TC, associated with distant metastases [39–44]. The thyroid TME, consisting of
fibroblasts, cells of immune system and endothelial cells, also contributes to the metabolic
reprogramming of TC cells. In particular, experimental evidence supports a metabolic
symbiosis between cancer cells and CAFs in TC, consisting of the aforementioned reverse
Warburg effect [42,45]. Indeed, MCT4 was found to be overexpressed in stromal cells
associated with advanced PTC and ATC [42].

3.1. Glucose Metabolism

Metabolic rewiring towards an enhanced glycolytic phenotype primarily involves
increased glucose uptake and glycolysis flux, mitochondrial dysfunction, and a more acidic
TME, playing a critical role in tumor aggressiveness. In other words, malignant tumor cells
alter their glucose metabolism to enhance aerobic glycolysis so that they can maintain their
metastatic potential.

In a recent study, glucose metabolic gene expression data in PTCs from The Cancer
Genome Atlas (TCGA), including 52 normal tissues and 486 PTCs, were analyzed, showing
a significant upregulation of the pyruvate kinase PKM2, the isocitrate dehydrogenase IDH2,
the hexokinase HK2 and lactate dehydrogenase LDHA in tumors versus normal tissues.
LDHA expression levels, in particular, positively correlate with the tall cell variant, which
has a more aggressive clinical behavior compared with the classical PTCs and the more
advanced tumor-node-metastasis (TNM) stage. Consistently, in 185 PTCs analyzed by
immunohistochemistry, high expression levels of LDHA were associated with aggressive
clinicopathological features and poor prognosis, and LDHA expression level resulted an
independent prognostic marker for PTCs as it is the TNM stage [46].

3.2. Aminoacidic Metabolism

Amino acids metabolism has a critical role in maintaining cellular metabolic home-
ostasis. Among all amino acids, glutamine has the greatest consumption during tumor
progression and is considered the most important substrate of the cancer cells. It has an
essential role in nucleotide and non-essential amino acids synthesis, as well as in pro-
viding substrates for the tricarboxylic acid (TCA) cycle, which fuels tumor growth [47].
In particular, TCA cycle is maintained by glutamic acid derived from the conversion of
glutamine through the process of glutaminolysis. Consistently, glutamic acid has been
found increased in the plasma of patients with thyroid nodules, consisting of 19 PTCs and
16 multinodular goiters, compared to 20 healthy controls [48]. In this pilot study, a panel of
significantly altered metabolites, including some associated with amino acids metabolism,
such as cysteine and cystine as well as glutamic acid, was identified by untargeted gas
chromatography-mass spectrometry in the plasma of patients with PTC nodules compared
to healthy subjects. Differently from glutamic acid, cysteine and cystine were decreased in
PTC patients and their levels correlated with the tumor stage [48].

Conversely, in a previous study, cysteine and most amino acids were found sig-
nificantly up-regulated in PTC tissue (collected from 57 patients) compared to adjacent
non-tumor tissue [49]. Cysteine is a precursor for glutathione (GSH) biosynthesis, which
plays an essential role in supporting intracellular redox homeostasis by extinguishing ROS
from mitochondrial respiration. Cancer cells require exogenous cysteine for GSH synthesis
to protect themselves from ROS in order to maintain cell proliferation and resistance to
apoptosis [50]. Therefore, decreased plasma levels of cysteine and cystine in patients with
thyroid nodules may be explained by the higher consumption of cysteine in the cancer cells.
Consistently, in the study by Abooshahab and coworkers, significantly altered metabolites
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between PTC nodules and healthy persons were also associated with GSH biosynthesis.
Overall, they found that the metabolism of about 11 amino acids, including metabolites
related to GSH biosynthesis, but also methionine, glycine, serine, threonine, and pheny-
lalanine, had been changed in plasma of patients with PTC nodules compared to healthy
subjects. Moreover, the TCA cycle, fatty acids (FA), and purine and pyrimidine metabolism
were significantly changed as well [48].

3.3. Lipid Metabolism

Lipids can affect cellular functions including cell cycle, proliferation, growth, and
differentiation, by serving as second messenger, thus leading to carcinogenesis. Addition-
ally, they can promote the interaction between cancer cells and adjacent immune cells,
supporting tumor growth and progression [51].

