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Abstract: Traditional networking is hardware-based, having the control plane coupled with the data
plane. Software-Defined Networking (SDN), which has a logically centralized control plane, has
been introduced to increase the programmability and flexibility of networks. Knowledge-Defined
Networking (KDN) is an advanced version of SDN that takes one step forward by decoupling
the management plane from control logic and introducing a new plane, called a knowledge plane,
decoupled from control logic for generating knowledge based on data collected from the network.
KDN is the next-generation architecture for self-learning, self-organizing, and self-evolving networks
with high automation and intelligence. Even though KDN was introduced about two decades ago, it
had not gained much attention among researchers until recently. The reasons for delayed recognition
could be due to the technology gap and difficulty in direct transformation from traditional networks
to KDN. Communication networks around the globe have already begun to transform from SDNs into
KDNs. Machine learning models are typically used to generate knowledge using the data collected
from network devices and sensors, where the generated knowledge may be further composed to create
knowledge ontologies that can be used in generating rules, where rules and/or knowledge can be
provided to the control, management, and application planes for use in decision-making processes, for
network monitoring and configuration, and for dynamic adjustment of network policies, respectively.
Among the numerous advantages that KDN brings compared to SDN, enhanced automation and
intelligence, higher flexibility, and improved security stand tall. However, KDN also has a set of
challenges, such as reliance on large quantities of high-quality data, difficulty in integration with
legacy networks, the high cost of upgrading to KDN, etc. In this survey, we first present an overview
of the KDN architecture and then discuss each plane of the KDN in detail, such as sub-planes and
interfaces, functions of each plane, existing standards and protocols, different models of the planes,
etc., with respect to examples from the existing literature. Existing works are qualitatively reviewed
and assessed by grouping them into categories and assessing the individual performance of the
literature where possible. We further compare and contrast traditional networks and SDN against
KDN. Finally, we discuss the benefits, challenges, design guidelines, and ongoing research of KDNs.
Design guidelines and recommendations are provided so that identified challenges can be mitigated.
Therefore, this survey is a comprehensive review of architecture, operation, applications, and existing
works of knowledge-defined networks.

Keywords: intelligence; knowledge-defined networking; machine learning; ontology; software-
defined networking

1. Introduction

In contrast to conventional networking, which distributes the control plane across
network hardware, Software-Defined Networking (SDN) facilitates programming for net-
works by removing the fundamental network control logic from switches and routers to
encourage conceptual network control centralization [1]. Owing to the controller’s col-
lection of network condition data, SDN offers more network knowledge and the ability
to build safe pathways than typical hardware-dependent networking [2]. Infrastructure,
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control, and application planes are the three planes that make up SDN. The key benefits of
SDN over traditional networks are adaptability and programming capability. Numerous
benefits are gained as a result of the SDN controller’s network consciousness, including
adaptive node transmission power reservation, improved routing, dynamic radio interface
placement, etc. [3]. Additionally, SDN boosts networking services such as routing and load
balancing and makes global enhancements thanks to the gathering of network statistics. It
also promotes network creativity by making it possible for new protocols to be assessed
and set up at cheaper rates [4]. As the control is conceptually centralized in SDN, any
amount of physical devices can connect with each other via just one protocol. SDN has
assisted in making it possible to perform new tasks and provide new services, such as traffic
engineering, software development, virtualization of networks and automation, cloud-
based service management, etc. [5]. However, SDN’s dependability is seriously lacking,
as the controller often acts as just one element of malfunction [6]. Additional difficulties
for SDN include security flaws [7], and, due to the substantial movement of nodes and
changing network layout, network tasks such as routing and control of transmission [8,9].
Additionally, SDN encounters difficulties, including integration with outdated networks
that are not compatible with the OpenFlow protocol, the centralized controller’s inability to
independently control all traffic, the availability of only a few protocols for communication
between the controller and services, etc. [10].

There are primarily three types of SDN architectures: centralized, distributed, and
hybrid. In a centralized design, all logical control is centralized, and data plane nodes
execute activities in line with the SDN controller’s rules for traffic [11]. However, the
control plane connection between the data plane elements and the centralized controller
in this design has a larger delay [12]. Additionally, this design has limited extensibility
and has the potential for inaccuracy when control plane connections disappear or are
interrupted. Control is divided across numerous controllers in a distributed architecture,
and the controllers may interact with one another for coordination and uniformity. The
sole point of collapse and capacity issues seen in the centralized control architecture are
avoided by this design. To determine the best paths, this design takes longer time than the
centralized architecture [13]. A hybrid control architecture has been created to overcome the
shortcomings of both distributed control and centralized control designs. The centralized
controller in this system is able to adjust the degree of control exerted over the nodes from
total to none depending on the situation, allowing it to behave as a blend of fully centralized
control with a conceptually centralized control plane and fully distributed control, with a
portion of the control plane split among the end devices [14].

The literature that is now available describes four types of functionally centralized
control architecture for the SDN based on the organizational structure of the data and
control planes: fully hierarchical, hierarchical data plane, hierarchical control plane, and
standard. A fully hierarchical architecture contains tiered data and control planes that are
separated into upper and lower planes [15]. The upper data plane is made up of border
network forwarding devices such as wireless access points, eNodeB, and gNodeB, while
the lower data plane is made up of SDN-enabled nodes. The upper control plane has an
overall picture of the network and is made up of SDN controllers of the primary network.
The lower control plane is responsible for controlling the subsystems of the network and is
made up of SDN controllers of the edge network connected to the upper control plane by a
cable network. Because multiple secondary SDN controllers may be allocated to different
parts of the network, this design provides the maximum level of agility and programming
abilities. The control plane in a hierarchical data plane SDN architecture is non-hierarchical,
whereas the data plane is separated into lower and upper data planes [7]. The data plane
in a hierarchical control plane SDN architecture is not separated into upper and lower data
planes, but the control plane is [16]. The control plane is totally centralized and has the
least adjustability in the standard SDN architecture, which is equivalent to the original
SDN planes [17]. The standard SDN paradigm is the most generally used design, while the
full hierarchical SDN structure is the most rarely utilized model by academics as a result
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of its more complicated nature in terms of control and implementation, according to the
study conducted in [18].

Knowledge-Defined Networking (KDN) is the concept of using information to gener-
ate knowledge using machine learning models or rule-based models and making network
decisions accordingly [19]. The work in [19] presents a framework for cooperative knowl-
edge building and sharing. Research conducted in [20] also uses the KDN concept for
exploring the knowledge of risk reasoning through vehicular maneuver conflict. More
recently, KDN has been used where node mobility is analyzed to measure the centrality
degree of a region, and this knowledge is made accessible to nodes [21]. In research [22],
sensor information from multiple nodes in a common geographical area is used to generate
knowledge to recognize high-level contexts of control. Khan et al., in their research [23],
have applied deep learning [24] to learn the transmission patterns of neighboring vehicles,
which has resulted in fewer packet collisions. Knowledge creation, composition, and
distribution to reduce data volume and cost have been proposed in work [25], which uses
the concept of KDN. However, the preceding work failed to bring out a well-studied archi-
tecture for KDN, even though its applications have been studied by previous researchers.
A knowledge-defined network has been proposed by some researchers as an architecture
for applying Machine Learning (ML) to SDN [26]. KDN architecture uses the concept of
knowledge-based networking; in other words, it uses information to generate knowledge
using ML models or heuristic models. Even though the initial architecture of KDN was
proposed in 2003 in research [27], it has gained attention recently due to advancements in
machine learning. KDN has an additional management plane and a knowledge plane logi-
cally separated from the control plane compared to SDN, where the knowledge plane uses
machine learning or heuristic model-based methods to process the information collected
from the management plane and generate rules and knowledge to provide to other planes
of the KDN. KDN has been utilized to improve network performance through automatic
optimization of network traffic routing and load balancing based on real-time data analy-
sis [28]. KDN converts the manually configured control plane actions in conventional SDN
to a self-learning automated rule-generating control plane driven by knowledge generated
from artificial intelligence [29].

The use of Machine Learning (ML) technology for KDN security has been popular
in the recent past, where it has been used to detect intrusions [30], detect Distributed
Denial of Service (DDoS) attacks [31], and detect anomalies [32]. ML has also been used
for traffic classification [33], packet classification [34], predicting link failure [35], routing
optimization [36], etc. in KDN. For knowledge-defined vehicular networks, machine learn-
ing has been used for predicting vehicle-to-infrastructure link life times [37], detecting
DDoS attacks [38], trust-based routing optimization [39], etc. In [40], the authors show how
machine learning, meta-heuristics, and fuzzy logic can be used to generate knowledge for
knowledge-defined networks. AI/ML has been applied to the 5G network architecture to
make knowledge-driven decisions for slice management, network service orchestration, ver-
tical domain cross-layer optimization, management analytics, and anomaly detection [41].
By automating network management tasks, KDN can reduce the need for manual interven-
tion, lower operational costs, and increase energy efficiency [42]. Work in [43] shows how
the KDN concept can be used for closed-loop network monitoring to realize a self-driving
network concept. Similarly, another piece of research highlights how closed loop control
can be used for automatic routing in a KDN using deep reinforcement learning to learn
experiential knowledge, which also includes network monitoring to realize the interaction
with the environment [44]. A self-organizing routing algorithm that reactively finds the
most reliable route using a deep neural network in a self-organizing knowledge-defined
network has been investigated in [45]. Driven by the benefits of automation and recom-
mendation due to the knowledge plane in KDN, a self-driving system that selects the
optimal path for service function chaining and reactive traffic functioning using graph
neural networks has been studied in [46]. A framework for identifying heavy-hitter flows
using machine learning in KDNs has been investigated in [47]. ML has also been used
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for video flow classification in 5G KDNs [48]. However, the KDN concept is still very
pre-mature, and it lacks standardization and protocols for intra-plane communication [49].

Early surveys were totally focused on SDN architecture and applications without any
review of intelligent networking [50]. More recent surveys have reviewed the concept of
knowledge-based networking by categorizing machine learning applications in SDN and
identifying challenges in applying machine learning in SDN [51,52]. The survey carried
out in [53] collects and reviews machine learning-based SDN solutions that emphasize
machine learning-based solutions, evaluation parameters, and evaluation environments.
More closely related to our survey is the survey carried out in [54], which provides an
overview of the KDN architecture. However, the previously mentioned work discussed
more on machine learning-based applications applicable in KDN and challenges associated
with those applications rather than reviewing on the whole paradigm itself. However,
our survey comprehensively reviews existing protocols, languages, standards, interfaces,
models, and functions related to each plane of the KDN architecture and, finally, discusses
the benefits and challenges, providing design guidelines and recommendations, thus
providing a complete tutorial on the knowledge-defined networking concept to the reader,
with reference to the existing literature that is analyzed and discussed. The hierarchical
organization of this survey is graphically illustrated in Figure 1.

