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Abstract: As Industry 4.0 networks continue to evolve at a rapid pace, they are becoming increasingly
complex and distributed. These networks incorporate a range of technologies that are integrated into
smart manufacturing systems, requiring adaptability, security, and resilience. However, managing
the complexity of Industry 4.0 networks presents significant challenges, particularly in terms of
security and the integration of diverse technologies into a functioning and efficient infrastructure.
To address these challenges, emerging digital twin standards are enabling the connection of various
systems by linking individual digital twins, creating a system of systems. The objective is to develop
a “universal translator” that can interpret inputs from both the real and digital worlds, merging
them into a seamless cyber-physical reality. It will be demonstrated how the myriad of technologies
and systems in Industry 4.0 networks can be connected through the use of digital twins to create a
seamless “system of systems”. This will improve interoperability, resilience, and security in smart
manufacturing systems. The paper will also outline the potential benefits and limitations of digital
twins in addressing the challenges of Industry 4.0 networks.

Keywords: industrial internet of things; (IIoT); interoperability; digital twin; industry 4.0; smart
manufacturing; artificial intelligence (AI); machine learning (ML); universal translator

1. Introduction

Industry 4.0 technologies offer manufacturers the opportunity to enhance their com-
petitiveness by integrating capabilities such as sensing, big data analytics, and cloud
computing into the factory floor. However, interoperability has become a key challenge
for the development of these technologies within automation, summarised very well by
Körner et al. [1] and visually portrayed below in Figure 1.

To establish interoperability between physical items such as sensors and enterprise
assets, Industry 4.0 calls for the integration of various components and services found
within a traditional factory or in a non-traditional manufacturing environment. This type
of integration, often referred to as horizontal integration, involves connecting enterprises,
smart factories, smart devices, and processes for manufacturing control [2]. The concept
of a digital twin can safely be regarded as the literal meaning of digital transformation,
enabling the transition of traditional legacy manufacturing systems into smart, modern
facilities capable of capitalizing on data insights to call themselves ‘smart factories.’ Legacy
devices in factories can use externally applied sensors to build data-driven insights, with
no inherent interconnectivity issues [3]. Like many Industry 4.0 innovations, AI algorithms
form the basis of the digital twin. In addition, IIoT (Industrial IoT), actuators, and data
analytics are crucial for success.

This paper aims to examine the challenges associated with enabling interoperability in
manufacturing scenarios. The focus will be on clarifying the differences between syntactic
and semantic interoperability, and the need for data homogenization. Additionally, this
paper will present the various types of digital twins and their relevant categorizations
within the automation pyramid as shown above in Figure 1, as well as assessing the barriers
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to their deployment. The paper will also analyse how digital twins can meet the challenge
of providing an interoperable system across multiple sites if needed. As a key enabling
technology, edge processing will be reviewed and the deployment of machine learning
algorithms in smart manufacturing will also be assessed.
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Finally, this paper will discuss the deployment of a digital twin framework towards de-
livering a “system of systems”. This discussion will include the benefits of integrating such
an approach within a manufacturing facility and outline the impacts that such an approach
would bring to the broader manufacturing sector. By the end of this paper, readers will
have a thorough understanding of the challenges associated with enabling interoperability
in manufacturing scenarios and how digital twin technology, edge processing, and machine
learning algorithms can help to overcome these challenges. Additionally, readers will gain
insight into the benefits of deploying a digital twin framework and its integration within
manufacturing facilities.

