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Abstract: Sex differences in cancer survival may be related to hormonal changes during puberty and
menopause; therefore, we investigated sex differences in the cancer-specific survival rates of children,
adolescents and young adults (AYAs), and older adults with sex-nonspecific cancers. We interrogated
the November 2019 submission of the SEER 18 database and included microscopically confirmed
cases of first primary malignant tumors. We stratified the dataset into children (<15 years), AYAs
(modified; 15–49 years), and older adults (≥50 years). For each age group, we used the Kaplan–Meier
method to estimate the sex-stratified 5-year all-site cancer-specific survival probabilities. Of 3,386,276
eligible patients, 45,124 (1.3%) were children, 548,158 (16.2%) were AYAs, and 2,792,994 (82.5%)
were older adults. The 5-year all-site cancer-specific survival probabilities were 84.0% (95% CI,
83.5%–84.5%) for boys, 84.8% (95% CI, 84.3%–85.3%) for girls, 70.4% (95% CI, 70.2%–70.6%) for male
AYAs, 80.8% (95% CI, 80.6%–81.0%) for female AYAs, 52.0% (95% CI, 51.9%–52.1%) for older adult
men, and 52.2% (95% CI, 52.1%–52.3%) for older adult women. The all-site survival rate for female
patients with cancer is markedly higher than for male patients with cancer during adolescence and
young adulthood, although this difference diminishes in older adulthood.
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1. Introduction

The life expectancy of women is generally higher than that of men at every age. This
dichotomy most likely results from differences in biology, health behaviors, and interactions
between the two [1]. These differences are also important in disease and manifest in many
ways, including disease presentation, prevalence, and outcomes [2]. For instance, cancer is
diagnosed more frequently in men, and men are more likely to die of cancer [3].

Cook et al. performed an analysis of data from the Surveillance, Epidemiology,
and End Results (SEER) Program (1973–2006) and found that the cancer-specific survival
of male patients was lower for most of the 36 sex-nonspecific cancers than for female
patients [4]. Micheli et al. performed a similar analysis of data from the EUROCARE-4
database and found that the relative survival of female patients was higher for most of the
26 sex-nonspecific cancers than for male patients [5]. These findings were also reproducible
in population-based cohorts from other countries, including Sweden, South Korea, Estonia,
and Canada [6–9].

The survival advantage of female patients with cancer is driven by many differential
factors, some of which are immune-related. Some sex differences in the immune sys-
tem persist throughout life, whereas others are most apparent after puberty and before
menopause; therefore, both genes and sex hormones are important mediators of immunity-
associated cancers [10]. Indeed, sex hormones have numerous effects on the innate and
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adaptive immune systems—some overlapping and others distinct. Such distinct effects
on the immune system can have profound consequences on the differential health of male
and female patients [11]. For example, estrogens can suppress oncogenesis but promote
autoimmunity, whereas androgens can suppress autoimmunity but promote oncogenesis.
Consequently, male and female patients are disproportionately affected by cancers and
autoimmune diseases, respectively [11,12].

We hypothesized that puberty and menopause are important landmarks of the dif-
ferential cancer susceptibility and mortality rates between the sexes; hence, age-related
patterns in the sexual dimorphism of cancer-specific survival may become more apparent
by stratifying patients according to these two landmarks. As such, we investigated sex
differences in the cancer-specific survival of children, adolescents and young adults (AYAs),
and older adults with sex-nonspecific cancers.

2. Materials and Methods

The SEER Program by the National Cancer Institute collects survival data from
population-based cancer registries throughout the United States [13]. The SEER 18 database
includes data from 18 registries: Alaska, Connecticut, Detroit, Atlanta, Greater Georgia,
Rural Georgia, San Francisco–Oakland, San Jose–Monterey, Greater California, Hawaii,
Iowa, Kentucky, Los Angeles, Louisiana, New Mexico, New Jersey, Seattle–Puget Sound,
and Utah. SEER 18 covers approximately 27.8% of the population and contains one record
for each of the 8,131,919 tumors [14].

