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Abstract: The European diesel fuel standard, EN590, allows a 7% (V/V) biodiesel (FAME) addition to
automotive diesel fuel. The allowed addition of renewable diesel (HVO) to fossil diesel is not defined,
as long as the properties of the fuel blend still meet the requirements of the standard. However,
it is important to analyze the biofuels’ content in diesel fuel blends. In this article, a development
procedure of a calibration method for quantification of the HVO and FAME contents in fossil diesel
blends using near-infrared (NIR) spectroscopy is presented. The analytical range of quantification of
biodiesel content is from 0 to 10% (V/V) and of renewable diesel content from 0 to 20% (V/V). The
partial least squares (PLS) regression method for multivariable data analysis and construction of the
calibration models were used to create the calibration method. The constructed PLS models obtained
prediction results for all diesel fuel blends with root mean square error of prediction (RMSEP) values
of 2.66% (V/V) for the HVO content quantification and 0.18% (V/V) for quantification of the FAME
content. This article concludes that the calibration method is acceptable for laboratory applications in
practice.

Keywords: diesel fuels; fuel blending; FAME; renewable diesel; near-infrared (NIR) spectroscopy;
partial least squares (PLS) regression

1. Introduction

The European diesel standard EN 590 for automotive fuels allows using additives
in automotive diesel fuel [1]. As long as the fuel properties fulfill the requirements of
the standard, alternative, renewable or also nonrenewable, fuels are allowed to be added
to the diesel fuel. Nowadays, the major alternative fuel options derived from renewable
feedstock are biodiesels and renewable diesels. The properties and composition of these
fuels differ, due to the difference in processes of fuels’ production, even if the used raw
material is the same [2].

Biodiesels are produced from oils and fats through the transesterification process. They
are also called fatty acid methyl ester (FAME) fuels. In transesterification, the feedstock
reacts with alcohols in the presence of a catalyst to produce fatty acid alkyl esters. In
Europe, the most common used raw material for biodiesel production is rapeseed oil,
from which rapeseed methyl ester (RME) fuel is derived. Additionally, other sources, e.g.,
sunflower oil, soybean oil and palm oil, as well as algae and animal fat are used to produce
biodiesel [3]. The standard EN590 allows a 7% (V/V) biodiesel addition to automotive
diesel fuel. Added FAME must comply with the standard EN 14214. The EN 14214 is
the standard that describes requirements, test methods and threshold values of FAME for
automotive diesel engines [4].

Renewable diesels are petrol-like fuels derived from biological renewable sources.
Unlike the FAME fuels, the renewable diesels’ chemical structure is long-chain alkanes,
which is why renewable diesels are characterized as petrol-like. The renewable diesels’
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production process is based on the hydrogen treatment of biological feedstock, such as
vegetable oils and animal fats. In this process, hydrogen reacts with the source material in
the presence of a catalyst in order to saturate double bonds and replace oxygen. Renewable
diesel is commonly called HVO, hydrotreated vegetable oil, due to the initially used
feedstock. Therefore, even if the renewable diesel is produced from waste fat fractions or
vegetable oil fractions, including wood origins, the fuels will still be referred to as HVO [2].
According to standard EN 590, renewable diesel is allowed to blend with fossil diesel fuel
without limitation for automotive diesel fuel.

For all the automotive diesel fuels available on the market that fit fuel property
requirements of standard EN 590, no additional labeling is required. Moreover, no labeling
of the bio content is required either, which means that the potential HVO and FAME
blending ratios are unknown independent of, whether HVO is used as such or in addition
to FAME, with a max limited content of 7% (V/V) [5]. Nevertheless, the knowledge
about the biofuel content in diesel fuel blends is essential for research purposes. The fuel
capacity is evaluated depending on the fuel’s technical properties, which determine the
compatibility of fuel with engines. The presence of the biofuels additives in diesel fuel
blends affects both the fuel properties, such as exposure to oxidative degradation, and
performance as well as exhaust emissions of a diesel engine during the fuel utilization [6–8].