2. Interoperability in Manufacturing

Interoperability can be defined as the capacity of two or more products, programs,
or systems to communicate and understand one another’s data. Currently, there is no
one agreed definition of interoperability that fits all projects and uses cases. However, the
IEEE defines interoperability as “the ability of two or more systems or components [from
different manufacturers/vendors] to exchange information and to use the information that
has been exchanged”. Harvesting inputs from numerous sensors, a substantial amount
of data can be gathered in mere moments. Manufacturing architectures have evolved
into interconnected networks of automation devices, services, and businesses as a result
of recent developments in manufacturing technology, including cyber-physical systems,
industrial internet, AI (artificial intelligence), and machine learning. The rising requirement
for interoperability at all levels of the manufacturing ecosystem is one of the difficulties
that have come about as a result of this growth. To help operators maximise performance,
industrial IoT (IIoT) links the factory floor to the company, boosting visualisation, data
analysis, and holistic insights. Data synergy, or the integration of data from various sources
to produce value, is a crucial part of the industrial IoT [4]. There are several challenges
associated with achieving interoperability in manufacturing, including the following:

• Technical Complexity: Manufacturing systems often consist of a variety of different
equipment, machines, and software applications from different vendors, each with its
own data format and communication protocols. Achieving interoperability between
these systems can be technically complex and challenging.
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• Data Incompatibility: Incompatible data formats and standards can make it difficult
to integrate different systems and share data between them. Data formats, protocols,
and standards can vary widely across different manufacturing systems, leading to
incompatibility issues.

• Security Risks: Interoperability between different systems and devices can increase the
risk of security breaches, as it creates more opportunities for hackers to
exploit vulnerabilities.

• Lack of Standardisation: There is currently no single standard for achieving interop-
erability in manufacturing, which can lead to confusion and incompatibility issues
between different systems and devices.

• Cost: Achieving interoperability can be expensive, as it often requires significant
investment in hardware, software, and personnel resources.

• Legacy Systems: Many manufacturing systems and equipment are older and may
not have been designed with interoperability in mind. Retrofitting these systems to
achieve interoperability can be costly and time-consuming.

• Organizational Resistance: Achieving interoperability often requires changes in busi-
ness processes and workflows, which can be met with resistance from employees
and management.

Nowadays, interoperability is more of a need than a desirable quality, especially
when smart things start to take the form of widespread technology. Interoperability is
crucial both between smart devices from various manufacturers and between smart devices
and current infrastructures [5]. According to Tolk, the technological architecture of smart
objects must be specifically tasked to facilitate interoperability to accomplish the delivery
of interoperability [6]. Figure 2 below displays a summary of the six levels of conceptual
interoperability and their alignment with the expected interfacing architecture of the data
sharing between various interoperable platforms.
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2.1. Backwards and Forward Compatibility

In manufacturing domains heavily reliant on legacy systems, interoperability chal-
lenges arise due to poorly integrated and isolated databases and systems. Engineers and
administrators spend a significant amount of time chasing information across these dis-
parate systems. Backwards and forward compatibility is crucial for the evolutionary path
towards Industry 4.0, as they extend the lifespan of machines and enable old and new ma-
chinery to coexist. Compatibility also ensures companies can benefit more from their digital
strategy [7]. Most large-scale production facilities use outdated systems and machinery,
making it difficult to adapt to new developments. Wired networks for operations technol-
ogy (OT), information technology (IT), and security are physically segregated in factory
setups, with only a small portion of industrial plants implementing wireless technologies at
scale and combined IT and OT networks. Integrating older technology infrastructure into a
smart manufacturing environment is challenging as it requires updating technology while
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taking into account interdependencies. The deployment of digital intelligence to older
equipment requires expertise in both legacy configurations and modern digital solutions,
increasing complexity and reducing the system’s steadfastness.

2.2. Semantic Interoperability

As the manufacturing industry advances and integrates more IoT protocols, edge com-
puting models, and cyber-physical systems into their factory floor, they face the challenge of
becoming proficient integrators of these technologies. The complexity of the data generated
by these systems makes deploying AI solutions a challenge. Semantic interoperability is
also complicated by the fact that data formats may not be compatible between different
systems. Therefore, manufacturers often have to extract and collect data, and then convert
or transform it to be used in a new system, an example of the complexity of managing
semantic interoperability is shown in Figure 3 below. The complexity of data formats for
AI/M adds an additional challenge to algorithm deployment [8]. As a result, manufactur-
ers need to carefully consider their approach to data management and standardization to
ensure that they can effectively deploy AI solutions to enhance their operations [9,10].
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2.3. Syntactic Interoperability