We used SEER*Stat (version 8.3.6.1, National Cancer Institute, Bethesda, MD, United
States, 2020) to access the SEER 18 database (November 2019 submission 2000–2017). We
created a case listing session and included microscopically confirmed cases of the first
primary malignant tumors. On the basis of the “site recode ICD-O-3/WHO 2008” variable,
we excluded tumors of the breast, female genital system, and male genital system. We also
excluded the ICD-O-3 morphology codes 8590–8679 (specialized gonadal neoplasms). In
addition, we excluded cases with no calculated survival time or missing or unknown causes
of death. For all cases, we retrieved the following SEER variables: age recode with single
ages and 85+, sex, site recode ICD-O-3/WHO 2008, SEER historic stage A (1973–2015),
SEER combined summary stage 2000 (2004+), survival months, and SEER cause-specific
death classification. Finally, we executed the query and exported the dataset in CSV format.

We imported the data into R (version 4.0.2, R Core Team, Vienna, Austria, 2020) to
perform our analyses. First, we stratified the dataset into three groups: children (<15 years),
AYAs (modified; 15–49 years), and older adults (≥50 years). Next, we computed summary
statistics to describe each stratum, as well as the full sample. We then plotted sex-specific
survival curves for each age group by using the Kaplan–Meier method and estimated the
5-year all-site cancer-specific survival probabilities (i.e., our primary measure) and 95% con-
fidence intervals (CIs). For each age group, we also estimated the all-site and site-specific
hazard ratios (HRs) and 95% CIs of cancer-specific deaths (i.e., our secondary measure).
For the site-specific analyses, we excluded any sites with less than 20 outcome events and
any assorted tumors (i.e., tumors grouped under the heading “miscellaneous” or under a
heading that included the word “other,” except for “other endocrine including thymus”).

3. Results

Our query returned 3,386,276 of 8,131,919 records (41.6%). Each record was complete
and represented a unique patient, and we included all of the records in our final analyses.
Of all patients, 45,124 (1.3%) were children, 548,158 (16.2%) were AYAs, and 2,792,994
(82.5%) were older adults. Overall, 1,893,388 (55.9%) patients were male and 1,492,888
(44.1%) patients were female. Of the children, 24,458 (54.2%) were boys and 20,666 (45.8%)
were girls. Of the AYAs, 275,514 (50.3%) were male and 272,644 (49.7%) were female. Of
the older adults, 1,593,416 (57.1%) were men and 1,199,578 (42.9%) were women. The
site-specific frequencies for each age group are summarized in the Supplementary Files
(see Tables S1–S3).
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The children, AYAs, and older adults were followed for 3,788,161 person-months
(median, 72 months), 40,873,715 person-months (median, 59 months), and 124,329,922
person-months (median, 22 months), respectively. During the follow-up periods, 6849
children (15.2%), 132,976 AYAs (24.3%), and 1,256,214 older adults (45.0%) died of their
disease. We generated pyramid plots of the site-specific frequencies of cancers, stratified by
sex (Figure 1). The 5-year all-site cancer-specific survival probabilities were 84.0% (95% CI,
83.5%–84.5%) for boys, 84.8% (95% CI, 84.3%–85.3%) for girls, 70.4% (95% CI, 70.2%–70.6%)
for male AYAs, 80.8% (95% CI, 80.6%–81.0%) for female AYAs, 52.0% (95% CI, 51.9%–52.1%)
for older adult men, and 52.2% (95% CI, 52.1%–52.3%) for older adult women. The all-site
sex-specific survival curves for children, AYAs, and older adults are shown in Figure
2. Line plots of the 5-year all-site cancer-specific survival proportion at every age (up to
84 years) are shown in Figure 3.
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Figure 3. Line plot of the 5-year all-site cancer-specific survival proportion at every age (up to 84 years).