In the aforementioned study by Abooshahab and coworkers [48], major alternations
of long- and medium-chain FA metabolism, suggestive of an increased FA β-oxidation,
were detected in patients with PTC nodules. Reprogramming of lipid metabolism is
now recognized as a hallmark of carcinogenesis as are other metabolic changes, such
as those related to glucose and glutamine [52], being tightly related to the proliferation,
invasion, migration, radiosensitivity, and chemosensitivity of several tumors, including TC.
Consistently, in a recent study performed with a total of 497 PTC patients from the Cancer
Genome atlas (TCGA) database, lipid metabolism-related genes allowed the identification
of molecular subtypes in PTC related to different clinical features, such as the time to
relapse, immune score, and patients’ outcome [53]. Furthermore, by studying 50 PTCs and
their matched normal thyroid tissues, the same group previously demonstrated that the
histone lysine methyltransferase KMT5A acts as an oncogene in PTC, where it correlates
with extrathyroidal extension, lymph node metastasis and advanced pathological stage,
by upregulating key molecules involved in lipid metabolism, including sterol regulatory
element binding protein 1 (SREBP1), Stearoyl-CoA Desaturase (SCD), FAS and Acetyl-CoA
carboxylase (ACC) [54].

Interestingly, Wojakowska and coworkers identified a number of FAs and FA esters,
including lauric, pentadecanoic, hexadecanoic, heptadecanoic, nonadecanoic, eicosanoic,
decanoic, ricinoleic, and monostearin, able to differentiate malignant versus benign thyroid
lesions. In more details, using a combination of gas chromatography and mass spectrometry,
they analyzed tissue specimens from seven follicular thyroid carcinomas (FTC), four
classical variants of PTC (CV-PTC), four follicular variants of PTC (FV-PTC), six medullary
thyroid carcinomas (MTC), six ATC, three follicular thyroid adenomas and five normal
controls, identifying 28 metabolites, including lipids, carboxylic acids, and saccharides,
whose levels were significantly different among different types of thyroid tumors. Some of
them, such as increased lactic acid and reduced FA, in particular, were able to discriminate
TC from normal tissue, and others, such as myo-inositol phosphate, succinic acid and the
above-mentioned FAs, could differentiate malignant versus benign lesions; furthermore,
downregulation of gluconic acid and upregulation of citric acid could discriminate CV-PTC
from FV-PTC, while decanoic acid ester could differentiate FTC from FV-PTC [55].

4. Thyroid Cancer Progression and Reciprocal Role of Epithelial-Mesenchymal
Transition and Metabolic Rewiring

Activation of EMT, a process by which epithelial cancer cells acquire mesenchymal
features, is a key determinant of cancer progression toward an invasive and metastatic
phenotype. By acquiring mesenchymal features, cancer cells, in fact, lose cell-to-cell
junctions and gain the capacity to migrate and invade the basal lamina thanks to a complex
reprogramming of transcription through epigenetic changes. In TC progression, the tumor
cells undergo EMT, becoming spindle shaped and invading tumor stroma. Molecular
changes include reduced E-cadherin expression levels and increased expression of Snail,
Slug, Twist, Paired Related Homeobox 1 (PRRX1), and other EMT-related genes. Hence,
first intravasation into the blood and/or lymphatic vessels and then extravasation in distant
metastatic sites, such as the lymph nodes and lungs, occur. After a variable time in the
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quiescence state, the tumor cells are subjected to MET to colonize distant organs forming
secondary tumors (Figure 2). During this last phase there is a decrease in the expression
of Twist and PRRX1 and an increase in the expression of epidermal growth factor (EGFR)
and c-Met [56]. Indeed, well-differentiated TC and normal thyroid express high levels of
E-cadherin, but do not commonly express Snail and Twist [57]. However, the leading front
of PTCs, as well as ATCs, frequently express EMT markers, such as vimentin and Snail,
Slug and Twist, but not E-cadherin [56,58,59].

Figure 2. Thyroid cancer progression: reciprocal role of EMT and metabolic reprogramming. The cartoon illustrates the
phases of thyroid cancer progression, from in situ to invasive carcinoma and metastatic tumor, highlighting the molecular
actors of EMT as well as their reciprocal relationship with metabolic players. Upregulation (arrow up)/downregulation
(arrow down) of proteins demonstrated in other cancers but not yet validated in TC is shown in gray.

During EMT cancer cells also acquire stem cell features that allow them to resist to
different treatment options. Based on the CSC hypothesis of TC development, normal
follicular cells that accumulate errors can give rise to differentiated cancers, which in turn
can develop into undifferentiated cancers following the enrichment of CSCs through the
EMT process [13]. This is likely the reason why patients with ATCs, which consist of CSCs
and non-CSCs, usually have a relapse after surgery and conventional chemotherapy and
radio-iodine [56].