In the manufacturing industry, a significant challenge is the lack of system compat-
ibility. With vendors offering a wide range of technologies and parts, many of which
are incompatible with other systems, it creates an interoperability problem [4]. To enable
communication and data exchange between two or more systems, mapping and bridging
between them are necessary. Syntactic interoperability focuses on the structure of the syntax
of the data and how it is presented in machine-readable formats. As stated by Veltman
in 2001, it pertains to the various systems’ ability to understand and process the data [10].
While many companies are exploring avenues of automation, most are still relying on
existing Wi-Fi or Ethernet network infrastructures that present data in bespoke formats
specific to those protocols and not easily compatible with industry protocols commonly
used on factory floors. Therefore, integrating systems with different syntactic interoper-
ability can be challenging, and it requires careful consideration of how to standardize data
representation to ensure compatibility as shown below in Figure 4 [8].
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2.4. Homogenising Data for Interoperability

To achieve data interoperability in manufacturing, it is essential to have a system that
provides comprehensive semantic data homogenization, which arranges data into specific
categories and conveys contextual information to all users. This is crucial to ensure that
all data packets are easily discoverable and that selective access to specific information
can be defined while fulfilling the demands of all participants equally. A homogeneous
data set is required to meet the interoperability requirements of modern production and
logistics, from the operation of a single system to the development of a cross-sector Industry
4.0 solution. A comprehensive semantic data homogenization system must provide full
access control to all data packets generated and arrange data into specific categories such as
warning or status messages. For instance, raw data from a machine is easy to understand
for staff involved in the process, but contextual information is required for software systems
to display the data uniformly, especially when the software receives raw data from different
assets. In a large and complex digital twin system that includes entities from multiple
domains, each with its semantics, persistent information will contain domain-specific
information from heterogeneous subsystems. Heterogeneous information sets inherently
incorporate disparate syntactic and semantic standards that must be accommodated for
system interoperability. To achieve this, translators and gateways are necessary so that
information from different and incompatible domains can be normalized when needed for
holistic knowledge. Manufacturers who hope to remain competitive in the future market
need to leverage IoT to increase productivity, uptime, and efficiency. However, many are
still relying on unconnected legacy machines, and failure to adopt data synergy made
possible by an IIoT connected factory can lead to being left behind by competitors [11].

3. Digital Twins

A digital twin is a virtual model that replicates a physical system or process, providing
real-time data and feedback on its performance. Digital twins enable manufacturers to
monitor and analyse the behaviour of physical assets in real-time, enabling them to optimise
performance, reduce downtime, and improve efficiency. It is a virtual representation that
acts as the real-time digital counterpart of a physical thing or process. The term “digital
twin” was coined by Dr Michael Grieves in 2002 at the University of Michigan.

“Only when we get it to where it performs to our requirements do we physically manufac-
ture it? We then want that physical build to tie back to its digital twin through sensors
so that the digital twin contains all the information that we could have by inspecting the
physical build.” Dr Michael Grieves, 2002.

While digital twins are most certainly used in manufacturing today, the use cases
span across many industry verticals. Over the last few years, as the world has become
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more connected, data has become more readily available, richer, and more accurate. The
proliferation of IoT equipment has meant data is harvested from a wide array of networked
sensors, creating a detailed map of any enterprise asset or series of assets. A digital twin
creates a virtual representation of a process, system, service, product, or other physical
thing using virtual or augmented reality, 3D graphic modelling, and data modelling. The
physical world is mirrored in this digital duplicate. Real-time updates are used to preserve
its exact duplicate status. Due to its many benefits, including the elimination of errors and
cost optimisation in any system, digital twin (DT) technology is regarded as the foundation
of smart manufacturing. From the literature, it is clear how the evolution of the digital twin
has been deployed over the years, falling into one of three subcategories [11,12]:

• Digital Model: A manual data exchange between a physical object and a digital object
is required, and therefore changes in the physical object are not reflected in real-time.