Standardization takes into account the differences between biodiesel and HVO quality.
As said, the standard EN 14214 presents the requirements set for biodiesels. HVO fuel
used as automotive fuel should fulfill the same requirements set for fossil diesel. EN 590
presents these limitations. As an example, the viscosity of biodiesel is set to the range
between 3.50–5.00 mm2/s and the viscosity of HVO should stay between 2.00–4.50 mm2/s.
The viscosity of a biodiesel–diesel blend is usually slightly higher than it is for neat DFO
or HVO–DFO blend. The cold performance of biodiesel is poorer than it is for the HVO.
Nevertheless, the mentioned standards have the same requirements for cold filter plugging
point (CFPP) of these fuels. Generally, adding biodiesel to fossil diesel weakens the blends’
cold properties, unless additives to enhance the cold properties are used. Adding HVO
to DFO has no significant change in the fuel’s cold performance. The oxidation stability
of biodiesels and biodiesel–diesel blends is also poorer than it is for HVO, fossil fuels or
their blends. The oxidation stability varies due to the differences in chemical structure.
The methods to measure this property of these fuels vary even though they both base on
exposing the fuel to aging conditions [1,4]. In engine experiments, HVO usually shows
lower NOx emissions than biodiesel does [9].

NIR spectroscopy together with chemometrics are widely used in biodiesel analytics.
Câmara et al. (2017) have studied adulteration of fuel blends with cheaper raw materials.
They found that spectroscopic analysis MCR-ALS used together with PLS chemometric
methods was a good way to identify and quantify diesel fuel blend adulteration. According
to them, FT-NIR and FT-MIR spectroscopies are feasible methods to measure adulteration
in diesel blends [10]. Palou et al. (2017) studied how to select calibration sets for the
development of PLS models for prediction of diesel and biodiesel blends physico-chemical
properties using NIR spectroscopy. FAME content in diesel fuel was one of these parame-
ters. In their study, the target parameters were determined accurately according the PLS
models. NIR spectra for the models was recorded on-line. Their models were feasible to
analyze high variability of refinery samples [11]. Cunha et al. (2020) used NIR data to
predict physical properties of biodiesel and biodiesel blends. The properties they evaluated
were cold filter plugging point (CFPP) and kinematic viscosity at 40 ◦C. According to
them, multivariate calibration based on partial least squares (PLS), random forest (RF)
and support vector machine (SVM) methods combined with variable selections tools were
feasible in predicting the mentioned properties [12].

HVO NIR studies are rarer than NIR analytics in biodiesel studies. However, Vrtiška
& Šimáček (2016) studied how to predict the HVO content in the concentration range of
0–100% in petroleum diesel/HVO blends using chemometric processing of FTIR spectra.
They used partial least squares regression (PLS) and principal component regression (PCR)
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to construct the predictive models. According to them, their model worked well for the
validation samples, but the model needed preprocessing and the prediction of unknown
HVO blends may be incorrect [13]. Nevertheless, research papers that have studied both
biodiesel and HVO content in fuel blends are rare.

The main aim of this work was to develop a calibration method for the near infrared
Parafuel Quantum 1800 spectrometer. The spectrometer should be able to recognize and
quantify the biofuels contents in a diesel fuel sample, depending on the type of biofuels,
such as FAME or HVO within the analytical range of 0–10% (V/V) and 0–20% (V/V),
respectively. The analytical ranges for calibration method, 10% (V/V) for FAME and 20%
(V/V) for HVO, were chosen based on the EN590 standard fuel requirements and previously
measured common diesel fuel additives’ ratios. In order to determine the share of different
biofuels in the diesel blend sample, a multivariable partial least squares (PLS) regression
method was used for constructing the calibration model.

2. Materials and Methods
2.1. Materials

In this work, several types of biofuels were used to create both calibration and valida-
tion data sets of diesel fuel blend samples. One of the used biodiesels was RME, rapeseed
oil methyl ester, which was a product of ASG Analytik-Service Gesellschaft mbH, Germany.
Biodiesels are produced from oils and fats through transesterification process. In transes-
terification, the feedstock reacts with alcohols in the presence of a catalyst to produce fatty
acid alkyl esters. RME is produced through alkali catalyzed reaction [2].

Another used biodiesel was AFME, animal fat methyl ester, produced by Feora Oy, Fin-
land. AFME production process is a two-step alkalitransesterification in which triglycerides
are turned into biodiesel. After that, biodiesel is refined using neutralization [14].

