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Abstract: Free space optical (FSO) systems have become a reliable solution for modern communica-
tions networks, due to the high performance, availability, reliability and security they can provide.
However, their characteristics depend strongly on the conditions of the atmosphere, which is the
propagation path of the optical beam. In this work, this dependence is experimentally investigated
through a terrestrial horizontal FSO link, which was installed a few meters above the sea. Thus, the
procedure presented hereis an accurate empirical model for the estimation of the attenuation coeffi-
cient for an optical wireless link, as a function of the atmospheric temperature, the relative humidity,
and the wind speed. Its accuracy is verified by comparing the estimated outcomes—obtained from
the empirical model—versus the measured—experimental—ones. Such accurate empirical models
can be used for designing high performance and reliability FSO links, as parts of the upcoming
5G/5G+ networks, for areas where the behavior of the atmospheric conditions and parameters
are known.

Keywords: terrestrial free space optical links; attenuation coefficient; experimental model

1. Introduction

During the last few decades, free space optical (FSO) systems attracted very significant
research and commercial interest, due to the plenty of advantages they can offer and the
development margins they show. The high data rate transmission and security level they
offer, along with the relatively low operational cost and the license free installation, are
some reasons why the FSO links are part of the modern communication networks, i.e.,
5G/5G+ [1,2].

On the other hand, the performance, the reliability, and the availability of the FSO
systems, strongly depend on the atmospheric and weather conditions as the laser beam
propagates through the atmosphere. An important factor that affects the performance
of FSO links is attenuation due to absorption and scattering, which might cause serious
performance degradation or even outages, in cases of dense fog or rain [3–6]. Furthermore,
another factor that deteriorates the performance of the FSO links is the atmospheric turbu-
lence that causes the scintillation effect [7–12]. All these factors were extensively studied
in a theoretical way and various channel models were extracted in order to estimate the
main metrics of a communication system, such as the outage probability, the bit error rate,
etc. [13–17].

During the last years, various experimental FSO links were deployed in order to
validate the accuracy of many theoretical models, and at the same time, extract empirical
models for the attenuation estimation of optical power, in specific cases [18–31]. In this
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work, a novel empirical experimental model for the attenuation coefficient was extracted
using a multiple linear regression method for the maritime environment during night-time,
as a function of the atmospheric temperature, the relative humidity, and the wind speed.
Various regression techniques are already used in order to extract empirical models in
FSO communications [29–31]. The presence of sea water below the FSO link creates weak
to strong turbulence conditions, due to water vaporization and high attenuation due to
high levels of humidity. Therefore, it is important to extract a model that predicts the
communications’ quality of an FSO system, in an environment with such a great impact
on its performance. Its accuracy was validated by comparing the estimated attenuation
coefficient results versus the real ones, which were obtained from measurements.

The remainder of this work is organized as follows. In Section 2, the theoretical
background is mentioned, while in Section 3, the experimental setup is presented. Next,
in Section 4, the experimental model is derived and its results are presented. Finally, the
conclusions of this work are presented in Section 5.

2. Theoretical Analysis of the Model

As the optical beam propagates through the atmospheric channel, the geometrical
losses, the scattering, the absorption, and the turbulence are the most significant attenua-
tion parameters.

2.1. Geometrical Losses Attenuation

An important factor that reduces the useful optical power that arrives at the receiver is
the attenuation due to geometrical losses, and depends on the technical parameter values
of the transceivers and the link’s length. Specifically, the geometrical loss factor, aGL, could
be estimated as [4,24]:

aGL =

(
Dr

Dr + θl

)2
(1)

where Dr and Dt represent the aperture diameter of the receiver and transmitter, respec-
tively, θ is the divergence angle and l stands for the link’s length. Thus, using Equation (1),
the received optical power is estimated as [4,24]:

PrGL = aGLPt (2)

with PrGL and Pt being the optical power at the receiver,due to geometrical losses and the
transmitter, respectively. For terrestrial ground-to-ground FSO links where their length
remains invariable, the geometrical loss factor is constant.