• Digital Shadow: Data from the physical object is automatically transferred to the
digital counterpart, but not the other way around. Therefore, changes in the physical
object can be viewed digitally but not vice-versa.

• Digital Twin: A two-way data exchange between physical and digital objects is in-
volved. Therefore, the changes in the physical/digital objects affect each other.

Digital twins can be even further categorised in their deployments of various types,
according to their creation, integration level, application, and hierarchy level of the digital
twin. After reviewing the literature, a summary of the relevant terminologies of a digital
twin is shown below [12–14]. In manufacturing, DTs can be divided into three levels from a
hierarchical viewpoint [13]. A digital twin environment (DTE) is a logical setting in which
hardware, software, and occasionally both interact to imitate a whole system or a portion
of a system. A virtual clone of a tangible system, process, or product is created by digital
twins. By using data analysis, the replica, for instance, may forecast when a machine will
break down, enabling businesses to boost production through predictive maintenance [14].

• Part/Component Twin: the smallest unit on the industry floor and is based on a
geometric, functional, and operational model of the unit-level physical copy.

• System level: DT is the composition of many unit-level DTs in a production floor,
interconnected for wider information flow and efficient resource allocation.

• System of Systems (SoS) level: Formed when multiple system-level DTs are connected,
bringing different departments such as logistics, design, service, maintenance etc.
together into one twinned model. This is outlined below in Figure 5 [13].
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As per Grieves and Vickers [14], DT can be classified into two types when it is devel-
oped during the life cycle of the product—at the prototype stage and the production stage.
In a system known as the digital twin environment; both sorts of DTs are combined and
used for various purposes. (DTE).

• Digital twin prototype (DTP) is the collection of information needed to generate a
physical model from the virtual version. This consists of design documents, CAD files
etc. The product cycle starts from the creation of the DTP, tested rigorously, before
creating its physical twin. The DTP helps identify unwanted outcomes which are
impossible to identify with traditional prototyping.

• Digital twin instance is linked to its physical replica throughout the duration of its
life. To identify and predict the performance of a physical system after it has been
constructed, data collected at the physical layer is communicated to the virtual space
and vice versa. With the available data, it can be investigated if the prediction model
is as expected or not.

3.1. Applications of Digital Twins

Digital twins can also be classified as per their applications. According to Singh, [12]
the applications are also broadly divided into two categories, prediction and interrogation.
In a predictive DT, future behaviour and performance of its physical copy are speculated.
While in interrogative DT, the past and present state of the physical copy is examined. DTs
can also be classified as per the focus of the application, which is either product, process,
or performance [4,15,16]:

• Product DT analyses the product in different conditions and ensures that the physical
product is acting as expected. This virtual validation of the product leads to rapid
prototyping and reduced development time.

• Production DT is used to validate the processes through simulation and analysis,
before beginning actual production, which paves the way for the creation of a flexible
production approach. The product and production DT data can be utilised to track
and maintain the equipment.

• Performance DT is used for decision-making through data collection and analysis.
Performance DT incorporates product and production performances and therefore it
optimises the functioning of the industry floor according to the obtainability of the
industry resources. This creates an option to boost the performance of both production
and product DT using a feedback loop.

The sophistication level of digital twins can be expressed in terms of autonomy,
intelligence, learning and fidelity. According to the quantity and quality of data collected
from the physical twin and its surroundings, DTs can have multiple properties:

• Partial Digital Twins consist of only a small amount of data from their physical counterpart.
• Clone Digital Twins consist of a significant amount of data from the physical system

useful for making prototypes.
• Augmented Digital Twins use the collected data from the asset along with the historical

data and derive useful information using data analysis.

Finally, when classifying DTs, the sophistication level of the virtual representation of
the DT model allows for DTs to be further divided into four levels.