More recently, it has become clear that EMT is also involved in metabolic rewiring
needed for the increased energetic demand of the mesenchymal cells compared to their
epithelial counterparts due to the increased motility and invasion ability. In fact, EMT
induction in epithelial mammary cells by Twist expression upregulates the expression
of 44 metabolic genes, including dihydropyrimidine dehydrogenase (DPYD), an enzyme
involved in pyrimidine catabolism, that in turn upregulates EMT [60]. Therefore, it is likely
that metabolic rewiring is required for completeness of EMT. Other metabolic pathways
modulated by EMT include glycolysis, lipid metabolism, mitochondrial metabolism and
glutaminolysis. Specifically, it has been shown that EMT induction suppresses the expres-
sion of multiple metabolic proteins, including fructose-1.6-bisphosphatase 1 (FBP1), thus
resulting in increased glycolysis [61], fatty acid synthase (FASN) and ACC, thus resulting
in decreased lipogenesis [62], nucleoside transporter [63], and pyruvate dehydrogenase ki-
nase 4 (PDK4) [64], whilst enhancing the expression of glutaminase 1(GLS1) [65], enzymes
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of glutathione metabolism, cytochrome P450, aldehyde dehydrogenase, thus accounting for
the increased chemoresistance [66], and GLUT3 [67]. On the other side, these metabolic al-
terations sustain the Warburg effect and induce EMT by enhancing glycolysis and blocking
the TCA cycle. In particular, upregulation of (i) GLUT1 and GLUT3 glucose transporters
activates matrix metallopeptidase MMP-2, which in turn induces EMT and invasiveness;
(ii) HK1 and HK2 hexokinase, involved in the first step of glycolysis, activates Snail and
Slug, which in turn induces EMT; (iii) PFKM and PFKP, rate-limiting enzymes of glycolysis,
directly induce EMT; (iv) LDHA and LDHB, associated with enhanced glycolysis and
lactate production, as well as extracellular lactate, activate Snail and therefore EMT [17].

More specifically in TC, recent studies have shown certain metabolic changes involved
in EMT induction and tumor progression (Table 1). Liu et al., examining public datasets
and a local cohort of patients, also assisted by in vitro studies, demonstrated that PTC
metastases can be mediated by pyruvate carboxylase (PC), the enzyme that catalyzes
the carboxylation of pyruvate to form oxaloacetate, through induction of a transforming
growth factor β TGF-β-mediated EMT [68]. They also showed that PC increases FA
synthesis, which then promotes TC progression and metastases. In particular, PC induces
upregulation of multiple genes of the FA synthesis signaling pathway, including SREBP1c
and FASN, which in turn are responsible for the increased lipogenesis and are required for
the aggressiveness of TC cells [69]. Furthermore, LDHA, the key enzyme that accumulates
for the Warburg effect, was identified by Hou et al. as a candidate target gene for PTC.
In fact, knockdown experiments in PTC cell lines revealed that LDHA promotes the
transcription of EMT-related genes, including catenin beta 1 (CTNNB1), ras homologue
family member B (RHOB) and TGF receptor 1 (TGFR1), to promote migration and invasion.
The mechanism involves the release of intracellular acetyl-CoA, which enhances the histone
acetylation of these EMT-related genes [46]. Consistent with these results, another study
showed that LDHA and glycolysis were critical for PTC progression [70]. Still on the role
of glycolysis in TC progression, Ren et al. demonstrated that the circular RNA circCCDC66
promotes TC progression by sponging miR-211-5p and thereby increasing the expression
of PDK4, which in turn promotes glycolysis [71].

Table 1. Studies linking metabolic reprogramming to EMT in thyroid cancer progression.

TC Subtype In Vitro
Models

In Vivo
Studies

Mechanism
of Action Reference

PTC TPC-1 1 Human surgical tissues
and FNA 2 wash-out fluids

PC —> TGFβ/SMAD —>
EMT [68]

PTC, ATC TPC-1, 8505c 3
Human surgical tissues;

xenograft tumor models in
BALB/c nude mice

PC —> Akt/mTOR —>
SREBP1c —> FASN —>
fatty acid synthesis —>

EMT

[69]

PTC, ATC, medullary
TC

Nthy-ori 3.1 4, K-1 1,
KTC-1 1, TPC-1,

B-CPAP 1, CAL-62 3,
TT 5

Human surgical tissues;
tail injected BALB/c nude
mice and xenograft tumor

models in NSG 6 mice

LDHA —> acetyl-CoA —>
H3K27 acetylation of
EMT-related genes

[45]

PTC TPC-1, B-CPAP
Xenograft tumor and
metastasis models in
BALB/c nude mice

LINC00671 —> LDHA —>
tumor aggressiveness [70]

PTC TPC-1, K-1 Human surgical tissues
SIRT6 —>

BRAF/ERK/Mcl-1 —>
tumor aggressiveness

[72]

PTC B-CPAP -

SIRT6 —> ROS —> PKM,
Glut1, HK2, LDHA, Eno1,

PGK1, GAPDH —>
Warburg effect

[73]



Endocrines 2021, 2 434

Table 1. Cont.