There were also two types of renewable diesel used during blend samples preparation.
One was UPM Bioverno diesel, a diesel type fraction of renewable hydrocarbons of wood
origin, referred as HVO (Bioverno) in this work, supplied by UPM-Kymmene Oyj, Finland.
Bioverno is produced from crude tall oil via hydrotreatment in the UPM biorefinery in
Lappeenranta. CTO is a residue of chemical pulping process that contains natural extractive
components of wood [8].

The other was NEXBTL renewable diesel derived from the organic biomass, such as
vegetable oil and various waste and residue. NEXBTL is a product of Neste Renewable
Fuels Oy, Finland. In NExBTL production, impurities are removed from the renewable
feedstock. The raw material goes through hydrodeoxygenation where oxygen atoms are
removed catalytically, and pure hydrocarbons are formed. After that, hydrocarbons are
isomerized [15].

The fossil diesel (DFO) used for blending was Neste Diesel −0/−10 produced by
Neste Oyj in Finland. This low-sulfur fuel fulfilled the requirements of EN590 standard
and was bio content free.

The properties of the studied fuels are presented in Table 1.

Table 1. Properties of the fuels.

Property Unit AFME RME Bioverno NEXBTL * DFO (EN 590)

Density 15 ◦C kg/m3 880 883 813 780 820–845

Viscosity 40 ◦C mm2/s 4.46 4.49 3.50 3.00 2.00–4.50

Flash point ◦C >120 170 62 70 >55

Water content ppm 537 <30 <30 <30 <200

CFPP ◦C 2 −14 −8 −5 +5 . . . −20

Cetane number 64 54 65 80 >51

OSI h 2 12 - - >20
* NExBTL diesel product information.
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The NIR spectra was collected using the near infrared Parafuel Quantum 1800 spec-
trometer within the 1200–2400 nm range. The calibration method was developed using
programing scripts for constructing the PLS calibration model in the MATLAB program,
based on P. Geladi PLS Tutorial [16,17].

2.2. Calibration Method Procedure

The NIR-spectroscopy uses near-infrared radiation, where the wavelength is between
700 and 2500 nm. A NIR spectrum represents energy, absorbed as a consequence of
molecular vibrations, in the wavelength equivalent to the energy, in the range between
4000 and 12,500 cm−1. The NIR absorptions are based on overtones and combination
of vibrations of the molecule [18]. In addition, the vibrational motions are over one or
more energy levels, which generates non-harmonious vibrations. This means that the NIR
absorption spectrum appears as complicated and normally possess broad overlapping NIR
absorption bands. Furthermore, NIR absorption data is multivariable, as it depends on
more than one variable simultaneously [19].

Figure 1 represents the NIR spectra of two renewable origin fuels, biodiesel (RME) and
renewable diesel, HVO (Bioverno), together with fossil diesel with no bio content (DFO).
There are clear differences between these spectra along with chemical structure differences,
which provide a basis for developing the calibration method to identify and quantify each
fuel using the NIR spectroscopy. In order to filter the information correlated to quantifica-
tion of diesel fuel composition from the measured NIR absorption data, chemometrics is
used for a multivariable data analysis procedure. Chemometrics combines both statistical
and mathematical methods for quantitative analyses of the NIR spectrum data [19]. In this
work, the measured NIR spectrum data was correlated to analytical values using the PLS
regression technique to create a calibration model.

Fuels 2021, 2, FOR PEER REVIEW 4 
 

 

The NIR spectra was collected using the near infrared Parafuel Quantum 1800 spec-
trometer within the 1200–2400 nm range. The calibration method was developed using 
programing scripts for constructing the PLS calibration model in the MATLAB program, 
based on P. Geladi PLS Tutorial [16,17]. 

2.2. Calibration Method Procedure 
The NIR-spectroscopy uses near-infrared radiation, where the wavelength is be-

tween 700 and 2500 nm. A NIR spectrum represents energy, absorbed as a consequence 
of molecular vibrations, in the wavelength equivalent to the energy, in the range between 
4000 and 12,500 cm−1. The NIR absorptions are based on overtones and combination of 
vibrations of the molecule [18]. In addition, the vibrational motions are over one or more 
energy levels, which generates non-harmonious vibrations. This means that the NIR ab-
sorption spectrum appears as complicated and normally possess broad overlapping NIR 
absorption bands. Furthermore, NIR absorption data is multivariable, as it depends on 
more than one variable simultaneously [19]. 