• Pre-digital Twin is the first level where the DT is created before the physical system to
analyse prototype designs and rule out any technical risks by virtual commissioning.

• Digital Twin is the second level when the data is collected from the physical copy
relating to the performance, robustness, and maintenance. The virtual model uses the
collected data to assist in the design and development of the physical system along
with decision-making and arranging maintenance.

• Adaptive Digital Twin is third level which imparts an adaptive interface between the
physical and the digital world. Using ML techniques, it learns from the experiences of
the human operators, allowing for real-time decision-making.
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• Intelligent Digital Twin has additional capabilities along with features from the second
and third levels. It can detect patterns in the manufacturing floor using reinforcement
learning, allowing for more precision and efficient handling of the system.

3.2. Edge Computing: Enabling the Digital Twin

Smart manufacturing is more than just collecting massive data sets through a myriad
of disparate connected devices. At its core, smart manufacturing is the potential to be able to
use the collected data efficiently to decide, predict, and take actions in real-time to optimise
the manufacturing output. As the adoption of digital technologies in manufacturing grows,
it will increase the requirements for more localised decision-making, storage capabilities,
and analysis at the edge, known as edge computing. Although the idea of edge computing
is not new, it has recently emerged as the essential component of smart manufacturing,
which aims to quicken the process of digital transformation [17]. Edge computing enables
manufacturers to transform enormous amounts of machine-generated data into meaningful
and useful information [8]. It accomplishes this by using Internet of Things (IoT) devices
that are networked, such as environmental sensors, alarms, or motor driven units. This
makes it possible for big data analytics to materialise right at the source of the data. A
robotic arm or conveyor system are examples of an operational technology (OT) computing
framework that is nearest to the IoT sensed data collection sources. As they frequently exist
the farthest from the core of the information technology (IT) computing framework, these
are considered as being at the “edge”. The IoT gateway anchors an open source software
platform, e.g., IOTech’s Edge Xpert [18] or KepWare [19], which is often the preferred
method to provide a way to link the sensed devices, enable localised decision-making,
and relay the relevant device information for further analysis at the cloud. These edge
platforms must be able to support industrial protocol standards such as OPC UA, CAN
bus, etc., and may also need to support different wireless protocols such as cellular, WiFi,
Bluetooth or Zigbee, LoRa, etc. An edge platform imparts the following key functions [20]:

• Interoperability—provides the required protocol conversion for communications to be
acknowledged between devices unable to communicate with each other.

• Localised processing—facilitates the unloading of computing jobs from smart devices
by caching information and functioning as a private cloud suitable for remote access.

• Quality of service—increases the efficacy of available network bandwidth while de-
creasing endpoint bottlenecks.

• Security—provides advanced security solutions compared to those implemented on
each endpoint, hence building a better defensive strategy for the entire network within
the factory.

• Local storage—saves transmission costs by just transmitting the necessary data to the
cloud. In certain cases, it is advantageous to have the edge device act as the computing
node to record data and make localised analytical decisions.

As the manufacturing sector transitions from single-domain digitalised sites to cross-
domain digitalised sites, the focus will shift to a system of systems approach where pivotal
points of interoperability can be used to inform and interact at a large scale. The “system
of systems” endeavour that utilises digital twins interoperating with one another needs a
consistent IoT platform strategy, based on open specifications, strong resiliency principles,
security, and standardisation, as when multiple networking technologies are involved,
standards are needed to regularise the interactions between devices and sites.

3.3. Barriers to Digital Twin Integration in the Smart Manufacturing Sector

It can be said that no industry stands to benefit more from IoT advancements when
compared to the manufacturing sector. Using edge devices, integrating data storage and
edge computing within industrial appliances, manufacturing data can be collected allowing
for improvement in predictive maintenance and energy efficiency [21]. This will reduce
overall costs and maintain the preferred reliability and production time. Some of the main
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advantages to adopting a digitalising strategy and deploying digital twins in manufacturing
are listed below:

1. Preventive maintenance: IoT capabilities will improve operational intelligence, which
is essential to smart manufacturing. This sector will gain from the availability of
numerous sensors able to provide real-time information regarding equipment perfor-
mance. The data can aid in predicting and preventing equipment malfunction when
integrated with machine learning (ML) and artificial intelligence (AI).