Figure 1. Hierarchical organization of the KDN survey.

As evident from Figure 1, the rest of the paper is organized as follows: Section 2
presents a brief introduction to data, information, and knowledge (Section 2.1), then
presents an overview of the KDN architecture (Section 2.2), and compares it with SDN
and traditional networks (Section 2.3). Section 3 presents an introduction to knowledge
plane (Section 3.1); architecture of the knowledge plane (Section 3.2); functioning of the
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knowledge generation plane (the plane where knowledge generation occurs using heuristic
model-based methods and different machine learning techniques) is discussed in detail
with reference to the existing literature (Section 3.3); knowledge representation models, rule
generation techniques, and knowledge composition examples from the existing literature
are discussed in the knowledge composition plane (Section 3.4); and existing knowledge
and rule management and exchange protocols/languages, flow scheduling, and prioriti-
zation approaches for knowledge and rule distribution are discussed in the knowledge
management and distribution plane (Section 3.5) in detail. Section 4 presents the manage-
ment plane, explaining its function (Section 4.1), architecture (Section 4.2), management
interfaces/protocols (Section 4.3), network-monitoring frameworks (Section 4.4), and data
collection strategies and types of data collected (Section 4.5). Section 5 presents an intro-
duction to the control plane (Section 5.1), explains sub-planes and interfaces with protocols
and standardization (Section 5.2), describes control models (Section 5.3), and describes
control functions (Section 5.4). Section 6 presents the data plane, first with an introduction
to the data plane (Section 6.1), then presents the architecture and operation of forwarding
devices (Section 6.2), and discusses different transmission media used in the infrastructure
plane (Section 6.3). Section 7 presents the application plane first with an introduction to the
application plane (Section 7.1), then the architecture of the application plane (Section 7.2),
and, finally, different application scenarios with respect to existing literature are discussed
(Section 7.3). Section 8 discusses the benefits (Section 8.1), challenges (Section 8.2), de-
sign guidelines (Section 8.3), and ongoing research (Section 8.4) of KDN in detail. Finally,
Section 9 concludes the paper with recommendations and future research.

1.1. Objectives and Key Issues Addressed

The objective of this research is to educate the reader comprehensively on the knowledge-
defined networking paradigm. First, the reader is provided with an overview of the KDN
framework, and then each plane of the paradigm is discussed, such as standards, protocols,
models, interfaces, functions, applications, etc., with reference to the existing literature.
Another key objective of the survey is to study the benefits and challenges of the KDN
framework in order to provide design guidelines and recommendations that will encourage
academicians to perform more research on KDN. Finally, this survey qualitatively analyzes
the existing works on different aspects of KDN by grouping and stating characteristics and
analyzing the individual performance of the solutions.

1.2. Contributions to the Existing Literature

• We are the first to review on knowledge-defined networking, which will provide a
useful reference for future researchers who investigate more in this area;

• We compare traditional networking with SDN and KDN;
• Each plane of the KDN architecture is discussed in detail with reference to the

existing literature;
• Benefits, challenges, design guidelines, and ongoing research on the KDN architecture

are discussed.

1.3. Research Methodology

This survey is a qualitative research study that critically analyzes and interprets
existing research work on knowledge-defined networking. The population of the survey is
comprised of all original research works and web articles published related to KDN and
artificial intelligence/machine learning/knowledge-based SDN. Out of that population,
we sampled 613 of the most relevant research works published from 1980 to 2023 related
to architecture, operation, applications, interfaces, functions, languages, and protocols
of each plane of the KDN paradigm by searching scientific databases. We used IEEE
Xplore, the ACM Digital Library, ScienceDirect, MDPI, and Google Scholar as searching
databases. However, after careful analysis, we identified that 43 works presented very
similar content to one or more works already in the sample. Therefore, we removed these
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43 redundant references, which provided redundant concepts, to finally reach 570 original
research references in the cleaned sample. Later, we added five survey articles published
on knowledge-/machine learning-based SDN in order to compare our review with existing
reviews, thus increasing the total references to 575. Thus, the approach of the survey was
longitudinal. The research works were selected based on their relevance to the content
discussed in the survey. We used tabular data structures to analyze research qualitatively
by grouping them into categories and analyzing the characteristics of the frameworks. We
sampled research works based on relevancy without being biased by any publisher or
time of publication. However, priority was given to journal publications over conference
publications to improve the validity and reliability of the survey. Ethical considerations are
not applicable, as this is a survey in the computer networking domain.

2. Overview of Knowledge-Defined Networking (KDN)
2.1. A Nutshell on Data, Information, and Knowledge

A piece of data is defined as an atomic value with a unit, which is the most fundamental
element that is unprocessed and raw and contributes to knowledge generation. Let us
understand these concepts with reference to an example from a vehicular network. An
example of data can be the Global Position System (GPS) position (x1, y1, z1).

Information is a processed and organized collection of data that is more meaningful
than raw data and can be used to make a decision. An example of information can
be the distance from the controller to a vehicle, which is calculated by processing data
containing the status of the vehicle, such as the GPS position of a given vehicle at a given
timestamp (vehicle1, 15:05, (x1, y1, z1)). In conventional networks such as Vehicular Ad Hoc
Networks (VANETs), information such as safety notifications, vehicle state information,
sensor measurement information, navigation information, etc. is exchanged between
the vehicles. Conventional vehicular networks use this exchanged information to make
decisions on network functions such as routing without generating knowledge [55].

On the other hand, in KDNs, the approach is shifted from the information-centric
approach to the knowledge-centric approach. Knowledge is defined as the state of under-
standing obtained through experience, learning, and the analysis of collected data/information.
In other words, knowledge is an abstract content obtained by learning and analyzing a
large amount of data/information [56]. Thus, the decision-making power of knowledge is
much higher than that of information. An example of the knowledge that can be obtained
using a set of previously mentioned information could be whether vehicle1 is likely to have
a collision or not, which can be inferred by understanding and learning a lot of information,
such as safety notifications, sensor measurement information, navigation information, etc.,
about the given vehicle and other vehicles in the neighborhood.

2.2. KDN System Architecture

Figure 2 shows the high-level block diagram of the KDN architecture [27,57].
As evident from Figure 2, a KDN consists of five main planes, which are briefly

introduced below.

• Knowledge Plane—The knowledge plane consists of three sub-planes. The knowl-
edge generation plane generates knowledge using data/information, either by using
heuristic model-based methods or machine learning methods. In the knowledge com-
position plane, generated knowledge and universal knowledge are composed using
an ontology editor to produce composed knowledge, which can be used to generate
rules by orchestration with user intent. The knowledge distribution and management
plane is responsible for storing knowledge and rules using a knowledge base and
performing the inserting, updating, deletion, and exchange of knowledge and rules
using languages and protocols [25];
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• Management Plane—The management plane (also referred to as the measurement
plane) operates in parallel with the KDN controller and is responsible for collecting the
processes and data/information from the network devices, monitoring the network
device status, and configuring the network device. Note that, in KDN, the manage-
ment plane can be influenced by the application plane to implement configuration
policies and by the knowledge plane to aid in real-time network monitoring, whose
monitoring output can be used to dynamically configure the network [57,58];

• Data plane—The data plane is composed of forwarding devices that can store, forward,
or process data according to the flow rules sent by the control plane. In KDN, the data
plane is required to send data requested by the management and control planes [59];

• Control plane—The control plane consists of one or more SDN controllers based on the
architecture and is responsible for sending flow rules, access control rules, QoS-based
traffic prioritization rules, etc. to the data plane. Control in KDN is driven by both
application policies and real-time rules or knowledge generated from the knowledge
plane [60];

• Application plane—This plane provides a platform for network applications to com-
municate requirements to the underlying network infrastructure. It also enables
network administrators to define network policies specific to applications and de-
fine network configuration policies that are more aligned with high-level business
needs and objectives in a centralized manner, where the application logic is decoupled
from hardware. In KDN, application policies can be dynamically updated based on
knowledge [61].

Figure 2. High-level block diagram of the KDN architecture.

Note that knowledge, management, and control planes in KDN can be abstracted to a
combined control plane, as shown in Figure 2, where the combined control plane’s task is
to manage the network and make control decisions driven by knowledge and application
policies [62]. The abstracted combined control plane in KDN and the logically centralized
control plane in SDN have exactly the same tasks of network management and network
control. However, the abstracted combined control plane differs with respect to the control
plane in SDN by the fact that control actions in KDN are self-learning, adaptive, and
knowledge-driven, while the control plane in SDN is driven by application policies, since
SDN does not have a knowledge plane.
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2.3. KDN vs. SDN vs. Conventional Network

Traditional networking is the oldest approach to networking and involves manual
configuration and management of devices. This method of networking has been prevalent
since the beginning of networking, and it still prevails in modern communication networks.

SDN is a more recent approach that separates the control plane from the data plane and
enables greater flexibility in network design. The control plane is moved to a centralized
location, and network administrators use software applications to manage the network.
This paradigm allows network administrators to manage networks more easily and quickly
due to increased flexibility and programmability.

KDN creates a self-learning, self-optimizing, and self-healing network by integrating
AI and ML technology. Data analysis is a tool used by KDN systems to automatically
improve network performance, adapt to shifting network circumstances, and spot and
resolve potential network issues before they become bigger difficulties.

2.3.1. Decoupling of Logical Planes

In traditional networks, the data plane and control plane are tightly coupled, and de-
vices such as routers perform both data processing and control functions. Thus, traditional
networks are difficult to manage and automate.

In SDN, the main purpose is to decouple the data and control planes logically, which
allows network administrators to manage and program networks using software rather
than hardware. The logically decoupled controllers communicate with forwarding elements
using protocols such as OpenFlow, ForCES, etc. However, in SDN, network management is
embedded in the control plane, and there is no knowledge plane to generate knowledge.
Thus, SDN does not emphasize knowledge generation in arriving at control decisions.

Note that KDN architecture is an extension of the originally proposed SDN architecture
by decoupling the management plane from control logic and introducing a new logically
decoupled knowledge plane. KDN emphasizes knowledge representation, reasoning,
and decision-making to manage, configure, and control networks. It uses domain-specific
knowledge representation (knowledge ontologies) to automate the management of network
devices and create an intelligent network that can learn and adapt to changing conditions.

Thus, the key differences in KDN with respect to SDN lie in the logical decoupling of
the management plane from control logic and the introduction of a new logically decoupled
knowledge plane.

2.3.2. Network Programmability

In traditional networks, each network device is required to be manually configured,
which can become infeasible in large networks due to time consumption and the error-
prone nature.

Even though both SDN and KDN aim to improve network programmability, they differ
in the approach by which they implement it. SDN uses application programming interfaces
and software controllers to program network behavior, while KDN additionally involves
knowledge-based systems such as AI and machine learning in addition to application of
programming interfaces and software controllers to automate network control and management.