Figure 1 represents the NIR spectra of two renewable origin fuels, biodiesel (RME) 
and renewable diesel, HVO (Bioverno), together with fossil diesel with no bio content 
(DFO). There are clear differences between these spectra along with chemical structure 
differences, which provide a basis for developing the calibration method to identify and 
quantify each fuel using the NIR spectroscopy. In order to filter the information correlated 
to quantification of diesel fuel composition from the measured NIR absorption data, 
chemometrics is used for a multivariable data analysis procedure. Chemometrics com-
bines both statistical and mathematical methods for quantitative analyses of the NIR spec-
trum data [19]. In this work, the measured NIR spectrum data was correlated to analytical 
values using the PLS regression technique to create a calibration model. 

 
Figure 1. NIR spectra of biodiesel (RME), renewable diesel (HVO, Bioverno) and fossil diesel fuel (DFO). 

2.2.1. Data Set 
The first step in developing the calibration method was to collect calibration data for 

PLS model construction. For this calibration method, the training data was based on three 
variable components: RME, HVO (Bioverno) and DFO concentrations. The calibration 
data had to fill the analytical area of interest by linearly changing the concentration of 
components forming a dense sequence of concentration combinations over the calibration 
range. There were a few major challenges during the calibration data set planning: 

Figure 1. NIR spectra of biodiesel (RME), renewable diesel (HVO, Bioverno) and fossil diesel fuel (DFO).

2.2.1. Data Set

The first step in developing the calibration method was to collect calibration data for
PLS model construction. For this calibration method, the training data was based on three
variable components: RME, HVO (Bioverno) and DFO concentrations. The calibration
data had to fill the analytical area of interest by linearly changing the concentration of
components forming a dense sequence of concentration combinations over the calibration
range. There were a few major challenges during the calibration data set planning:
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• Complexity of variations for multivariable component data set;
• Identification of the data set limits for minimizing the number of data;
• Data systematization.

In addition, the properties of the calibration data’ component had also been taken
into account during data set planning. E.g., the chemical structure of HVO (Bioverno) and
DFO and their measured NIR spectra were almost similar. Therefore, in order to be able
to perform more reliable PLS model calculations, the HVO (Bioverno) composition along
with linearly changing concentration interval was chosen to be greater compared to RME
in two variable component samples.

Figure 2 represents a ternary plot of the analytical data for all collected calibration
samples. The total amount of samples collected for calibration purpose was 85, which
included three- and two-component samples of RME, HVO and DFO. The data mainly
covered the area of analytical interest, where RME was 0–10% (V/V), HVO (Bioverno)
0–20% (V/V) and DFO 70–100% (V/V). The data samples out of the interested analytical
range were also included into the calibration data set to achieve well-defined correlations
between the NIR spectrum and analytical sample data.
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The analytical information of the calibration data set represented the composition
fraction for each component, such as mass fraction, % (m/m) and volume fraction, % (V/V).
The method used to determine the composition fractions of the samples’ components
included weighing of each component added with a stated volume. The constructed PLS
model calculations were based on the volume fraction data of the collected calibration
samples since the number of moles of a substance is proportional to its volume and the
absorbance values of the NIR spectrum are proportional to the volume values of the
measured substance. As the NIR measured spectra represents the absorbed energy of the
molecular vibrations, the absorbance values are proportional to a number of molecules
present in the measured substance.

The mass fraction analytical data was collected to ensure the quality of the volume
fractions of the sample components by comparing the sample’s densities ρm and ρV.