2. Enhanced process efficiencies and troubleshooting: Interoperability and digital trans-
formation work together to improve manufacturing process efficiencies. For example,
using deep learning neural networks and advanced visual recognition, robotic sys-
tems can accurately and quickly scan connected objects for quality control in real time.
Specialised equipment can be fixed remotely by specialists using augmented reality
(AR), made possible by 5G networks’ high bandwidth and low latency support.

3. Increased security with built-in security features: Interoperability and digital trans-
formation will provide increased security with built-in security features, integrating
security into the core network architecture and allaying manufacturers’ security fears
about adopting IoT [22].

4. Sandbox scenario testing: The charm of digital twinning is that it enables businesses
to construct specialised, virtual replicas of their web infrastructure and to do predic-
tive research tailored to their requirements. Employing digital twins to assess the
viability of system applications and data architecture can help businesses intending
to implement new systems or migrate to the cloud.

5. System Scalability: There is little doubt that there are huge opportunities for large-
scale digital twins, which can assist manufacturing sites greatly by enhancing as-
set maintenance, increasing company transparency, and improving and deepening
decision-making.

4. Digital Twins: Enabling Interoperability in Manufacturing

Smart manufacturing approaches informed by continuous data monitoring will enable
companies to tailor production runs to better match consumer stipulations [5]. The fol-
lowing are some examples of the manufacturing use cases accomplished by the upcoming
Industrial IoT and edge computing solutions:

• Predictive maintenance and equipment safety—e.g., a pump installed with edge com-
puting capabilities can determine if an established threshold has been surpassed, using
basic analytics, and shut itself in milliseconds. Applying an edge computing device to
perform this function will result in zero decision latency without any requirement for
internet connectivity.

• Production flow monitoring and optimisation—-to compile the data on a local gateway
and send overall equipment effectiveness (OEE) patterns and alerts to the operational
staff, edge computing can do near real-time analytics across a variety of data obtained
from sensors installed within the floor.

• Supply chain optimisation—any industrial facility’s supply chain processes must be
optimised, which calls for the use of optimisation algorithms and data analytics that
can quickly adjust supply-chain goals inside business systems such as ERP, SCM, etc.

Machine Learning in Smart Manufacturing

Industries often collect large amounts of raw data from different types of sensor
networks [23,24]. The massive heterogeneous data is often then sent to the cloud where
an information dashboard is expected. This presents an enormous challenge to clean and
homogenize the raw data to make it suitable for analysis. The availability of the data is
often taken for granted by the industries and it is expected to provide a real-time predictive
analytic model with a dump of data which is often insufficiently exploited by companies.

The use of current machine learning (ML) approaches is anticipated to be an appealing
solution to address manufacturing security challenges due to the large amounts of data, high
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computing power, and large storage capacity that have been deployed in factories through
the connection of smart devices and machinery. Machine learning coupled with real-time data
analysis is gaining huge popularity as mainstream support for the provision of on-the-spot
(or near immediate) relevant information and actionable insights in strategic monitoring.