2.3.3. Control Plane

The control plane is dispersed among network devices in conventional networking.
Despite the logical centralization of the control plane in SDN, the controller’s decisions are
not guided by knowledge but rather by the policies of the network applications. In KDN,
the control plane is both logically centralized and self-learning, as control is based on both
network policies and knowledge generated by AI and machine learning techniques.
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2.3.4. Management Plane

In traditional networking, networking devices are managed and configured by the
network administrator using a distributed approach. In SDN, management is centralized;
however, it is embedded in the control plane and not decoupled as a separate plane. In
KDN, management functions are decoupled from control logic, and separate protocols are
used for data collection, network monitoring, and network configuration, which makes
troubleshooting in case of failure much easier than in SDN. Furthermore, network manage-
ment can be automated using knowledge learned from the network to update management
policies in the application plane to automatically adapt to network changes in real-time
with minimum human intervention.

2.3.5. Knowledge Plane

In traditional networking, decisions are made not based on knowledge at all. Such
networks are based on strict rules or policies enforced by network administrators. In SDN,
knowledge is also not generated; however, the centralized controller uses information
collected from the network, such as device statistics, status, etc., to develop a global
view of the network to help in arriving at control decisions based on policies enforced by
applications. In KDN, based on data collected from the network, machine learning or a
heuristic model-based approach will be used to generate knowledge, which will be used in
deriving rules with the aid of knowledge composition or by providing knowledge to the
control plane to use in arriving at control decisions. Furthermore, the knowledge/rules can
be provided to the application plane to update policies and to the management plane to
aid in network monitoring.

2.3.6. Application Plane

In conventional networking, services are provided depending on the capabilities of
underlying devices, and the application plane is closely tied to the network infrastructure.
This can limit the flexibility of the network and make it challenging to adapt to shifting
requirements. Instead of relying on the network infrastructure’s capabilities, SDN offers
more flexibility and enables services to be supplied in accordance with application needs.
In SDN, the application plane is decoupled from the underlying physical network and is
dynamically defined and reconfigured according to the requirements of the service. KDN
goes a step farther in terms of the application plane’s versatility. In KDN, the application is
continually optimized depending on the service’s requirements and network performance,
in addition to being developed dynamically. This strategy enables the more effective use of
network resources and may result in better service delivery.

2.3.7. Network Architecture

Traditional networks have a static network architecture, while SDN has a flexible
network. In KDN, flexibility is even greater than in SDN, as it is a self-learning network
that can adapt to changing conditions in real time.

2.3.8. Operational Cost

Traditional networking is expensive to operate, as it requires skilled programmers
to configure and manage the network. Using a logically centralized control plane, the
operational cost of SDN can be drastically reduced compared to traditional networks. The
operational cost savings in KDN are even higher than in SDN, as it uses AI and machine
learning techniques to generate and compose knowledge that can be used to automate net-
work management tasks with the least involvement of humans (network administrators).
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2.3.9. Security Features

Traditional networks have limited security features, which are basically implemented
using firewalls and intrusion detection systems. SDN provides better security compared to
traditional networks due to the centralization of security policies and easier deployment
of security protocols, even though SDN is known for different attacks such as denial of
service attacks, malware attacks, spoofing attacks, data modification attacks, etc. KDN
provides even more security than SDN by using ML to detect threats in real time using the
knowledge plane and mitigate the threats using the control plane.

Table 1 summarizes a comparison among KDN, SDN, and traditional networking.

Table 1. Comparison of KDN, SDN, and traditional networks.

Parameter/Feature Traditional Network SDN KDN

Logical planes Data, control, and
application coupled Data, control, and application decoupled Data, control, management, knowledge, and

application decoupled

Network
programmability Manual and complex Manual and simple Hybrid and simple

Control plane Distributed across
devices

Logically centralized and driven
by application policies

Logically centralized and self learning driven
by application policies and knowledge

Management plane Manual and distributed Manual and centralized coupled with
control plane

Hybrid and centralized decoupled from
control plane

Knowledge plane Totally knowledge
ignorant

Knowledge ignorant. However, make
use of global network information in
arriving at decisions

Generate knowledge, compose knowledge,
generate rules, store and disseminate them to
other planes

Application plane
Tightly coupled with
infrastructure
and inflexible

Decoupled with infrastructure and can
be redefined dynamically based on
service needs

Decoupled from infrastructure, can be
redefined and optimized based on service needs
and network performance

Network architecture Static Flexible Flexible, self learning, and automated

Operational cost High Medium Low

Implementation cost Low Medium High

Security features Low Medium High

3. Knowledge Plane
3.1. Introduction to Knowledge Plane

The knowledge plane is a logical layer that is responsible for generating, processing,
and disseminating knowledge about the network. The knowledge plane helps network op-
erators improve their ability to manage network behavior and adapt to changing conditions.
The knowledge plane includes various types of knowledge, such as declarative knowledge
(rules), procedural knowledge (processes), and contextual knowledge (knowledge about
the environment and the conditions in which the network operates) [63]. The data for
generating knowledge can come from various sources, such as network devices, sensors,
etc., which are analyzed to generate insights and enable intelligent decision-making. By
making full use of the knowledge plane, network operators can proactively identify and
address issues before they become problems, optimize network behavior to meet changing
demands, and implement advanced security measures to protect against threats.

Knowledge representation/modeling languages can be used to represent and manipu-
late knowledge in a machine-readable format. They provide the data model and syntax
for representing the knowledge. Resource Description Framework (RDF), Web Ontology
Language (OWL), Ontology Inference Layer (OIL), RDF Schema (RDFS), and Knowledge
Interchange Format (KIF) are the main knowledge representation languages that have been
proposed to be utilized in knowledge-defined networks. These knowledge representations
are discussed in detail in subsequent sections.
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3.2. Architecture of the Knowledge Plane

The architecture of the knowledge plane containing the three knowledge sub-planes
and its communication with the network [25] are graphically illustrated in Figure 3.

As evident from Figure 3, there are three sub-planes in the knowledge plane, which
are listed below:

• Knowledge generation plane—Generates descriptive knowledge from raw data using
a knowledge generation model;

• Knowledge composition plane—Identifies the relationship between different pieces
of knowledge to compose knowledge using an ontology editor, which can be used to
generate rules considering user intent;

• Knowledge distribution and management plane—Manages and exchanges raw data
(within the knowledge plane), descriptive knowledge, rules, and control messages
between the knowledge plane and other planes.

Figure 3. Architecture of the knowledge plane and its interaction with the network.

The knowledge and rules generated from the knowledge plane can be helpful for
fault diagnosis and mitigation, automatic reconfiguration, intrusion detection, etc. It is a
requirement of the knowledge plane to operate successfully in the presence of limited and
uncertain inputs [27]. The knowledge plane architecture given in Figure 3 is described in
detail in the following sections.

3.3. Knowledge Generation Plane

The knowledge generation plane extracts descriptive knowledge from raw data using
a knowledge generation model that uses a learning technique that can be either a heuristic
model-based method or a machine learning method. Knowledge generation effectively
reduces the volume of information transmitted to the controller, as the descriptive knowl-
edge produced from a large volume of data is much smaller. Different types of data will be
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collected by the management and control planes, as is discussed in Sections 4.5.2 and 5.4.1,
respectively, and can be fed as input for knowledge generation. For example, the input data
to the knowledge creation plane can be the data traffic received at the controller, whereas
the output knowledge can be the traffic class.

The generated knowledge can be modeled using the Resource Description Framework
(RDF) knowledge representation language. RDF represents knowledge as a set of triplets,
which consist of a subject, predicate, and object. In RDF, subjects and objects are identified
by Uniform Resource Identifiers (URIs), and predicates represent relationships between
them. This structure makes RDF a flexible and extensible knowledge representation model
that can represent diverse types of knowledge [64].

3.3.1. Generating Knowledge Using Heuristic Model-Based Methods

Heuristic model-based methods usually involve using a mathematical model to de-
scribe raw data [65] and using the inner correlation of the data [66] to generate knowledge.
Some use simple heuristic methods such as first-order logic, fuzzy logic, Markov logic, data
fusion, etc. to generate knowledge [67]. However, this type of technique may need to use
numerical analysis techniques to recover from missing values for the historical data.

In the literature on network communication, there are many examples of using heuris-
tic model-based methods to generate knowledge. Packet classification is the core of traffic
classification techniques that categorize packets with a traffic descriptor or with user-
defined criteria. The Aggregated Bit Vector (ABV) algorithm has been implemented in
parallel using Graphic Processing Units (GPUs) for packet classification in networks [68].
Some have used a Binary Content Addressable Memory (BCAM) scheme and a lookup
mechanism for packet classification, which has yielded lower memory consumption at the
expense of low throughput [69]. A new data structure known as the Range Query-Recursive
Model Index (RQ-RMI) has been used for training an algorithm for packet classification,
which can be considered as a computational approach [70]. A practical multi-tuple packet
classification algorithm called Dynamic Discrete Bit Selection (DDBS), which employs
dynamic heuristic schemes at the bit level in order to explore the characteristics of the
classification rule sets, has been conducted in [71], which has a high classification speed
with a lower storage requirement. Some have used cross-product and linear search for
packet classification, which have high feasibility and scalability [72]. A Tuple Space Search
(TSS)-assisted algorithm has been used in software-based switches (Open v) in KDN for
packet classification [73]. The TSS-based approach is a two-stage framework where partial
decision trees are constructed from rule subsets grouped with respect to small fields in
the first stage, and, in the second stage, a TSS-based algorithm is used to classify subsets
following tree construction. Interval-valued fuzzy logic has been used to classify video
streams under varying network conditions that affect the behavior of network flow [74].

Model-based heuristic algorithms have been used for generating knowledge in the
form of routing in KDN architectures. Early KDNs have used the extended Dijkstra
shortest path algorithm for generating routes [75]. An optimization-based segment routing
technique that uses Multi-Objective Particle Swarm Optimization (MOPSO), which is a
technique that divides the end-to-end path into segments, aiming to minimize the cost
of each segment, has been used for KDNs [76]. Some have attempted to optimize delay,
blocking probability, and network utilization when finding routes using an adaptive greedy
flow routing algorithm [77]. Another research work investigates on a dynamic and adaptive
multi-path routing algorithm that computes routes with constraints on packet loss, time
delay, and bandwidth, resulting in higher QoS for multimedia applications in KDN [78].
Similar to the preceding work, researchers have attempted to select an optimum path
satisfying video QoS parameters for routing using an algorithm [79]. Some use ant colony
optimization for routing in KDN to select the optimum path from multiple paths [80].
Recently, an integer programming problem for maximizing the ratio for energy saving
in KDN that quantifies energy efficiency based on link utility intervals has shown good
results as an energy-efficient routing scheme [81].
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Intrusion detection and security systems in KDNs have used heuristic model-based
methods to achieve that task. An optimization framework that optimally selects the
sampling rate for each switch to sample traffic flows for inspection of malicious network
traffic in large networks is presented in [82]. An information security management system
and an intrusion detection system with a fuzzy logic-based decision-making module have
been used in KDNs for making decisions regarding security [83]. A flow-based and packet-
based intrusion detection system known as Kangaroo intrusion detection, which uses
consecutive jumps, similar to a kangaroo, for announcing the attacks to the KDN controller,
and other IDSs that use an attack detection algorithm to detect attacks from packets and
flows, have been utilized in work [84]. A meta-heuristic approach to detecting DDoS attacks
in KDNs using the Lion optimization technique, which is robust enough to detect the DDoS
attack with the least magnitude of attack traffic, has been proposed [85]. An anomaly-based
intrusion detection system using fuzzy logic combined with an InfoGain feature selection
method has shown promising results for the detection of DDoS attacks [86]. An evolving
fuzzy system to discriminate anomalies (normal and attack network situations) has been
used to classify network traffic as normal or attack, by capturing time-series data, which are
analyzed to establish a model of the normal network situation that evolves over time [87].