2.2. Atmospheric Attenuation

The laser beam propagation through the atmosphere causes attenuation of the optical
power due to scattering, absorption, and turbulence. Thus, many accurate theoretical and
empirical models for the estimation of the corresponding coefficients, i.e., asc, aab, atur, were
proposed and verified [18,32]. Furthermore, in order to estimate thetotal received optical
power, Pr, due to the total atmospheric attenuation, atot, the Beer-Lambert’s law equation
was used [3,4,24,32]:

Pr = PrGL exp(−atotl) (3)

where atot = asc + aab + atur. Then, using Equations (2) and (3), the total attenuation factor,
atot, could be estimated through the link’s parameters and characteristics, as:

atot = −1
l

ln
(

Pr

aGLPt

)
(4)

3. Experimental Setup

The experimental setup thatwas used here is a terrestrial horizontal FSO link that
was installed in the Piraeus port in Greece, connecting a building of the Hellenic Naval
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Academy and the lighthouse of the island of Psyttaleia. The link appears in Figure 1, while
the corresponding technical characteristics were adjusted to take on the values presented
in Table 1.
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side. The received optical signal was transformed into voltage signal that was propor-
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the received signal strength indicator (RSSI) and it could be monitored through the soft-
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internal storage of the FSO head, every thirty seconds. Following the procedure that ap-
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Table 1. FSO system specifications.

Parameter Value

Distance 2940 m

Height 35 m

Bit Error Rate Less than 10−12 (unfaded)

Wavelength 850 nm (total frequency range between 830 nm and 860 nm)

Bit Rate Up to 155 Mbps

Output Power 3 laser beams with total power 150 mW

Total Power Consumption 22 W

Beam Divergence 2 mrad

Transmitter aperture diameter 5 cm

Receiver aperture diameter 20 cm

Receiver Field of View (FOV) 2 mrad

Sensitivity −46 dBm

Eye Safety Class 1M

In order to achieve precise alignment between the FSO transceivers during the instal-
lation, the scopes of the devices were used in order to receive the maximum power at each
side. The received optical signal was transformed into voltage signal that was proportional
to the square root of the optical power, see Appendix A. This voltage represented the
received signal strength indicator (RSSI) and it could be monitored through the software of
the FSO device. The values of RSSI and the time were recorded and saved in the internal
storage of the FSO head, every thirty seconds. Following the procedure that appeared in
Appendix A, the RSSI values could be transformed into optical power measurements. This
accurate transformation is necessary as the transmitted power cannot easily transform to
the RSSI units. Taking into account the transmitted and the received optical power, the
attenuation factor could be evaluated from Equation (4).

The RSSI values strongly depend on weather and atmospheric conditions. Therefore,
by installing a precise meteorological station close to the FSO transceivers, various meteo-
rological parameters were measured, with temperature, relative humidity, and wind speed
being the ones that most affect the laser beam propagation [4,13,14,18,19]. Another factor



Telecom 2021, 2 96

that affects the attenuation is the link’s operational wavelength which was invariable in
the experimentsin this work.

The experimental measurements were collected continuously for more than a six-
months time-period. However, in order to decrease the degrees of freedom of the specific
problem that we studied and to obtain accurate results, we tried to examine cases where the
influence of the sunlight radiation could be assumed to be negligible. Thus, in this work,
we used the data that corresponded to time-periods between 8:00 p.m. to 5:00 a.m. For the
same reason, measurements with nonzero precipitations were also excluded. Specifically,
the experimental data that were used in this work are the ones that met the criteria that
appeared in Table 2.

Table 2. Weather conditions during measurements.

Parameter Range

Time 00:00–05:00 and 20:00–23:59

Temperature 10–25 ◦C

Relative Humidity 40–90%

Wind Speed 0–20 m/s

Rain Rate 0 mm/h

4. Model Analysis and Results

By substituting the experimental values of transmitted and received optical powerin
Equation (4), the experimental attenuation coefficient was evaluated. According to existing
models for turbulence and attenuation in FSO systems, the main meteorological factors that
affect the propagation of the laser beam were the relative humidity, temperature, and wind
speed [4,13,14,18,19]. Thus, the experimental model for the estimation of the attenuation
factor would depend on these three parameters and was extracted using multiple linear
regression method with the attenuation coefficient being the dependent variable and
combinations of up to 3rd order values of temperature, wind speed, and relative humidity
being the explanatory variables xi [33]:

atot = b0 +
N

∑
i=1

bixi (5)

Data collected in the first three months of the year 2020 were used for the regression
process for time-periods that fulfilled the requirements of Table 2.