Artificial intelligence’s branch of machine learning relies on the notion that computers
can discover patterns in data and make judgments without much human input. Many
studies have been carried out on how to make machines learn by themselves. A recent
study by Cadavid et al. [9] presents a wide variety of ML applications in Industry 4.0.
However, these ML applications generally focus on aspects of the production process
itself, such as planning and scheduling, smart maintenance, quality control, etc. [25]. An
overview of the multitude of ML types is shown below in Figure 6.
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By analysing and transforming stored data into knowledge that can be used to generate
predictions, ML approaches are intended to extract knowledge from existing data. Making
decisions that can be put into action more quickly and precisely than a human can is what
machine learning in manufacturing refers to. Forecasting and comprehending anomalies
or outliers are two areas where this proves to be eminently sensible. Forecasting can add
value in some stages of the production process. There is a good possibility that forecasts
can be made with enough historical data and context regarding the choices and procedures
used in relation to the data. A human analyst may find the data from a single machine to be
overwhelming, which is where ML might be useful [9]. Five domains have been identified
where ML has a big influence.

1. Predictive maintenance. The amount of downtime can be considerably decreased
by using historical data from maintenance logs to estimate how a machine will react
under a future payload and whether it will need to be changed based on what
previously resolved that issue.

2. Predictive quality. Significant cost savings can be achieved by anticipating and
reducing costs.

3. Scrap reduction. It is possible to reduce waste and increase product quality by using
measurements to predict behaviour across product requirements.

4. Increasing yield/throughput. Knowing if and when a machine or process will not
conform to a set of requirements enables proactive action to be taken to bring it back
into compliance, lowering the number of quality passes.
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5. Demand and inventory forecasting. It is possible to estimate the demand for and
movement of essential parts with a complete understanding of factory operations and
the production data, leading to significant inventory savings [5,26–30].

5. A Digital Twin Framework for Interoperability

Digital twins are unique because no two businesses will have the same digital twin
architecture as their assets; processes and facilities will differ. The beauty of a digital twin
is that it is a mirror of the physical workspace. As the business grows and changes, so too
will the digital counterpart. Understanding systems, their architecture, behaviours, and
how they interact with other systems depends on conceptual models. Such models must
be codified and standardised in a way that is reusable for various use cases encountered
in the field in a world where millions and billions of interconnections are implemented
daily in dynamic ways. By modelling information, professionals can develop standardised
models depicting the fundamental components of systems and intelligent machines, result-
ing in better modularity and reuse. A digital twin system’s primary goal is to speed the
holistic understanding of the real world for the best decision-making. The “world” can be
a structure, utility, community, nation, or another environment. Not simply the isolated
connection between two subsystems, but all information transmitted across connected
systems must assist the digital twin’s overall goal: the development of a common interop-
erability mechanism, in which each system contributes to the collective intelligence of the
whole and where one system may easily consume and respond to information from another
system [31]. Below in Figure 7 is a diagram that captures the concept of an interoperable
system as outlined.

Telecom 2023, 4, FOR PEER REVIEW 12 
 

in the field in a world where millions and billions of interconnections are implemented 
daily in dynamic ways. By modelling information, professionals can develop 
standardised models depicting the fundamental components of systems and intelligent 
machines, resulting in better modularity and reuse. A digital twin system’s primary goal 
is to speed the holistic understanding of the real world for the best decision-making. The 
“world” can be a structure, utility, community, nation, or another environment. Not 
simply the isolated connection between two subsystems, but all information transmitted 
across connected systems must assist the digital twin’s overall goal: the development of a 
common interoperability mechanism, in which each system contributes to the collective 
intelligence of the whole and where one system may easily consume and respond to 
information from another system [31]. Below in Figure 7 is a diagram that captures the 
concept of an interoperable system as outlined.  

 
Figure 7. Conceptual digital twin framework towards a system of systems. 

According to the 2017 EU report, European Interoperability Framework, “The focus 
is on releasing machine readable data for use by others to stimulate transparency, fair 
competition, innovation and a data-driven economy” [32]. 

Manufacturing businesses with legacy production systems and functional PLC code 
must find a method to integrate a verified manufacturing approach into their current 
processes if they are to tackle the demands of Industry 4.0. By bridging the gap between 
the factory floor and the company, industrial IoT improves visualisation, data analysis, 
and holistic insights, enabling operators to maximise the effectiveness of crucial 
operations. Data synergy, or the integration of data from various sources to produce value, 
is a crucial part of the industrial IoT. The aforementioned deployment methodology can 
be applied to both modern and antiquated production facilities, with little disturbance to 

Figure 7. Conceptual digital twin framework towards a system of systems.