Furthermore, heuristic algorithms have been used for controller placement problems.
Evolutionary algorithms have been utilized to solve a large-scale multi-objective controller
placement problem, where capacities of the controllers and loads of switches are considered
as constraints, and latency between nodes and controllers, the latency among controllers,
and load balancing are considered as objectives [88]. A heuristic algorithm that computes
the controller placements with at least the required reliability to yield a fault-tolerant
placement that focuses on the number of controllers, number of nodes under the controller,
and position of the controller has been studied in [89]. Some have considered energy
consumption minimization in placing the controller, which uses a binary Integer Linear
Programming optimization (BILP) problem, having constraints as the delay of the control
path and the load of the controller. However, due to the computational complexity of
BILP, a suboptimal solution using a genetic heuristic algorithm for energy-aware controller
placement that yields results close to the BILP solution has been proposed for large net-
works [90]. Another controller placement approach uses particle swarm optimization and
the Firefly algorithm to place the controllers, considering the effects of controller-to-switch
latency, inter-controller latency, and multi-path connectivity between the switch and the
controller [91].

3.3.2. Generating Knowledge Using Machine Learning Methods

The input data or information may be utilized to extract features using machine
learning algorithms. Before putting raw data into machine learning models, high-level
features are typically extracted to create information in order to increase the accuracy of the
models [92]. However, for knowledge creation using ML techniques, high computational
resources are required. For example, for autonomous driving applications, frames of
images from multiple cameras or sensors are required to be input, which requires high
computational power in knowledge generation. In such cases, distributed knowledge
generation models can be used to divide the knowledge generation workload among
multiple machine learning models, where the knowledge generated by each model can
be later combined using the knowledge composition plane. Some research suggests that
Artificial Intelligence (AI)-based approaches yield better results for knowledge generation
than algorithmic approaches [27]. Five approaches to machine learning are available in
order to generate knowledge from the data/information in communication networks:

• Supervised learning—In supervised learning, a training data set contains labeled
inputs with corresponding labeled outputs for the supervised machine learning algo-
rithm for training (fitting). During training, the ML algorithm learns the underlying
patterns in the input data to retrieve the outputs. Supervised learning involves either
a classification or regression problem. A classification problem has discrete output
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variables producing qualitative outputs, whereas a regression problem has continuous
output variables producing quantitative outputs [93];

• Unsupervised learning—Unsupervised learning develops knowledge by choosing a
cluster of related items from the provided input data set (no supervision is required).
It does not train using a labeled data set [94];

• Semi-supervised learning—In this method of learning, both labeled and unlabeled
datasets are used to train the machine learning model [95];

• Integration of supervised with supervised, unsupervised, or semi-supervised learning
approaches—In this integrated method, at least two machine learning models are used
to complete a specific job [96];

• Reinforcement learning—With reinforcement learning, an agent in a given state acts
to maximize potential rewards from the surrounding environment in the future [97].

Now, let us review each of the approaches to machine learning for knowledge genera-
tion in knowledge-defined networks.

Supervised Learning Approaches for Generating Knowledge
Deep Neural Networks (DNN)
An Artificial Neural Network (ANN) is a collection of node layers, comprising an

input layer, an output layer, and optional one or more hidden layers in which each node
(neuron) is associated with a weight and a threshold value [98]. A Deep Neural Network
(DNN) is an ANN that necessarily consists of one or more hidden layers between the input
layer and the output layer of the ANN [99]. The weights and biases of the neurons are
adjusted to minimize a user-defined loss function during DNN training in order to find a
mathematical relationship between the inputs and the outputs [100]. Deep learning has
been used for detecting network intrusions and for flow-based anomaly detection in the
centralized controller, where deep learning has resulted in better performance (except for
accuracy) compared to an approach using a Recurrent Neural Network (RNN) [101]. A
self-organizing routing algorithm that reactively finds the most reliable route using a deep
neural network in a self-organizing knowledge-defined network has been investigated
in [45]. A Convolutional Neural Network (CNN) is an ANN that has at least one con-
volution layer that performs the mathematical operation convolution instead of matrix
multiplication [102]. Work in [103] uses a CNN and Continuous Wavelet Transform (CWT)
to detect DDoS attacks in KDNs by differentiating attack samples from normal traffic. A
Rectified Linear Unit (ReLU) DNN that can handle large databases of classification rules is
employed in [104] for packet classification in large networks. Some have used DNNs for
traffic classification and prediction in KDNs in order to process the huge amount of data
received by the centralized controller [105]. An energy efficiency optimization framework
based on traffic prediction in knowledge-defined networking using a DNN having a Gated
Recurrent Unit (GRU) layer capturing the temporal characteristics of the network traffic,
aimed at reducing network energy consumption while ensuring communication quality,
is presented in [106]. Flow-based anomaly detection has been used in intrusion detection
for a KDN system using a GRU–Long Short-Term Memory (LSTM)-based DNN [107].
Deep learning has also been utilized to identify the presence of link failures in a complex
multi-route optical network by analyzing a large amount of data received from the optical
network [108]. A link failure at handover mitigation scheme by continuously observing and
tracking signal conditions using an LSTM-based DNN, where the behavior of these signal
conditions is taken as input to the neural network, which acts as a classifier, classifying
the event in either handover failure or success in advance, is used in [109]. Thus, in the
preceding scheme, by advancing the prediction of handover status, handover failures
can be mitigated. DNNs have also been used to replace heuristic routing optimization
models such as mixed integer linear programming problems, which are trained on opti-
mal decisions using flows from known traffic demands [110]. Due to facing of frequent
communication interruptions and poor stability inherent in 3D Flying Ad Hoc Networks
(FANETs), a DNN-based routing consisting of a 3D two-space division and DNN-based
forwarding that yields better performance in terms of packet delivery rate compared to
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conventional routing protocols is presented in research [111]. Wijesekara et al. generate
knowledge regarding link lifetimes and one-hop channel delays related to wired and wire-
less communication channels in a heterogeneous knowledge-defined vehicular network
using DNNs, in order to utilize the generated knowledge in a hybrid stable distance and
stable delay based OpenFlow compatible adaptive routing algorithm which yields bet-
ter routing performance in terms of packet delivery ratio, latency, and communication
cost [112]. A DNN-based routing framework called “NeuRoute”, which predicts a traffic
matrix in real-time using a DNN and generates forwarding rules to optimize network
throughput for KDN, is presented in [113]. A temporal-aware Quality of Service (QoS)
prediction using a DNN with GRUs with the aid of feature integration has been employed
in [114]. In [115], the authors present a DNN model for multiple attribute QoS prediction,
where multi-task prediction is achieved by stacking task-specific perception layers on the
shared neural layers.

Decision Trees
A decision tree consists of nodes that represent decisions or attributes of data, and

the branches represent the possible outcomes or class labels that result from each decision.
In a decision tree, any path beginning from the root is described by a data-separating
sequence until a Boolean outcome at the leaf node is achieved. A creation of a decision
tree involves the recursive splitting of data based on the most informative features until a
stopping criteria is met [116]. Decision trees have been used for the detection of Distributed
Denial of Service (DDoS) attacks in KDNs [117]. A DDoS attack is a threat that is used
by cybercriminals to deny the service of a network resource, such as the controller in the
KDN paradigm, by making it unavailable to its intended users. Furthermore, decision trees
have been extensively used for packet classification in computer networks using different
cutting approaches such as Cutsplit, which exploits the benefits of cutting and splitting
techniques adaptively while having a low memory consumption [118]; Bitcuts, which has
fast tree traversal speed using bit-level cutting [119]; and Hypercuts, which is a decision
tree in which each node in the tree represents a k-dimensional hypercube, which uses an
extra degree of freedom and a new set of heuristics to find optimal hypercubes for a given
amount of storage [120]. Another frequently used classification task in decision trees is
network traffic classification. In [121], traffic classification using a decision tree is used for
vulnerability detection in the supervisory control and data acquisition network of a smart
factory. Some have used the C4.5 decision tree algorithm along with an entropy minimum
description length discretization algorithm for traffic classification, whose performance has
been enhanced by implementing it in a Field Programmable Gate Array (FPGA) and multi-
core platforms [122]. An improved decision tree-based algorithm for traffic classification
that uses C4.5 decision trees in the Hadoop platform called HAC4.5, which parallelizes the
decision tree algorithm using the Hadoop platform to classify big data traffic with higher
accuracy and low computational time, is presented in work [123].

Support Vector Machines (SVMs)
A support vector machine is a supervised machine learning approach used for clas-

sification and regression problems where an optimal decision boundary (hyperplane) is
used to differentiate the classes or for regression [124]. A multiclass classification support
vector machine has been used to detect two types of flooding-based DDoS attacks with
the minimum disturbance to legitimate users in a KDN [125]. Another research project
uses hierarchical flow- and packet-based anomaly detection using support vector machines
as an intrusion detection system in KDN. In this approach, the first level is a flow-based
IDS, which passes the flow to a packet-based IDS for further actions if the flow-based IDS
detects an attack [126]. Data traffic based on the application has been classified in a KDN
using an SVM, where the classification accuracy has been poor compared to the Naive
Bayes machine learning model [127]. Support vector machine-based application traffic
identification and classification such as Youtube, Facebook, etc. has been achieved in a
KDN scenario with high classification accuracy [128]. Some have classified packets based
on the action/flow of each packet in KDNs using support vector machines, where five
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features of the IP header have been extracted before classification [129]. In a study that
investigated the performance of the SVM supervised machine learning model and the
K-means clustering unsupervised machine learning model for traffic classification, SVM
yielded a higher classification accuracy than K-means [130].