TC Subtype In Vitro
Models

In Vivo
Studies

Mechanism
of Action Reference

PTC TPC-1, B-CPAP - SIRT6—>HIF-1α—>EMT [74]

PTC TPC-1, K-1 Xenograft tumor models in
BALB/c nude mice

SIRT6 —> ROS —>
autophagy—|GLUT1—

|Warburg
effect

[75]

PTC, PDTC, ATC Nthy-ori 3.1, CAL-62 Human surgical tissues
and serum

Intra-tumor
LDL-cholesterol —> 27-HC

—> cell migration and
metastasis

[76]

1 PTC cell line; 2 Fine-Needle Aspiration; 3 ATC cell line; 4 Normal thyroid follicular cell line; 5 Medullary thyroid carcinoma cell line; 6

NOD scid gamma.

Similarly, previous studies have shown that Sirtuin 6 (SIRT6), which is upregu-
lated in PTC, induces both the Warburg effect, through the upregulation of ROS, and
the EMT [72–74]. Subsequently, the same authors demonstrated that SIRT6 can also repress
the Warburg effect in PTC cell lines. In fact, they showed that SIRT6 acts through accu-
mulation of ROS and consequent increase of endoplasmic reticulum stress and autophagy.
Autophagy, in turn, mediates the degradation of GLUT1, thus suppressing the Warburg
effect [75]. Indeed, they have shown, through in vitro and in vivo experiments, that a
weaker inhibition of ROS activates the Warburg effect by suppressing autophagy, while a
stronger inhibition of ROS activates autophagy and repress the Warburg effect [75].

The interplay between lipid metabolism and EMT in TC clearly emerged in the
study by Revilla et al., showing that cholesterol and the intra-tumor accumulation of
its metabolite 27-hydroxycholesterol (27-HC) promote progression of PTC. In brief, they
reported that patients with more aggressive tumors (high-risk PTC, PDTC and ATC) have
decreased levels of serum low-density lipoprotein (LDL) cholesterol and apolipoprotein
B associated with an increase of intracellular 27-HC and a decrease in the mitochondrial
enzyme 25-hydroxycholesterol 7-alpha-hydroxylase (CYP7B1), which is responsible for
27-HC catabolism. Furthermore, they demonstrated that intracellular LDL cholesterol
promotes proliferation and migration, while overexpression of CYP7B1 arrested growth
and decreased migration of an ATC cell line [76].

Finally, we recently found that ATC cells, in which a partial reversion of EMT was
induced by POZ/BTB And AT Hook Containing Zinc Finger 1 (PATZ1) overexpres-
sion [77], have reduced levels of several proteins involved in glycolysis/gluconeogenesis,
FA metabolism and amino acid biosynthesis, suggesting that the tumor suppressor role
of PATZ1 in thyroid carcinogenesis could act through metabolic changes involved in
EMT [78]. Overall, the data provided demonstrate that TC progression involves both EMT
and metabolic rewiring and suggest that the two processes are related to each other.

5. Clinical Perspectives and Conclusions

The most challenging issue in RAI-R TC is establishing when a patient should be
considered RAI-R and when to initiate treatment with other therapeutic options, such
as TKI, including sorafenib and lenvatinib [7]. Prediction of an aggressive and RAI-R
tumor will aid to avoid ineffective and therefore useless radio-therapy, thus preserving the
patient’s well-being and leading to a significant economic saving for the National Health
System. Moreover, it is possible that, in an advanced stage of carcinogenesis such as that
one of an aggressive PTC, X-rays enhance tumor progression by increasing the risk of
accumulating further adverse events and leading to bystander and off-target effects [7,79].
On the other side, early prediction of tumor aggressiveness will ensure that the patient is
rapidly enrolled in alternative more specific target therapies.

Exploiting the metabolic rewiring in tumors to treat cancer is an emerging but still
poorly explored field in oncology. Here we reviewed the metabolic enzymes and metabo-
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lites so far identified as critical for TC progression, which can be employed either as
predicting biomarkers of tumor response to RAI therapy or possible targets in precision
medicine. Subtle metabolic rewiring of TC cells can be, indeed, exploited in drug develop-
ment. In particular, manipulation of these metabolite levels through enzymatic regulators
may be a new therapeutic option. Moreover, it could suggest dietary support measures
during TC treatment.
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