Telecom 2023, 4 276

According to the 2017 EU report, European Interoperability Framework, “The focus
is on releasing machine readable data for use by others to stimulate transparency, fair
competition, innovation and a data-driven economy” [32].

Manufacturing businesses with legacy production systems and functional PLC code
must find a method to integrate a verified manufacturing approach into their current
processes if they are to tackle the demands of Industry 4.0. By bridging the gap between
the factory floor and the company, industrial IoT improves visualisation, data analysis, and
holistic insights, enabling operators to maximise the effectiveness of crucial operations.
Data synergy, or the integration of data from various sources to produce value, is a crucial
part of the industrial IoT. The aforementioned deployment methodology can be applied
to both modern and antiquated production facilities, with little disturbance to ongoing
installations. This architecture offers a real-time enabled framework for vertical and
horizontal integration, making it easier for various sensors and systems to communicate
with one another. For manufacturing, the transition towards interoperability can improve
policies and standard practices through the following:

1. Improved supply chain management, resulting in reduced costs, increased efficiency,
and faster delivery times [33].

2. Enhanced quality control processes, leading to improved product quality, reduced
waste, and increased customer satisfaction [34].

3. Increased regulatory compliance, through standardized data collection, sharing, and
analysis, reducing costs and improving transparency [35].

4. Informed decision-making through better data analytics, providing insights into
operations, products, and customers [36].

5. Greater innovation and collaboration, enabling the development of new products,
services, and business models that meet evolving market needs [37].

Interoperability can foster greater innovation and collaboration, enabling the develop-
ment of new products, services, and business models that meet evolving market needs. By
collaborating with different partners and stakeholders, manufacturers can gain new perspec-
tives, share best practices, and leverage technology to create innovative solutions that drive
business growth. Given these benefits, policymakers and standard-setting organisations can
promote interoperability to enhance the manufacturing ecosystem’s sustainability and trans-
parency. By facilitating the integration of different systems and promoting data sharing and
analysis, they can create a more efficient, responsive, and resilient manufacturing industry
that can adapt to changing market needs and drive economic growth.

6. Conclusions

The transition to Industry 4.0 can be a daunting process for many manufacturing
organisations, particularly those with complex legacy systems that have been in place for
decades. As manufacturers progress further along the digital transformation journey, it
becomes increasingly clear that real-time knowledge and data-based decision-making will
be necessary on a large scale, requiring a significant amount of automation. Fortunately, the
advent of the Internet of Things (IoT) has made it possible to integrate legacy equipment
via a digital twin. With the help of IoT devices, manufacturers can gather data from their
legacy systems and use it to inform decisions and improve operations. By using IoT devices
to gather data from legacy equipment and integrating it into a digital twin, manufacturers
can optimise their operations and improve their bottom line through data-driven decision-
making. The further integration of multiple digital twins into one system or “system of
stems” brings not only additional insights through the data gathering but the capacity to
allow legacy equipment to interact and better inform the decision-making process of more
modern equipment also connected to the overall digital system.

The adoption of a “system of systems” approach can provide manufacturers with a
more robust and comprehensive digital infrastructure for the manufacturing industry. By
integrating data from various sources and leveraging advanced analytics, manufacturers
can gain valuable insights into their operations and make informed decisions in real-time.
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This approach can also help to improve product quality and reduce defects by integrating
quality control systems. Early identification of quality issues can lead to prompt corrective
actions and better product consistency, ultimately resulting in increased customer satisfac-
tion. Implementing a “system of systems” approach can give manufacturers a competitive
edge by enhancing their operational efficiency, flexibility, and responsiveness. This can
lead to greater productivity and profitability in the long run, positioning manufacturers to
meet the changing demands of the marketplace.
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