Random Forest
A random forest consists of many decision trees, where each decision tree provides

its prediction such that the class with the highest count becomes the classification of the
model [131]. Random forest models have been used for classification, feature selection, and
proximity metrics for behavior-based intrusion detection in KDNs [132]. The purpose of an
intrusion detection system is to capture any malignant activities in the network before they
cause severe damage to the network. The DDoS attack on the controller of KDN, which
leads to resource exhaustion and the non-reachability of the services given by the controller,
has been detected using random forests. However, the random forest classifier has yielded
inferior performance to the SVM in detecting a DDoS attack [133]. A random forest has
yielded a higher classification accuracy and a lower false positive rate for detecting the
presence of an attack in a network intrusion detection system compared to neural networks
and Naive Bayes machine learning classifiers [134]. Internet protocol traffic classification
using the flow statistics collected by the controller and Transmission Control Protocol
(TCP) flow in KDN has been achieved using a random forest classifier, which yielded
a higher accuracy compared to gradient boosting classifiers [135]. Statistical learning,
which involves estimating application end-to-end quality of service metrics such as frame
rate and response time from device statistics, has been used in an OpenFlow network
using a random forest machine learning classifier, which produced a better classification
performance than the regression tree [136].

K-Nearest Neighbor
K-nearest neighbor is a supervised machine learning algorithm that groups data into

coherent clusters, based on the assumption that similar points exist close to one another,
and classifies the newly input data based on the similarity of previously trained data [137].
The K-nearest neighbor machine learning model has been utilized to detect DDoS attacks
in KDNs; however, it has resulted in lower classification performance compared to the
J48 classifier [138]. In heterogeneous vehicular networks that use a KDN paradigm, cell
selection for 5G millimeter wave communication considering the motion of nodes and
characteristics of base stations has been realized by classification using a K-nearest neighbor
model [139]. In KDN-based internet service provider networks, Transmission Control
Protocol-Synchronization (TCP-SYN) and Internet Control Message Protocol (ICMP) flood
attacks have been detected using K-nearest neighbor [140]. Detection of known and
unknown saturation attacks by properly selecting a time window for OpenFlow traffic
detection has been realized with the aid of a K-nearest neighbor classifier, where unknown
saturation attacks have been detected by appropriately selecting a time window [141]. This
research suggests that the time window of the traffic has a relationship with the model’s
classification performance. Even though packet classification has been achieved using a
K-nearest neighbor classifier, its performance has been inferior to that of DNNs, which
proves that it is less efficient at handling large datasets and the classification rules that
occur in network scenarios [104]. To cope with the problem of overloading of the controller,
a prediction mechanism for predicting harmful long-term loads of the controller in order to
offload the controller in a harmful long-term scenario using a K-nearest neighbor classifier
has been proposed; however, the prediction performance has been slightly inferior to
SVMs [142]. K-nearest neighbor has been utilized to predict the Quality of Experience
(QoE) in video data in real-time in KDNs [143]. Traffic classification as a knowledge
generation step by collecting flow features such as protocol percentage, packet count,
packet size, IP diversity ratio, etc. using a K-nearest neighbor has been realized in [144], in
order to classify different IoT devices and detect different DDoS attacks such as TCP-SYN,
UDP, and ICMP.
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Unsupervised Learning Approaches for Generating Knowledge
K-Means Clustering
K-means is an unsupervised machine learning algorithm for grouping unlabeled

data into a specified number (K) of clusters [145]. A multi-controller placement problem
minimizing latency where an optimized K-means model is used for network partitioning
in order to place the controllers has been studied in work [146]. Similar work uses an
optimized version of the K-means algorithm for achieving multi-controller placement in
KDN while minimizing the latency, which also guarantees high reliability and prevents
the single point of failure problem [147]. K-means has been used for anomaly detection
in smart grid KDN environments, which has resulted in high classification accuracy [148].
A DDoS attack detection mechanism under an unbalance in the traffic distribution using
K-means clustering in a KDN has been studied in [149].

Isolation Forest
An isolation forest is a tree-based technique specially designed for anomaly detec-

tion that uses the average of the predictions by several decision trees to obtain the final
anomaly score for the input data point [150]. An isolation forest classifier has been used for
classifying network traffic’s anomalies in a KDN–Network Function Virtualization (NFV)
environment, which detects flooding attacks such as HTTP Flood, UDP Flood, Smurf Flood,
and DDoS Flood [151]. An isolation forest has been used as an outlier detection scheme in
combination with a data flow collection module and an information gain feature selection
module to filter out the most relevant features to detect network security threats with high
accuracy and low computational complexity [152]. A malware detection isolation forest
using flow data of packets in combination with an automatically generated whitelist to
eliminate benign packets in order to reduce the false positive rate of the isolation forest ML
model has been studied in [153].

Semi-supervised Learning Approaches for Generating Knowledge
Variational autoencoders and generative adversarial networks stand out as generative

models in semi-supervised learning.
Variational Autoencoder
A variational autoencoder (VAE) is a type of generative model that has an autoencoder

with an encoder and decoder architecture that uses a probabilistic approach to encode
input data into a latent space and then generate new data by decoding samples from
the latent space while using variational inference to optimize the model during train-
ing [154]. A variational autoencoder for abnormal traffic detection that divides the traffic
into 4 major categories and 38 specific attacks to be used as input to the decoder and has a
higher classification accuracy and a higher generalization to detect new attacks is presented
in [155]. In research [156], two approaches are studied to detect DoS and DDoS attacks. In
the first approach, a variational autoencoder is trained on traffic traces of various types
in order to learn the general features of the traffic. In the other approach, a variational
autoencoder is used to learn abstract features from legitimate traffic in order to learn a
representation of harmless traffic.

Generative Adversarial Networks (GANs)
Two neural networks serve as the generator and discriminator in a generative adver-

sarial network. In a GAN, the generator is taught to produce new data that are similar to
training data, and the discriminator is trained to distinguish between synthetic data and
real training data [157]. A framework known as ByteSGAN, which consists of a generative
adversarial network for encrypted traffic classification embedded in a KDN edge gateway
and has better classification accuracy compared to CNN, has been discussed in [158]. While
considering the network congestion in a heterogeneous knowledge-defined vehicular net-
work, a generative adversarial network based method is used for augmenting the data
dynamically used in creating network slices [159]. Generative adversarial networks have
been used to synthesize realistic attacks using known attacks, such that attack variations
have been trained to be detected in KDNs [160]. Considering the fact that DNNs tend to
misclassify attacks under adversarial attacks, a generative adversarial network is used for
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detecting DDoS under adversarial training to reduce errors in misclassifying adversarial
attacks in a KDN [161].

Laplacian SVM
A Laplacian SVM is a semi-supervised machine learning approach that is a variant

of the SVM that uses the Laplacian matrix to improve the accuracy of classification on
complex and noisy datasets where labeled data are used to train the SVM while unlabeled
data are used to construct the Laplacian matrix [162]. Laplacian SVM has been used for
traffic flow categorization into QoS classes with the aid of deep packet inspection, where
Laplacian SVM is specifically utilized to deal with traffic with unknown applications [163].

Self-Training
Self-training is a semi-supervised machine learning approach utilized in situations

where there is a small amount of labeled data and a large amount of unlabeled data,
such that the classifier is initially trained on the labeled data to predict labels for the
unlabeled data, where the predicted labels are added to the labeled dataset, and the
classifier retrained iteratively [164]. A self-learning-based traffic classification framework
that uses dataset features such as flow meta-data information, size, and interval arrival
times, where training using only 20% of the data as labeled data has produced satisfactory
classification results [165].

Integration of Supervised with Supervised, Semi-Supervised, or Unsupervised Learn-
ing Approaches for Generating Knowledge

By combining a K-nearest neighbor (supervised) machine learning model with a varia-
tional autoencoder (semi-supervised) using a hybrid approach, both known and unknown
DDoS saturation attacks have been detected in KDNs with a better performance than
each of the machine learning model’s individual performances [166]. An autoencoder and
a one-class SVM are used for intrusion detection in the knowledge plane, while the P4
programming language along with ML have been used to implement real-time intrusion
detection in the data plane [167]. A conditional variational autoencoder is used for data
generalization in combination with a random forest classifier to automatically learn simi-
larity among input features, extract discriminative features, and classify various types of
attacks [168]. An intrusion detection model using a combination of a conditional varia-
tional autoencoder and a deep neural network where the decoder generates new attack
samples to balance the training data, improving the detection rate of imbalanced attacks,
has been effective in detecting minority attacks and unknown attacks [169]. To deal with
both problems of an unbalanced and unlabeled data set in training for DDoS detection
in KDNs, a combination of an autoencoder and a one-class SVM has achieved high ac-
curacy with a small set of flow features [170]. Adversarial attacks have been generated
and detected using a combination of generative adversarial networks and reinforcement
learning in a wireless sensor network [171]. A flooding DDoS attack detection framework
by combination of generative adversarial networks and deep learning, where the deep
learning model has been trained incorporating adversarial attacks to improve the accuracy
of classification [172]. A triple combination of a deep sparse autoencoder for dimension
reduction, a generative adversarial network to solve the data imbalance problem, and,
finally, ensemble learning using a supervised machine learning model has been used for the
classification of anomalies in network traffic for KDNs [173]. A group of features in traffic
flows, namely inter-packet arrival time, packet size, packet count, and flow tuple, have
been used for flow classification using a combination of C4.5 decision trees and K-means
clustering [174]. A management framework called ATLANTIC uses information theory
to calculate deviations in the entropy of flow tables, in which a K-means classifier has
been used for clustering traffic flows, followed by a SVM for classifying the flow of each
cluster to detect and categorize traffic anomalies [175]. A modular DDoS attack detection
system using K-means++ and fast K-nearest neighbor unsupervised and supervised ma-
chine learning combinations has resulted in high precision and stability for detection [176].
Ensemble learning is usually a combination of a machine learning approach with another
machine learning approach of the same category (e.g., supervised with supervised) for
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improving the accuracy and robustness of the predictions. An anomaly detection algorithm
by combining X-means and isolation forest ML models using ensemble learning has shown
better classification performance compared to the other unsupervised machine learning
approaches’ classification performance considered individually [177]. An ensemble learn-
ing approach has been proposed by combining K-nearest neighbor, Naive Bayes, support
vector machines, and Self-Organizing Maps (SOMs) to detect anomalous behavior of data
traffic in KDN, where the combination of SVM and SOM has resulted in high accuracy
and detection rates with a low false alarm rate [178]. Ensemble learning using a random
forest and gradient boosting has resulted in better performance than individual supervised
machine learning approaches for Virtual Private Network (VPN) traffic classification [179].