ρm =
m1 + m2 + m3

Vsample
(1)
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ρV =
V1 × ρ1 + V2 × ρ2 + V3 × ρ3

V1 + V2 + V3
(2)

2.2.2. Data Treatment

In order to make the calculations easier, the data needs to be processed before develop-
ing the model. A method for data pretreatment was chosen according to the quality of the
measured spectra. The chosen pretreatment method must be applied for both independent
(training set) and dependent (test) variables [16]. The quality of the measured spectra for
several different diesel blends samples using the studied spectrometer was very good: the
spectrum graph was smooth and clear and the noise level was insignificant. However,
a spectra’s major imperfection was the baseline shift. In order to overcome the baseline
drifting, several data pretreatment methods were tested:

1. Mean-centering method, used for spectrum centering. Each spectrum has been treated
according to Formula (3), where x defines the spectrum variable and X stands for all
variables of a spectrum data.

f (x) = x − mean(X) (3)

2. Baseline correction method (Formula (4)), used for data pretreatment of the calibration
data spectrum.

f (x) = x − min(X) (4)

3. Standard normal variate (SNV) method (Formula (5)), used for both spectrum center-
ing and scaling [20].

f (x) =
x − mean(X)

stdev(X)
(5)

Each pretreatment method was tested using the cross-validation method. For each
pretreatment method, the PLS model performance values were compared to identify the
most effective one. In addition, the collected data were reduced to an average spectrum for
each blend sample in combination with the previously mentioned pretreatment methods,
and some samples with most spread spectrum data were sorted out from the calibration set.
After all, basing on the cross-validation testing results the calibration data set was selected
to include 73 spectrum data, where each spectrum represents the average measurement
data of each blend sample, treated by applying the SNV method.

2.2.3. PLS Model Development

The PLS regression is a multivariate data analytical technique for constructing pre-
dictive models. The PLS model is built on the properties of the nonlinear iterative partial
least squares algorithm. The model can be described as a regression between the scores for
the spectrum data and the analytical data [16]. One of the most important properties of
the model is the number of the PLS components. It is equal to the model dimensionality
and determined to maximize the covariance between the spectra data and the analytical
concentrations [19]. In this work, the range for calculated PLS component numbers was
from 0 to 10, according to the quality of the measured spectra.

Programming scripts used for computing PLS model in the MatLab program were
based on Geladi and Kowalski “Partial Least-squares regression: a tutorial” [16]. The
ready-made scripts were used to perform the model selection analysis, during which the
relations between spectra and analytical data of the calibration data set were identified
and tested, using the “leave one out” (LOO) cross-validation method. The cross-validation
method was used to optimize the PLS model with respect to the minimal prediction risk
and to set the number of components needed for model prediction [21]. In LOO, each
sample, included in the calibration data set, was used in turn as an individual testing
data set. As a result, for each sample, the prediction values and PLS model performance
values were calculated for each PLS component number providing an estimation of the
model performance in predicting new data. The prediction performance of the model was



Fuels 2021, 2 185

represented by the sum of squared errors (PRESS) and the root mean squared error of cross
validation (RMSECV) values, calculated by comparing the reference dependent variables
with the testing data predictions [22]. During the cross-validation analysis three, the most
convenient PLS component numbers were chosen for the further validation process for
each PLS model.

2.2.4. Validation Process

From the calibration set, a separately measured group of diesel blend samples was
used for validating the constructed PLS models for RME and HVO quantification. This
group of measured diesel blend samples was referred as the validation data set. The main
purpose of using the validation set was to estimate how well the model will perform for
future samples [23]. In order to be able to accomplish reliable evaluation of the constructed
model’s performance, the main factor in the validation data set planning was identified to
be the potential variety of the future samples’ content. The analytical data of each group
samples of the validation set was equally distributed within the whole interested analytical
range. The validation data set included:

1. Group of RME, HVO (Bioverno) and DFO blend samples;
2. Group of HVO (Bioverno) and DFO blend samples;
3. Group of RME and DFO blend samples;
4. Group of HVO (NEXBTL) and DFO blend samples;
5. Group of AFME and DFO blend samples.

During the PLS models predictions for the validation data set, the performance of
the model was evaluated for all three component numbers, previously chosen from the
model cross validation analysis, for each group separately. This method allowed obtaining
a proper picture of the models’ performances for different blend samples with varying
composition and contents’ original. After the validation method had been applied the final
component numbers for the constructed PLS models were chosen.

In addition, a temperature variable group of sample measurements was used to
evaluate the robustness of the model. The additional testing data set contained a group of
the temperature variable sample measurements, which included five measurements of a
blend sample with RME 7% (V/V), HVO (Bioverno) 15% (V/V) and the rest DFO within a
temperature range from −15 ◦C to +31 ◦C.