In order to simplify the regression model, factors with a negligible contribution were
eliminated. Thus, the estimation model for the attenuation coefficient as a function of
atmospheric temperature, relative humidity, and wind speed is given through the following
mathematical expression:

atot = b0 + b1RH4 + b2RH4T3 + b3T4 + b4RH2TWS + b5RH2 + b6WS2 + b7T2

+b8RH3 + b9T3 + b10RH × T2WS + b11RH2T + b12RH2T2 + b13RH3T2 (6)

where T stands for the temperature in Celsius degrees, RH corresponds to the relative
humidity, and WS represents the wind speed in m/s. The values of the coefficients of
Equation (6) are presented in Table 3.
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Table 3. Coefficient values of Equation (6).

b0 9.4600 × 10−1 b7 −2.2800 × 10−2

b1 4.6566 × 10−9 b8 9.7646 × 10−7

b2 5.9130 × 10−12 b9 2.0000 × 10−3

b3 −5.0450 × 10−5 b10 1.1043 × 10−6

b4 −1.0050 × 10−7 b11 4.9150 × 10−5

b5 −3.2280 × 10−4 b12 −9.4390 × 10−7

b6 −2.2190 × 10−4 b13 −2.2860 × 10−8

Taking into account the parameter values of Table 3, the validity and the error param-
eters of the experimental model are presented in Table 4.

Table 4. Validity Parameter Values for the Experimental Model of Equation (6).

Coefficient of Multiple Correlation R2 0.7612

Adjusted Coefficient of Multiple Correlation 0.7610

Residual Mean Variance 5.1482 × 10−4

Sum of Regression Variance 19.9718

Sum of Residual Variance 6.2638

Sum of Total Variance 26.2356

From Table 4, it can be seen that the coefficient of multiple correlation that is the most
important parameter for the fitting accuracy of the model is close enough to one, so the
accuracy of the model is high enough. Furthermore, the residual mean variance is very
low, three orders of magnitude lower that the experimental measurements, a sign of high
precision model.

Next, the outcomes for the attenuation factor obtained from the experiment and those
that were obtained from the empirical model of Equation (6), were compared.

In Figure 2, the experimental measurements of the attenuation coefficient according
to Equation (4) and the predicted values of the regression model of Equation (6) were
presented for 12,300 samples. It could be observed that the model that was extracted had
a precise fit to the behavior of the experimental results and could predict the attenuation
coefficient according to weather and atmospheric data. In Figure 3, the experimental versus
the corresponding regression model results are presented. According to the linear fitting,
the slope of the curve was 0.7612 and was near to 1, as it should theoretically be, while
the constant term was very low, i.e., 0.09. It could also be seen, that as the attenuation
coefficient increased, the accuracy of the model decreased. This was expected because an
increment of attenuation coefficient meant worse weather conditions that could not be
easily modelled.

In Figure 4, the measurements of temperature, wind speed, and relative humidity
are presented for every sample that was used for the extraction of the model. It could
be observed that the model has a high accuracy in case of low wind speed and relative
humidity. In contrary, high values of such parameters that are responsible for very high
attenuation and create fast changes in the consistency of the atmosphere, decrease the
accuracy of the model. Furthermore, temperature affects the accuracy of the model in cases
of very low values.
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In order to more precisely investigate the behavior of the model in various weather
conditions, the results of empirical model and experimental measurements are presented
for specific days. In the blue box are the measurements between 00:00 a.m. to 05:00 a.m.,
while in the orange one are the measurements between 8:00 pm to 11:59 p.m. At the right
side of the Figures 5–11, the wind speed and the rain rate are presented for the whole day.

In Figures 5 and 6, the results of windy nights are presented. It could be observed
that between 00:00 and 05:00 the wind was lower than 5 m/s, the model had a good fitting,
while between 20:00 and 23:59, the wind was over 5 m/s with severe gusts, where the
model diverged more, but was still close to the experimental measurements.
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In Figure 7, it can be observed that a lack of accuracy before precipitation took place
due to unstable and fast changes in weather conditions. It was clear that the very high
value of the relative humidity decreased the accuracy of the model, as the attenuation
coefficient was very high. On the other hand, between 21:00 and 23:59, a few hours after
precipitation and with very low wind speed where the weather conditions were mild and
stable, the model presented a very high accuracy.