Reinforcement Learning Approaches for Generating Knowledge
Reinforcement learning involves an agent in a given state taking actions to maximize

future rewards obtained from the environment. Deep reinforcement learning combines
ANN and reinforcement learning to achieve both function approximation and target op-
timization, mapping states and actions leading to rewards [180]. A Deep Reinforcement
Learning (DRL) framework is utilized to train Graph Neural Networks (GNNs) using
prioritized experience replay from the experiences learned by the controllers to predict the
optimum routing path with the minimum average delay between source and destination
nodes [181]. Similarly, another research highlights how closed loop control can be used for
automatic routing in a KDN using deep reinforcement learning with the Deep Deterministic
Policy Gradient (DDPG) to learn experiential knowledge, which also includes network
monitoring to realize the interaction with the environment [44]. Routing optimization by
adding a graph neural network to learn using deep reinforcement learning for message
passing, which interacts with the network topology environment and extracts exploitable
knowledge using the message passing process of information between the links with the
goal of load balancing of network traffic, has been studied for KDNs in [182]. Ipv6 low-
power wireless personal area networks have a routing protocol called the routing protocol
for low-power lossy networks, which determines routes based on rank values and is thus
vulnerable to rank attacks, which create non-optimized routes for packet forwarding. An
alternative routing framework for the low-power wireless personal area network using the
KDN paradigm, which uses reinforcement learning with Direct Acyclic Graphs (DAGs)
for routing optimization at the controller having a QoS provisioning packet forwarding
scheme preventing rank attacks, has been presented in [183]. A knowledge plane has
been added to the SDN where reinforcement learning considering link-state information
is utilized for making routing decisions, taking advantage of the global view and con-
trol in the KDN paradigm [184]. A reinforcement learning routing algorithm solving a
traffic engineering problem in terms of throughput and delay using experience, where
an agent learns a policy to suggest better routing paths, has been studied in [185]. To
resist the dynamic change in flow control rules when the network is under attack, a deep
reinforcement learning-based QoS-aware secure routing protocol has been utilized in a
KDN that extracts knowledge from the history of traffic demands to dynamically optimize
the routing policy [186]. Using real-time information of network state and flow statistics,
a multi-path routing scheme for different flows by training using the Markov Decision
Process (MDP) and Q-learning has been used in [187]. In the preceding scheme, remain-
ing flows are redistributed according to the QoS priority to complete multi-path routing
when there is no link that satisfies the bandwidth requirement. A global load-balanced
routing scheme using reinforcement learning that makes a global policy for routing and
load-balancing considering network resources for all flows coming from different sources
has been studied in [188]. Multi-objective optimization and deep Q-learning are utilized
in a multicast routing framework where multicast tree state, link bandwidth, link delay,
and link packet loss rate are considered as the state-space and links are considered as the
action space, where the knowledge is generated in the form of a multicast tree to be used
by the controller for installing flow rules [189]. A traffic engineering framework uses a
reinforcement learning-based scheme to learn a policy to select critical flows for a given
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traffic matrix in order to reroute those critical flows using linear programming [190]. Using
traffic distribution information collected by the controller, a deep reinforcement learning
algorithm is used to dynamically adjust a set of links’ weights for critical links as a knowl-
edge generation step, where a weighted shortest path algorithm uses such knowledge to
generate forwarding paths [191]. A general framework for security management using
reinforcement learning, where a deep neural network-based Q-learning agent has been
used to mitigate advanced persistent threats [192]. Multi-agent deep deterministic policy
gradient-based deep reinforcement leaning has been used in KDNs for joint routing opti-
mization and DDoS attack detection [193]. An anomaly detection and mitigation system
uses reinforcement learning to learn policies for dealing with anomalies based on rewards
for each action for each profile grouped based on collected network metrics [194]. A rein-
forcement learning framework has been used in a multimedia-based KDN environment to
select the routing algorithm for QoS based traffic flows for QoS provisioning [195]. Deep
reinforcement learning has been utilized to learn and build knowledge for 5G and beyond
network slicing optimization where generated knowledge has been utilized for making
optimal decisions [196]. For 5G cellular Radio Access Network (RAN), closed-loop power
adjustment of radio transmitters has been realized in an automated and self-configuring
manner by employing a deep reinforcement learning agent to develop intelligence with
the objective of increasing equipment throughput [197]. Joint optimization of bandwidth
allocation and position overlap of ultra-reliable low latency communication users in 5G
networks has been achieved with the aid of deep deterministic policy gradient based deep
reinforcement learning to generate knowledge by observing channel variations and traffic
arrivals [198].

Now, let us analyze the task-wise classification of knowledge generation techniques
discussed above. Table 2 summarizes the details of machine learning or heuristic model-
based methods for different knowledge generation scenarios in KDNs.

ML models that are capable of generating knowledge are usually trained by vendors,
who may keep the models proprietary. However, keeping them proprietary can cause
redundant computations and an inefficient use of resources [199]. ML or heuristic models
can be used to detect features from input information/data to create knowledge. However,
this generated knowledge alone may not be sufficient to arrive at decisions regarding
network functions. Thus, there is a requirement for a knowledge composition plane to
further analyze and combine the different pieces of generated knowledge.

Table 2. Analysis of task-wise classification of knowledge generation in KDNs.

Task Learning Class Learning Technique Special Purpose Performance

Packet
classification
(PC)

Heuristic model

ABV algorithm Parallelize ABV algorithm on GPU
for PC [68]

99.9 times speedup, 65 times
enhancement in throughput

Lookup and BCAM Packet classification using
BCAM [69]

5 times fewer CAM bits than
TCAM-based scheme

Data structure RQ-RMI Multi-field packet classification [70] High compression factor, improvement
in throughput

DDBS algorithm Multi-tuple packet classification [71] Throughput: Over 10 Gbps on Cavium,
135 Gbps Xilinx

Cross product, linear search Packet classification [72] Feasible, scalable, take less time
and space

TSS assisted algorithm Packet classification [73] Comparable update, high classifi.
performance wrt. TSS

Interval valued fuzzy logic Classify video streams [74] Reasonable accuracy, flexible, low
computational cost

Supervised ML

Deep neural network Packet classification [104] More than 90% classification accuracy

Decision tree CutSplit: DT combining cutting,
splitting for PC [118]

10× memory reduction, 3× impro. of
memory accesses
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Table 2. Cont.

Task Learning Class Learning Technique Special Purpose Performance

Packet
classification
(PC)

Supervised ML

Decision tree Bitcuts: Bit level cutting for PC [119] 2× throughput, 42–59% memory
accesses wrt. others

Decision tree Hypercuts: Bit level cutting for
PC [120]

2–10 less mem., 50–500% better search
time wrt. HiCuts

Support Vector machines PC based on action/flow [129] Less memory consumption, inferior
accuracy than RF

K-nearest neighbor packet classification [104] Accuracy inferior to DNN

Routing

Heuristic model

Extended Dijkstra algorithm Find shortest path between source,
destination [75] Low end-to-end latency

MO particle swarm
optimization

Optimization based segment
routing [76]

Reduce path consumption, better
load balancing

Greedy flow routing
algorithm

Allocate path to flows using perform.
thresholds [77]

Computationally complex, flexibly
provides flow requirements

Multi-path routing
algorithm

Packet loss, time delay, bandwidth
constrained routing[78]

35–70% improvement in
quality-of-service

QoS optimization routing
algorithm

Routing satisfying video QoS
requirements [79]

Low packet loss, good bandwidth
utilization, high QoE

Ant colony optimization
algorithm Dynamic routing [80] Throughput, delay better than Dijkstra

ILP maximizing energy ratio Energy efficient routing [81] Savings in 30% energy ratio, 14.7 W per
switch, 38% link

Supervised ML

Deep neural network Find most reliable route in a
SON [45]

90% accurate forecast in reliability
prediction

Deep neural network To replace optimization models for
routing [110] Achieve quasi-optimal performance

Deep neural network 3D two space division, forwarding
for FANETs [111]

Better performance in packet delivery
rate, energy-saving

Deep neural network Hybrid stable delay and distance
based routing [112,200]

High packet delivery ratio, low latency
and communication cost

Deep neural network Predicts a traffic matrix in
real-time [113]

Similar perform. to heuristic routing,
less execution time

Reinforcement
learning (RL)

Deep RL to train GNN Prioritize experience replay to
predict opt. path [181]

Good performance compared to Q
learning, shortest path routing

Deep RL with DDPG Closed loop control for automatic
routing [44]

Improved throughput, reduced
packet delay

Deep RL to train GNN Routing with goal of load
balancing [182] Improved network performance

Reinforcement learning Aid link-state info. for making
routing decisions[184]

Outperform Dijkstra by stretch,
throughput, packet loss, delay

Deep RL Agent learns a routing policy by
experience, reward [185]

Obtain higher rewards, transfer large
files faster

MDP and Q learning Multi-path routing for different QoS
flows [187]

Good jitter, packet loss rate wrt. ECMP,
SP routing

Reinforcement learning Global load balanced routing
scheme [188]

Outperform existing approaches wrt.
delay, network utilization

Deep Q-learning,
optimization

Generate multicast tree for installing
flow rules [189]

Better bandwidth, delay, packet
loss rate

Reinforcement learning Critical flow rerouting [190] Near-optimal performance by
rerouting 10–21.3% of traffic

Deep Q-learning,
optimization

Critical links weight dynamically
adjusted by RL [191]

Scalable,reduces transmission delay up
to 39%

Reinforcement learning Select routing algorithm for
QoS-based traffic flows [195]

Best trade off between QoS vs. QoE of
a TC
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Table 2. Cont.

Task Learning Class Learning Technique Special Purpose Performance

Security

Heuristic model

Optimization algorithm Traffic sampling to inspect malicious
network traffic [82]

Significantly outperforms equal rate all
switch sampling

Fuzzy logic-based algorithm Security management, IDS [83] More accurate results than algorithms
used alone

Attack detection algorithm Kangaroo—Flow and packet based
IDS [84] Good attack detection rate, scalable

Lion optimization Detect DDoS attacks [85] 96% accuracy

Fuzzy logic with InfoGain FS Anomaly-based intrusion
detection [86]

91.1%—true-positive rate,
0.006%—false-positive rate

Evolving fuzzy system Network anomaly detection [87] 81%—binary classification, 80%
multiclass classification accuracy

Supervised ML

Deep neural network Network intrusion and anomaly
detection [101]

Better throughput, latency,
resource utilization

Convolutional neural
network To detect DDoS attack [103] High detection rate—DNS

amplification, NTP, TCP-SYN

GRU–LSTM-based DNN Flow-based anomaly detection [107] Accuracy—87.9%, precision—99.8%,
recall—99.4%, F1-score—99.2%

Decision tree To detect DDoS attack [117] Better performance compared to SVM
and Naïve Bayes

Decision tree Vulnerability detection using traffic
classification [121].

Good accuracy, training time,
prediction speed

Support Vector Machine Flooding-based multiclass DDoS
detection [125]

97% accuracy with fastest training,
testing time

Support Vector Machine Hierarchical flow, packet-based
anomaly detect [126].