3. Results

Individual calibration models were developed for the quantification of biodiesel and
renewable diesel contents in diesel blend samples. Each model was separately calibrated
and validated according to the collected analytical data for FAME and HVO compounds
using the total collected and treated data sets. Basing on the observation of the models’
predictions for the validation data set, a supplementary data interpretation was applied for
each model’s performance improvement. The idea of the supplementary data interpretation
was to truncate negative prediction values for the component volume fraction to zeros.

Moreover, the robustness of the calibrated model was tested with a temperature
variable group of sample measurements. The results, presented in Figure 3, showed
that the calibrated models were sensitive to a difference between the measured sample
temperature and the calibration data set standard temperature. The standard temperature,
used for the calibration data set measurements, was room temperature, +21 ◦C, represented
by the red mark in the Figure 3 plots. In addition, the calibrated models’ performance was
directly affected by the temperature difference as can be observed.
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3.1. PLS Calibration Model Results for FAME Quantification, 0–10% (V/V)

The chosen PLS component numbers for FAME quantification model were 5, 6 and
7, according to the PRESS and RMSECV values calculated for each component number
during the cross-validation process, Figure 4. Then, each of the chosen component numbers
were used for the constructed PLS model validation. Each group of the validation data
set was tested separately, in order to analyze the model performance more descriptively
and to identify a suitable component number for specific groups of diesel blends. After
that, the final PLS component numbers were identified for predicting the biofuel content
individually for each two diesel fuel blends groups, rapeseed origin FAME/Wood origin
HVO (Bioverno) diesel blends and all diesel fuel blends, basing on the average validation
results of each suitable set of the validation data. The FAME quantification PLS model
results are presented in Tables 2 and 3 and in Figures 5 and 6.
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Table 2. FAME quantification PLS model results; rapeseed origin FAME/Wood origin diesel blends. Rapeseed origin
FAME/Wood origin HVO (Bioverno) diesel blends.

Model CNUM RMSECV RMSEP PRESS (v) R2

RPLS model 7 0.16% 0.36% 0.000545 0.9942
PLS model (truncating negative values) 7 0.16% 0.36% 0.000016 0.9997

Table 3. FAME quantification PLS model results; all diesel blends. All diesel blends.

Model CNUM RMSECV RMSEP PRESS (v) R2

RPLS model 6 0.17% 0.91% 0.004996 0.9698
PLS model (truncating negative values) 6 0.17% 0.18% 0.000203 0.9984
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3.2. PLS Calibration Model Results for HVO Quantification, 0–20% (V/V)

A process similar to the FAME quantification PLS model calibration procedure was ap-
plied for the HVO quantification PLS model calibration. According to the cross-validation
results illustrated in Figure 7, the chosen PLS component numbers were 4, 5, 6 and 7. Each
of the chosen component numbers were used for the constructed PLS model validation.
After that, the final PLS component numbers were identified for predicting the biofuel
content individually for each two diesel fuel blends groups, rapeseed origin FAME/Wood
origin HVO (Bioverno) diesel blends and all diesel fuel blends, based on the average
validation results of each suitable set of the validation data. The HVO quantification PLS
model results are presented in Tables 4 and 5 and in Figures 8 and 9.
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Table 4. HVO quantification PLS model results; rapeseed origin FAME/Wood origin diesel blends. Rapeseed origin
FAME/Wood origin HVO (Bioverno) diesel blends.

Model CNUM RMSECV RMSEP PRESS (v) R2

RPLS model 5 0.80% 0.97% 0.004016 0.9950

PLS model (truncating negative values) 5 0.80% 0.92% 0.00362 0.9943

Table 5. HVO quantification PLS model results; all diesel blends.

Model CNUM RMSECV RMSEP PRESS (v) R2

RPLS model 5 0.80% 2.70% 0.040502 0.9182

PLS model (truncating negative values) 5 0.80% 2.66% 0.043316 0.9186

Fuels 2021, 2, FOR PEER REVIEW 11 
 

 

Table 4. HVO quantification PLS model results; rapeseed origin FAME/Wood origin diesel blends. Rapeseed origin 
FAME/Wood origin HVO (Bioverno) diesel blends. 

Model CNUM RMSECV RMSEP PRESS (v) R2 

RPLS model 5 0.80% 0.97% 0.004016 0.9950 
PLS model (truncating negative values) 5 0.80% 0.92% 0.00362 0.9943 

Table 5. HVO quantification PLS model results; all diesel blends. 