In Figure 8, the results of the model are presented in cases of sudden and severe wind
gusts and changes. Between 00:00 and 05:00, this phenomenon was more severe and at the
same time, the relative humidity increased and the model lacked accuracy in some cases.
However, as shown in Figure 6, between 20:00 and 23:59, the model showed very high
accuracy in predicting the attenuation coefficient due to mild conditions.

The partial coefficient of multiple correlation, R2, is presented in the following Table 5,
for the days presented in Figures 5–8.
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Table 5. R2 values for several days.

Day Time R2

6 February 2020 (Figure 5)
00:00–01:00 0.632

20:00–23:59 <0.5

16 February 2020 (Figure 6)
00:00–05:00 0.741

20:00–23:59 0.584

15 February 2020 (Figure 7)
00:00–05:00 <0.5

20:00–23:59 0.776

30 January 2020 (Figure 8)
00:00–05:00 0.701

20:00–23:59 0.784

In order to further validate the accuracy of the model, we applied it in days that were
not included in the data of the regression process. We chose days with a wide variety of
weather conditions, in order to observe the models behavior, and the results are presented
in Figures 9–11.

From the experimental measurements and the predictions of the empirical model of
Equation (6), of Figures 9–11, it can be seen that they follow the same behavior as those of
Figures 5–8. Specifically, the model is very accurate in cases of both low wind speedand
relative humidity, without precipitations and diverges in more severe weather changes.
The values of R2 for the days that were not used in the regression method for the extraction
of the model are presented in Table 6, as follows:
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Table 6. R2 values for several days that were not included in the regression method.

Day Time R2

6 April 2020 (Figure 9)
00:00–01:00 <0.5

20:00–23:59 0.783

16 November 2019 (Figure 10)
00:00–05:00 0.667

20:00–23:59 0.752

17 November 2019 (Figure 11) 00:00–05:00 0.791

In Figure 11, the FSO link was switched off for safety reasons at night, due to a ship
that was expected to pass through the propagation path of the LASER beam, so only
measurements between 00:00 and 05:00 were collected. Thus, the model proved to be
accurate enough under specific constraints, and it could be used in order to predict the
performance of FSO links, in real maritime environment, during night.

Finally, we examined the mean value and the standard deviation of the experimental
attenuation coefficient for almost the same values of temperature, wind speed, and relative
humidity, respectively; the results are presented in the following Table 7.

Table 7. Mean value and standard deviation of experimental attenuation coefficient.

Temperature (◦C) Relative Humidity (%) Wind Speed (m/s) Attenuation Coefficient
Mean Value

Attenuation Coefficient
Standard Deviation

11–12 60–61 1.0–1.5 0.3371 0.0058

13–14 74–75 1.5–2.0 0.3821 0.0241

According to Table 7, it is clear that the attenuation coefficient mostly depended on
temperature, wind speed, and relative humidity, as the standard deviation in cases of
almost same values of these parameters was very low. On the other hand, the model might
become more accurate if more atmospheric and weather parameters, i.e., atmospheric
pressure, are investigated.

5. Conclusions

In this work, an empirical experimental model for the attenuation coefficient estima-
tion of an FSO system, which operates in low height over the sea, during night-time, was
presented as a function of the atmospheric temperature, the wind speed, and the relative
humidity. According to the obtained results that were presented, the model achieved very
high accuracy in cases with low wind speed, low relative humidity, high temperature,
and without precipitations where the attenuation coefficient was relatively low. Such an
empirical model is a very useful tool in order to predict the performance and reliability of
an FSO link, in a specific environment with known characteristics and has a great impact
in the designing of high demanding modern communication networks.
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Appendix A

According to the official manual of the FSO device, the connection between the RSSI
values and the link length, i.e., distance, appears in Figure 11.
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The attenuation of this diagram was estimated according to the geometrical losses of
the link using Equation (1).

According to Reference [34], the voltage at the output of an electronic circuit was
proportional to the square root of the optical power received. Therefore, the RSSI as a
function of the received optical power is given in Figure A1.
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Using the linear fitting technique the optical power received could be estimated as:

Pr = (0.023078RSSI − 0.0036)2 (A1)
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