Good detection rates, minimal
extra overhead

Random forest Detect DDoS attack [133] High false positive rate, low accuracy
wrt. SVM

Random forest Intrusion detection system [134] Superior performance to NN and
Naive Bayes

K-nearest neighbor Detect DDoS attacks [138] Lower classification performance wrt.
to J48 classifier

K-nearest neighbor Detect TCP-SYN, ICMP flood
attacks [140]

Highest F1-score wrt. NN, DT.
Mitigate 98% attacks

K-nearest neighbor Detect known, unknown saturation
attacks [141]

For 1 min TW: precision: 96%,
recall: 95%, F1 score: 95%

K-nearest neighbor Classify devices and detect DDoS
attacks [144]

Accuracy 97%: device classification,
98%: DDoS detection, latency: 1.18 ms

Unsupervised ML

K means clustering Anomaly detection in smart grid
KDN [148] High accuracy (96.9%)

K means clustering Detect DDoS attacks [149] Recall < 90%, CPU utilization—12%,
Maximum packet loss rate—7.5%

Isolation forest Classify traffic anomalies in a NFV
environment [151]. TPR—0.8708, FPR—0.0258

Isolation forest Detect network security threats [152] High accuracy, detection rate, low
computational complexity

Isolation forest Malware detection supported by a
whitelist [153] TPR—0.9998, FPR—0.0325

Semi-
supervised
ML

Variational autoencoder Abnormal traffic detection [155] Accuracy rate of 87.27%

Variational autoencoder Detect DoS and DDoS attacks [156] Benign traffic—97%, Malicious
traffic—93% accurate

Generative adversarial
networks

Synthesize and train to detect
attacks [160] 0.51 detection rate after 95 epochs

Generative adversarial
networks

Adversarial training to detect DDoS
attacks [161]

Accuracy—99.8%, Precision—99.8%,
Recall—99.9%, F1score—99.9%
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Table 2. Cont.

Task Learning Class Learning Technique Special Purpose Performance

Security

Integrated ML

KNN, Variational
autoencoder

Detect known, unknown DDoS
attacks [166]

Precision—0.85, Recall—0.97,
F1-score—0.91

Autoencoder, 1-class SVM Intrusion detection [167] Detection accuracy of 97%

Conditional VAE, random
forest

Attacks classification with
generalized training [168]

Precision above 99%, better
performance than SVM + RF

Conditional variational AE,
DNN

IDS including minority and
unknown attacks [169] Accuracy of 89.08%, DR of 95.68%

AE, 1-class SVM DDoS detection under imbalanced,
unlabeled data [170] Average accuracy of 99.35%

GAN, Reinforcement
learning

Detection of attacks including
adversar. attacks [171] Average accuracy of 85.40%

GAN, DNN Detecting DDoS attacks with
adversarial training [172]

Adversarial training improves
detection performance

AE, CGAN, ensemble
learning Intrusion detection [173] Fast classification with high

detection accuracy

K means, SVM Detect and categorize traffic
anomalies [175] Accuracy of 88.7%, precision of 82.3%

K means++, fast KNN Modular DDoS attack
detection [176] High efficiency, precision, and stability

Isolation forest, X-means Anomaly detection [177] Average AUC 8.1%, ADR 19.5% better
than iForest, others

KNN, NB, SVM, SOM Anomaly detection [178] SVM-SOM: 98.1% accuracy, 97.1% DR,
FPR—2.7%

Reinforcement
learning

RL with DAG Routing optimization preventing
rank attacks [183]

PDR—85%, delay—1.5–2.9 s, prevent
ranking attacks satisfactorily

Deep reinforcement learning QoS-aware secure routing [186] QoS performance gains when network
under attack

DDPG based DRL Joint routing optimization and
DDoS detection [193]

MA-better packet delay, jitter, packet
loss, detection rate

Neural fitted Q-learning ATMoS: Autonomous threat
mitigation [192]

The model converges, can detect and
mitigate actors of APTs

Reinforcement learning Anomaly detection [194] Detect attacks, state representation has
a high storage cost

Controller
Placement
(CP)

Heuristic model

Evolutionary algorithm Multi-objective controller
placement [88]

Needs less memory, computation time,
higher coverage

Heuristic optimization
algorithm

Reliable fault-tolerant controller
placement [89]

Computation time < 2 min, controller
number, location vary on topology

Binary ILP, heuristic
algorithm

Energy aware controller
placement [90]

BILP is computationally complex,
heuristic algorithmic solution is near
optimal

Particle swarm optimization,
firefly algorithm

CP considering latency, multipath
connectivity [91]

Minimizes average delay during single
link failure

Unsupervised ML
Optimized K-means Partition algorithm for controller

placement [146]
Maximum latency 2.437× less than
standard K-means

Optimized K-means Controller placement minimizing
latency [147]

Latency less than standard K-means,
high availability



Telecom 2023, 4 500

Table 2. Cont.

Task Learning Class Learning Technique Special Purpose Performance

Traffic
Classification
(TC)

Supervised
ML

Deep neural network TC for energy efficiency
optimization [106]

47.71% energy consumption reduction,
good load balancing

Decision tree Online TC using flow-level
features [122] 97.92% accuracy, 7500+ Million Classes

DT in Hadoop platform Big data traffic classification [123] Faster and accurate than C4.5
decision tree

Support Vector Machines Application-/service-wise traffic
classification [128]

Classify 28 applications with
85.98% accuracy

Support Vector Machines Traffic classification using traffic
statistics [130]

Accuracy over 95%, 4% F1-score
for attacks

Random forest Internet protocol traffic
classification [135]

Classification accuracy varied 73–96%
for different apps

Random forest Classify application QoS from
switch statistics [136] Prediction error less than 10%

Semi-
supervised
ML

Generative adversarial
networks

ByteSGAN-Encrypted traffic
classification [158]

Accuracy more than 90% and better
than CNN

Self-learning Application-wise traffic
classification [165]

20% LD: Accuracy—60%. High recall,
similar precision wrt. supervised
learning

Integrated ML Ensemble learning with RF
and GB

VPN (secure) network traffic
classification [179]

93.80% accuracy, Precision—91.80%,
recall—96.20%, F1-score—94%

Fault/Failure
diagnosis

Supervised
ML

Deep neural network Detect link failures [108] 85% accuracy in identification
of failures

LSTM-based DNN Detect link handover failures in
advance [109]

99% TPR, predict a link failure before
1–2 s

K nearest neighbor Harmful long-term load
prediction [142]

Accuracy—96.2%, Precision—91.2%,
F1-score—94.6%

QoS/QoE
prediction

Supervised
ML

GRU-DNN Temporal-aware service QoS
prediction [114]

Superior accuracy wrt.
other approaches

DNN Multiple attributes QoS
prediction [115]

Low mean absolute error wrt.
other approaches

K nearest neighbor Predict QoE in video data [143] k = 1, Pearson Correlation
Coefficient—0.75, long testing time

Semi-
supervised
ML

Laplacian SVM Classifies network traffic based on
QoS requirements [163].

Accuracy exceeds 90% and better than
K-means

WL
handover Supervised ML K nearest neighbor Adaptive cell selection for mm Wave

HetNets [139]
Better handovers—45.83%,
throughput—17.2%, EE—16.7%

Network
slicing Semi-super. ML Conditional Generative

adversarial networks
CGAN augment data used in
creating network slices [159] Accuracy range in 0.40–0.65

3.4. Knowledge Composition Plane

In the knowledge composition plane, synthesized knowledge from machine learn-
ing models/heuristic methods is further analyzed or collected and combined to produce
new knowledge. This knowledge-composing element is called the ontology editor, which
combines universal knowledge (already existing knowledge) with multiply generated
knowledge. An ontology editor is a software application designed to create and maintain
ontologies that can be used to define the structure of the ontology by identifying classes,
properties, relationships, and hierarchies within the domains using an ontology language
such as OWL [201]. For example, consider the cruise control application in autonomous
driving. Assume that there is a ML model that takes a camera image and the speed of the
vehicle as input and generates a forward collision warning as output (knowledge). Conse-
quently, the ML model will provide a warning signal when the car is moving and there is
an item in front of the camera (a person or another vehicle). The vehicle’s acceleration may
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not be able to be controlled by this warning signal alone. This knowledge may have to be
combined with other knowledge such as collision warnings received from other sensors
such as proximity sensors, warnings received from RSUs, output from another knowledge
model (a trained ML algorithm), etc. in order to decide the cruise control value. The
composed knowledge by the ontology editor can be represented and modeled in numerous
ways, which can be selected based on the type of knowledge and design requirements.

3.4.1. Composed Knowledge Representation

The composed knowledge can be represented mainly in four different forms, which
are described in the following sub-sections. Figure 4 depicts different formats in which
knowledge can be represented.

(a) (b)

(c) (d)

Figure 4. A sample of knowledge represented in different knowledge models. (a) Knowledge
represented in Resource Description Framework (RDF) format. (b) Knowledge represented as
a Knowledge graph. (c) Knowledge represented as an ontology. (d) Knowledge represented in
Knowledge Interchange Format (KIF).

Resource Description Framework (RDF)
RDF is the format in which generated knowledge is basically represented. This

basic knowledge representation can also be used to represent the composed knowledge.
However, this format is not recommended, as it is difficult to make decisions directly from
the knowledge that appears in this format, as knowledge appears in basic triplet form
and is not classified into classes, as evident from the example in Figure 4a. Therefore, it
is recommended to represent the composed knowledge in any other format, such as a
knowledge graph, ontology, or knowledge interchange format, which can be queried easily
or used readily for making decisions.
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Knowledge Graphs
A knowledge graph represents the composed knowledge in a structured and machine-

readable format. It consists of entities/nodes (representing concepts) and edges (repre-
senting relationships between the concepts), as shown in Figure 4b. Knowledge graphs
are used to represent complex relationships between entities and can be used for semantic
reasoning. One of the key benefits of using a knowledge graph in KDN is that it allows for
flexible reasoning about the network. The graph structure enables sophisticated queries
that can traverse multiple levels of abstraction. However, knowledge graphs can be limited
in their ability to represent complex relationships and hierarchies [202]. Knowledge Graph
Schema (KGS), collections of rules and standards that describe the structure of a knowledge
graph, may be used to generate knowledge graphs. They offer a standardized method
for representing entities, connections, and characteristics in a knowledge graph, assisting
in the maintenance of consistent, accurate, and simple-to-understand data. A KGS can
include a variety of components, such as classes, properties, and restrictions. An example
of a KGS is the RDF Schema (RDFS) language, which provides a vocabulary for describing
classes, properties, and their relationships [203].