Model CNUM RMSECV RMSEP PRESS (v) R2 
RPLS model 5 0.80% 2.70% 0.040502 0.9182 

PLS model (truncating negative values) 5 0.80% 2.66% 0.043316 0.9186 
 

 
(a) 

 
(b) 

Figure 8. Analytical concentration values of rapeseed origin FAME/Wood origin HVO (Bioverno) 
diesel blend validation samples versus predicted values using HVO quantification PLS model: (a)—
PLS model predictions, (b)—PLS model prediction with data interpretation. 

  

Figure 8. Analytical concentration values of rapeseed origin FAME/Wood origin HVO (Bioverno)
diesel blend validation samples versus predicted values using HVO quantification PLS model:
(a)—PLS model predictions, (b)—PLS model prediction with data interpretation.



Fuels 2021, 2 190Fuels 2021, 2, FOR PEER REVIEW 12 
 

 

 
(a) 

 
(b) 

Figure 9. Analytical concentration values of all validation samples versus predicted values using 
HVO quantification PLS model: (a)—PLS model predictions, (b)—PLS model prediction with data 
interpretation. 

4. Discussion 
A lot of work and research have already been done concerning the infrared (IR) spec-

troscopy applications, including NIR, mid-infrared (MIR) and Fourier transform infrared 
(FT-IR) spectroscopy, for biodiesel/fossil diesel fuels blends analysis applying different 
multivariable calibration methods. The diesel fuel blend analysis has been focused indi-
vidually on the biodiesel content quantification as well as in determination of the fuel 
blends adulterations and different physicochemical properties, such as density, flash 
point and others [24–27]. The calibration method, described in Alves and Poppi (2013), for 
particular biodiesel content determination, provided the RMSEP value of 0.11% (V/V) for 
0–35% analytical range [24]. Palou, Miró and Blanco (2017) created a calibration method 
for more complex analysis. It comprised the determination of seven physicochemical 
properties of the diesel fuel blends including the FAME content. The archived RMSEP 
value for predicting the FAME content was 0.51% (V/V) for 0–15% analytical range [20]. 

In the current study, the described calibration method was developed to be able to 
analyze the biofuels contents in the different bio and diesel fuel blends. A near infrared 
Parafuel Quantum 1800 instrument was utilized for the task. The uniqueness of the devel-
oped method is the ability of achieving the reliable results independent of the complexity 
of the analyzed diesel blend sample. The structure of the constructed calibration set allows 
for overcoming the effect of the proportional influence of each biofuels’ NIR spectrum 
within the blend samples spectra. In addition, even though the usage of the PLS regression 
method is popular within the NIR spectroscopy applications, the developed calibration 
method for quantification of biodiesel and renewable diesel contents in diesel blend sam-

Figure 9. Analytical concentration values of all validation samples versus predicted values using
HVO quantification PLS model: (a)—PLS model predictions, (b)—PLS model prediction with data
interpretation.

4. Discussion

A lot of work and research have already been done concerning the infrared (IR) spec-
troscopy applications, including NIR, mid-infrared (MIR) and Fourier transform infrared
(FT-IR) spectroscopy, for biodiesel/fossil diesel fuels blends analysis applying different
multivariable calibration methods. The diesel fuel blend analysis has been focused individ-
ually on the biodiesel content quantification as well as in determination of the fuel blends
adulterations and different physicochemical properties, such as density, flash point and
others [24–27]. The calibration method, described in Alves and Poppi (2013), for particular
biodiesel content determination, provided the RMSEP value of 0.11% (V/V) for 0–35%
analytical range [24]. Palou, Miró and Blanco (2017) created a calibration method for more
complex analysis. It comprised the determination of seven physicochemical properties
of the diesel fuel blends including the FAME content. The archived RMSEP value for
predicting the FAME content was 0.51% (V/V) for 0–15% analytical range [20].