The all-site hazard of cancer-specific deaths was 5% higher in boys than in girls (HR,
1.05; 95% CI, 1.01 to 1.10; p = 0.03; Figure 4). Boys had a statistically significant survival
advantage for non-Hodgkin lymphoma (HR, 0.62; 95% CI, 0.49 to 0.80; p < 0.001) but a
statistically significant survival disadvantage for acute lymphocytic leukemia (HR, 1.16;
95% CI, 1.03 to 1.30; p = 0.01) and chronic myeloid leukemia (HR, 1.99; 95% CI, 1.16 to 3.42;
p = 0.01).
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The all-site hazard of cancer-specific death was 67% higher in male AYAs than in
female AYAs (HR, 1.67; 95% CI, 1.66 to 1.68; p < 0.001). Female AYAs had a statistically
significant survival advantage over male AYAs for 23 sites, whereas male AYAs had a
statistically significant survival advantage for two sites (Figure 5).
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The all-site hazard of cancer-specific death was 1% higher in older adult men than
in older adult women (HR, 1.01; 95% CI, 1.00 to 1.01; p < 0.001). Older adult women
had a statistically significant survival advantage over that of older adult men for 14 sites,
although older adult men had a statistically significant survival advantage over older adult
women for seven sites (Figure 6).
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4. Discussion

Data regarding sex differences in cancer susceptibility and mortality rates are impor-
tant because they may be used to identify health behaviors and biological targets that are
amenable to interventions. We studied sex differences in the cancer-specific survival rates
of children, AYAs, and older adults with sex-nonspecific cancers. We found that the 5-year
all-site cancer-specific survival probabilities were comparable (<1% difference) between
boys and girls and older adult men and women, although a marked difference between
male and female AYAs was evident. The 5-year all-site cancer-specific survival probability
for male AYAs was 10.4% lower than that for female AYAs, while the all-site hazard of
cancer-specific death was 67% higher in male AYAs. We also found that girls had two favor-
able sites and one unfavorable site, female AYAs had 23 favorable sites and two unfavorable
sites, and older adult women had 14 favorable sites and seven unfavorable sites.

Generally, across all ages, the incidence rates of most cancers are higher in male
patients than in female patients [15]. In addition, the cancer-specific survival rates of
male patients are lower for most cancers [4]. These findings were based on data obtained
from the November 2007 submission of SEER 9 (1975–2004) and the November 2008
submission of SEER 17 (1973–2006). The results from other studies of population-based
cohorts were similar [5–9]. To glean insights into the role sex hormones play in cancer
incidence and survival differences, we stratified our analyses according to the ages of
puberty and menopause, in which the levels of sex hormones in female patients are the
most markedly different. In general, our results, which were based on data from the
November 2019 submission of SEER 18 (2000–2017), also demonstrated the same trends as
those reported in previous studies; however, we found that sex differences in the 5-year
all-site cancer-specific survival probabilities and all-site hazard rates for cancer-specific
death were the most pronounced in AYAs.

The 5-year all-site cancer-specific survival probabilities we report represent an ag-
gregate measure of the 5-year site-specific cancer-specific survival probabilities weighted
by the relative frequencies of the cancers in each site. On the basis of this definition, two
independent factors may explain the sex differences we observed in the 5-year all-site
cancer-specific survival probabilities in AYAs. First, the relative frequency of aggressive
cancers may be higher in male AYAs than in female AYAs. Conversely, the relative fre-
quency of indolent cancers may be higher in female AYAs. Second, the cancer-specific
survival probabilities may be lower in male AYAs (and higher in females) for cancers of the
same site. Our results show that both factors contribute to these sex differences.

Sex differences in health behaviors may account for the disparity in AYAs. In relation
to cancer, health risk behaviors, early detection, psychological adaptation, and social
adjustment differ between the sexes. The most notable examples of health risk behaviors
are tobacco smoking and alcohol drinking. More men smoke tobacco cigarettes and abuse
alcohol than do women. Together, these risk factors are related to 75% of cancers of the
oral cavity and pharynx [16]. Indeed, we found that the frequency ratio for cancers of the
oral cavity and pharynx was 1.0 between boys and girls, 2.2 between male and female
AYAs, and 2.5 between older adult men and women. Interestingly, the corresponding HR
values for death caused by cancers of the oral cavity and pharynx were 1.26 (0.72–2.21),
1.36 (1.28–1.44), and 1.01 (0.99–1.03) for children, AYAs, and older adults, respectively;
therefore, the hazard of death is higher in male AYAs than in female AYAs, although these
sex differences are not present in older adults. These age-related sex differences may be
due to biology alone, as well as the interplay between health behaviors and biology. In
addition, a working group of the International Agency for Research on Cancer identified
sufficient evidence for the contribution of excess body fatness to the risk of 13 cancers,
namely cancers of the gastric cardia, colorectum, liver, gallbladder, pancreas, uterine
corpus, ovary, and thyroid, as well as esophageal adenocarcinoma, postmenopausal breast
cancer, renal cell carcinoma, meningioma, and multiple myeloma [17]. Interestingly, the
worldwide age-standardized mean body mass index is higher in women than in men, and
the estimates for both sexes have been trending upward historically [18]; therefore, it is not
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surprising that the estimated proportion of cancers attributable to excess body fatness is
twice as high in women 30 years of age or older in the United States [19]. We speculate
that sex differences in excess body fatness may account for some differences in site-specific
frequencies between the sexes in our study. For example, we found that the male-to-female
absolute frequency ratios for cancers of the gallbladder and thyroid—both of which are
obesity-related cancers—were 0.4 and 0.2, respectively; however, we could not assess sex
differences in body mass index because such data are not collected by SEER.