In the current study, the described calibration method was developed to be able to
analyze the biofuels contents in the different bio and diesel fuel blends. A near infrared
Parafuel Quantum 1800 instrument was utilized for the task. The uniqueness of the devel-
oped method is the ability of achieving the reliable results independent of the complexity of
the analyzed diesel blend sample. The structure of the constructed calibration set allows for
overcoming the effect of the proportional influence of each biofuels’ NIR spectrum within
the blend samples spectra. In addition, even though the usage of the PLS regression method
is popular within the NIR spectroscopy applications, the developed calibration method
for quantification of biodiesel and renewable diesel contents in diesel blend samples is not
as common as the calibration methods for just the biodiesel content quantification. The
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calibration of FAME in all diesel blends was more accurate as the calibration for HVO,
probably due to the chosen fuel content. The maximum concentration of the FAME was
10% (V/V) while it was 20% (V/V) for the HVO. It seems that the model overestimates the
HVO concentrations as the percentages of these in the mixture increase. This error is not
usually relevant in practice, as the properties of HVO are near to neat DFO.

By comparing the results of this work with the results of the similar studies per-
formed by Alves and Poppi (2016), the accomplished calibration method results were
assessed. The obtained RMSEP values for the calibration models achieved in that study
were 0.53% (V/V) for renewable diesel quantification and 0.24% (V/V) for quantification of
the biodiesel [27]. In the present study, the constructed PLS model for FAME quantification
had better prediction properties for validation of both the samples with similar composition
as the calibration data set (RMSEP = 0.06% (V/V)) and the sample with various composition
(RMSEP = 0.18% (V/V)). However, the current PLS model for HVO quantification had
larger estimated prediction errors for both the samples with similar composition as the
calibration data set (RMSEP = 0.92% (V/V)) and the sample with various composition
(RMSEP = 2.66% (V/V)).

One of the major aspects of improvement for the calibration method is adding the
variety of biofuels into the calibration data set. As the calibration method was developed
to analyze the biofuels’ content for all kinds of diesel blend samples, the accuracy of the
created method is improved steadily with additional samples of various bio or renewable
and fossil fuel blends. The larger the amount of various bio or renewable and fossil fuel
blend samples are available for calibration, the better. Addition of various bio or renewable
and fossil fuel blend samples improves the feasibility and robust characteristics of the
created calibration method.

In engine experiments, development work and customer cases, it is important to know
if the unknown diesel fuel contains FAME or HVO. In addition, the global trend appears to
be that the share of bio and renewable fuels in fossil fuel blends increases. In certain sectors,
there is already great interest in such fuels, e.g., B20 fuel, which contains 20% (V/V) of bio
component, often FAME. Therefore, the calibration method should be further extended to
also comprise the higher biofuel contents by enlarging the analytical ranges of both FAME
and HVO relatively up to 25 to 30% (V/V).

5. Conclusions

In the current study, the described calibration method was developed to be able to
analyze the biofuel contents in the different bio and diesel fuel blends. A near infrared
Parafuel Quantum 1800 instrument was utilized for the task. The uniqueness of the
developed method is the ability of achieving the reliable results while blending several
biofuel types with petrol-based diesel fuel. The structure of the constructed calibration
set allows for overcoming the effect of the proportional influence of each biofuels’ NIR
spectrum within the blend samples spectra. The application of this method is useful in,
e.g., engine development work and customer cases when there is an urgent need to know
if the fossil diesel fuel contains FAME or HVO.

The main goal of this work was to create a practical application for an NIR spectrome-
ter to be able to determine the bio content in various blends of fossil and renewable fuels.
The method had to be fit to different types of biofuels. Based on the results of the present
work, the following conclusions could be drawn:

The constructed PLS models for biofuels content quantification allows for measuring:

1. Biodiesel content in all diesel fuel blends within the range 0–10% (V/V) with estimated
uncertainty predictions, expressed by root mean square error of prediction (RMSEP)
value, of 0.18% (V/V);

2. Renewable diesel content in all diesel fuel blends within the range 0–20% (V/V) with
estimated uncertainty predictions, RMSEP, of 2.66% (V/V).

The created calibration method is suitable for practical laboratory applications to
identify the biofuels type and quantify their content in diesel fuel blends.
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The calibration method can be further improved by developing a general calibration
model for FAME and HVO content quantification. A wider variation of biofuels should be
introduced to the calibration and validation data sets. The ranges of bio and renewable
fuel contents in blends must also be extended along with the global trend of increasing
share of those fuels.
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