Most biological sex differences can be attributed to the sex chromosomes. In female
patients, some tumor suppressor genes on the lyonized X chromosome escape inactiva-
tion. In accordance with the Knudson two-hit hypothesis, Dunford et al. showed that
the biallelic expression of these genes affords female patients more protection against
cancer than that for male patients, which may in part explain the higher incidence rates
of cancers in male patients. Interestingly, some genes that do not escape lyonization in
healthy cells aberrantly escape lyonization in cancer cells, which may explain sex differ-
ences in cancer-specific survival [20]. In male patients, age-related loss of chromosome
Y is associated with cancer, while tobacco smoking is associated with reversible mosaic
loss of chromosome Y, further highlighting the interplay between health behavior and
biology [21,22]. In addition to a higher risk of cancer, mosaic loss of chromosome Y por-
tends reduced survival [23]. Sex differences that affect cancer susceptibility and mortality
rates extend to DNA copy number variations, single nucleotide polymorphisms, DNA
methylation, mRNA expression, microRNA expression, and protein expression [24–26].

In children and young adults, our site-specific analyses revealed many sex differences
that were otherwise obfuscated in the all-site analysis. Interestingly, some sex differences
reversed from one age group to another. For example, melanoma is more common in female
AYAs than in male AYAs; however, melanoma is more common in older adult men than in
women. Nevertheless, female patients have better survival probabilities than male patients
in both age groups [27]. Site-specific trends are important to fully understand because they
may reveal targets for intervention. Indeed, Yuan et al. studied 114 clinically actionable
genes and found that 60 (>50%) showed sex-biased signatures in seven of eight cancers,
suggesting that sex-specific therapeutic strategies are needed for many cancers [25].

The main limitation of our study is our choice of cutoff ages. The cutoffs we selected
for the ages at puberty and menopause were based on the lower limit of the standard
age range that defines AYA (according to the National Cancer Institute) and the mean age
at menopause in the United States, respectively [28,29]; however, the ages of boys and
girls at puberty are different, and both cutoff ages we selected were based on the average,
meaning they cannot account for interindividual variability. Ideally, the groups should
be constructed according to individual ages of puberty and menopause onset. Another
limitation of our study is the imbalance between groups; the smallest subset included
45,124 children, whereas the largest subset included 2,792,994 older adults. This limits
direct comparisons between groups because our analyses were differentially powered to
detect effects of small magnitude.

5. Conclusions

The all-site survival advantage of female patients with cancer over that of male
patients with cancer becomes pronounced during the AYA period, although this difference
is mitigated in older adulthood. Site-specific trends in children, AYAs, and older adults are
more diverse and warrant individual consideration. Our findings highlight the need for
sex-specific primary prevention interventions and therapeutic strategies, as well as further
research to explore mechanisms that underpin the pronounced survival disparity between
male and female AYAs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/epidemiologia2030029/s1: Table S1: Absolute and relative site-specific frequencies and
site-specific absolute frequency ratios for boys and girls with sex-nonspecific cancers (n = 45,124).
Table S2: Absolute and relative site-specific frequencies and site-specific frequency ratios for male and
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female adolescents and young adults with sex-nonspecific cancers (n = 548,158). Table S3: Absolute
and relative site-specific frequencies and site-specific frequency ratios for older adult men and women
with sex-nonspecific cancers (n = 2,792,994).
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