Ontologies
Ontologies define a set of concepts and their relationships that describe a particular

domain. The Web Ontology Language (OWL) or Ontology Inference Layer (OIL) can be
used to model and describe ontologies. OWL builds on knowledge that appears in the form
of RDF to create a complex knowledge structure by clustering knowledge into domains
(classes), as shown in Figure 4c. Thus, generated knowledge by machine learning models
that appears in RDF format can be readily converted into composed knowledge as an
ontology using OWL [204]. OWL has basic elements such as classes, properties, individuals
(class instances), restrictions, and annotations. On the other hand, OIL extends RDF and
provides a lightweight ontology language that consists of basic elements such as classes,
properties, individuals, restrictions, and inference rules. However, OIL is less expressive
than OWL, which means that OWL is capable of representing a wider range of concepts
and relationships due to its richer syntax [205]. OWL has a richer syntax, as it allows
the definition of property characteristics, property restrictions, datatype properties, etc.
The use of ontologies in KDN enables the network to reason about the current state of
the network and to make decisions based on that knowledge. Ontologies can be used to
capture domain-specific knowledge, which can then be shared and reused across different
network applications. However, ontology representation can be limited in its ability to
represent uncertainty and ambiguity [206].

Knowledge Interchange Format (KIF)
KIF is a logic-based representation language that uses a syntax similar to mathe-

matical notation, allowing for the specification of complex relationships between objects
and concepts to represent knowledge. A sample knowledge representation using KIF is
shown in Figure 4d. KIF is a formal language for representing and exchanging knowl-
edge that is designed to be unambiguous and independent of any particular knowledge
representation system, making it more flexible than other approaches. KIF is primarily
useful for the representation and exchange of knowledge between different AI systems, as
this knowledge representation is more machine-understandable [207]. However, a high
level of human expertise is required to understand knowledge in KIF format due to its
logical representation.

3.4.2. Rule Generation

Note that, as evident from Figure 3, the knowledge composition plane responds to
users’/ applications’ demands by comparing users’/applications’ demands with the com-
posed knowledge to produce new rules to be used by other planes (application, control, and
management). The user’s intent can appear as the user’s objective and operation, which
can be expressed using a high-level declarative language such as Structured Query Lan-
guage (SQL) and conveyed to the knowledge plane using an API [25]. For example, if the
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composed knowledge appears as the network congestion values of links in the network, the
network administrator may set a network congestion threshold value to be compared with
the composed knowledge in the form of a network congestion value in order to produce a
rule that instructs nodes to increase their energy utilization if the network congestion is
greater than the threshold. In this example, note that the users’ objective is to control net-
work congestion, while the users’ operation is to control energy utilization. The operation
will be triggered in order to achieve the desired objective. However, applications’/users’
objectives and operations could be high-level and complicated, unlike in the specified exam-
ple given above. Therefore, these need to be parsed and converted to multiple decomposed
elements to be processed by the rule generator, as shown in Figure 3. Then, composed
knowledge and the users’ intent will be orchestrated to produce rules by the rule generator.
Note that the outputs of the knowledge composition plane are rules that can be directly
used by other planes without further processing and composed knowledge that can be
stored in the knowledge distribution plane and provided to application, management, and
control planes as required.

Typically, a rule generator can be implemented as a heuristic model with the aid of
a programming language such as Java, Python, Lisp, Prolog, etc. However, a machine
learning model can also serve the purpose of a rule generator by being appropriately
trained to generate rules. However, the rules generated by a ML model are required to be
translated into a rule language using natural language processing [208].

There should be a language for the rules generated by the rule generator in order for
the rules to be understandable by other planes, such as the control plane. The generated
rules can be represented in a dedicated rule language such as Rule Markup Language
(RuleML) or Semantic Web Rule Language (SWRL). RuleML is a markup language used
for representing rules in a machine-readable format. It allows users to express rules in
a standardized way, making it easier to exchange rules between different rule engines
and systems. RuleML also provides a set of tools and APIs for working with rule-based
systems [209]. Semantic Web Rule Language (SWRL) is a rule language that is used to
express rules and constraints and is based on a combination of OWL and RuleML. SWRL
allows for the creation of rules that can be expressed in a natural language-like syntax and
can be used to represent complex logical relationships between entities. One advantage
of SWRL over other rule languages is that it has been designed to be compatible with
RDF and OWL, so that generated rules can be utilized in combination with knowledge
represented in those formats [210]. Another promising candidate for representing rules is
the Rule Interchange Format (RIF). RIF is a language that was developed by the World Wide
Web Consortium (W3C) to create a common rule language that can be used by different
rule systems to exchange rules. RIF can be used to exchange rules between the control,
application, and management planes and the knowledge plane in a knowledge-defined
network [211].

3.4.3. Examples Using Composed Knowledge in the Existing Literature

In [212], a network-wide packet classification algorithm that uses a multi-valued
decision diagram is used to classify packets, and the classification knowledge is used
to generate rules for automatic fault localization. Similarly, another packet classification
algorithm known as split bit vector packet classification functions by splitting and then
classifying in parallel, and then that classification knowledge is orchestrated with the
objective of minimizing latency in order to produce OpenFlow flow rules [213]. Generating
rules for QoS management using the knowledge generated as traffic classification can
be considered as a knowledge composition step. In [214], the network encrypted traffic
in a smart home network is classified using three deep learning schemes: multilayer
perceptron, stacked autoencoder, and a CNN where the knowledge on traffic classification
is compared with application layer requirements in order to generate rules related to
network management. Another similar work classifies traffic using deep learning, which is
used to generate rules for fine-grained network management and resource utilization [215].
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Machine learning or model-based methods can be used for intrusion detection in
KDNs, as discussed in Sections 3.3.1 and 3.3.2. However, after detection, prevention of
further damage or threat-suppressing actions belongs to the knowledge composition step.
An intrusion prevention system that detects DDoS, worm spreading, and scanning on
a global level in the network using a parallel neural network, and then the knowledge
on the detection class is used to generate rules for taking necessary actions to suppress
the attacks [216]. An intrusion prevention system using fuzzy logic that can decide the
length of the blocks based on knowledge of the frequency and type of the attack, that will
generate rules to block the attacker host for a specific period of time has been studied
in [217]. Another similar work detects DDoS attacks using genetic algorithms and uses the
knowledge of the attack class, composing it with other knowledge on the frequency and
nature of the attack, to generate rules to block the attacking host for the duration of the
attack [218]. An Address Resolution Protocol (ARP) spoofing attack is where adversaries
send fabricated ARP messages linking the attacker’s Media Access Control (MAC) address
to a genuine device’s Internet Protocol (IP) address. An intrusion detection and prevention
system that detects ARP spoofing attacks by detecting malicious network traffic, where
rules are generated to drop packets when the attack is detected [219].

In terms of routing in computer networks, the forward path selection can be considered
as a knowledge generation step, while the flow-rule placement is a knowledge composition
step that uses the knowledge generated in the form of forwarding paths to generate flow
rules. In [220], a framework called FlowStat uses per-flow statistics to produce knowledge
on optimal paths using max-flow min-cost optimization and then uses integer linear
programming as the rule generator to decide forwarding rules for the forwarding paths.
A routing framework that classifies the data flow into two classes (mice and elephant)
based on their size and then, based on the knowledge of the classified flow type, uses a
machine learning technique called association rules to generate forwarding rules for each
flow class [221]. Ternary Content Addressable Memory (TCAM) modules have a limited
capacity and are used to store flow rules in KDNs. In [222], first, knowledge is generated
in the form of routes without considering TCAM constraints; then, that knowledge is
used in a mixed-integer linear programming model to compute flow rules considering the
limited capacity of TCAM. A security-oriented routing mechanism called RouteGuardian
has been utilized in KDN, which has a network security virtualization framework to
detect abnormal traffic and compose that knowledge with the latest network status to
generate rules to isolate malicious nodes and reconfigure routes [223]. In another routing
framework for KDN, a graph neural network is used for predicting link delay, where the
knowledge on predicted delay is composed with adaptive flow splitting using the rule
timeout mechanism in the OpenFlow protocol to generate forwarding rules [224]. A QoS-
aware flow rule aggregation scheme called Q-Flag for knowledge-defined IoT networks
first generates knowledge by selecting paths that minimize flow table utilization using a
heuristic model-based approach, and then composes the generated knowledge considering
both the flow rule capacity of the switches and the QoS requirements of applications to
produce aggregated flow rules [225].

3.5. Knowledge Distribution and Management Plane

Knowledge management in the context of knowledge-defined networking refers to
the process of capturing, storing, sharing, and utilizing knowledge and rules within a
networked environment. Knowledge management aims to improve the performance of the
networked environment by ensuring that the required knowledge and rules are provided to
the necessary parties. It involves knowledge and rule sharing, which involves establishing
processes and systems for capturing and disseminating knowledge and rules across the
network. This plane basically consists of a Knowledge Base (KB) that necessarily consists of
generated knowledge by knowledge generation models, composed knowledge by ontology
editors, generated rules by rule generators, collected data from the network, and control
messages, as evident from Figure 3. Data models such as Yet Another Next Generation
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(YANG) or Common Information Model (CIM) can be used to store and disseminate
network data, which are discussed in detail in Section 4.5.3. Raw data are received to this
plane from the control and management planes, while the received data can be stored
in the knowledge base and provided to the knowledge generation plane when required.
Knowledge and rules can be shared from this knowledge base to the application plane,
the control plane, the management plane, and the knowledge composition sub-plane
(generated knowledge). Thus, it is required to have standards for knowledge and rules
storing, sharing, and utilization in order for multiple KDN systems to be interoperable.

As the network has limited networking capabilities and resources, there should be
transmission rules for transmission of knowledge related traffic (generated knowledge,
composed knowledge, or rules generated from composed knowledge). One of the purposes
of the knowledge distribution plane is to derive transmission rules for knowledge-related
traffic to be exchanged within the knowledge plane and between the knowledge plane
and the application, management, and control planes. For instance, rules generated by
the knowledge composition plane are relatively smaller in size compared to descriptive
knowledge produced from the knowledge generation plane. Therefore, transmission
of generated rules from knowledge requires higher reliability, high priority, and high
latency, whereas relatively larger-volume descriptive knowledge transmission may need
low reliability and low priority, and may tolerate some higher latency. In other words, the
data flows for each rule and descriptive knowledge have their own QoS parameters. QoS is
the ability of a network to provide the required services for selected network traffic. The
descriptive knowledge may be optionally distributed to end devices at the discretion of the
controller. For example, in a vehicular network, if knowledge is generated related to the
status of vehicular traffic congestion, that knowledge is required to be sent to all the nodes
in the network controlled by the controller.

3.5.1. Review on Existing Work on Flow Scheduling and Prioritization to Apply
Knowledge and Rule Dissemination

The OpenFlow protocol has different tactics to control QoS parameters in data flows.
It has an enqueuing feature to maintain different queues for different flows, matching and
tagging of Virtual Local Area Network (VLAN) and Multi Protocol Label Switching (MPLS)
labels with traffic classes, rate limiting functionality by means of meter tables, and a flow
monitoring framework [226]. However, OpenFlow does not provide support for queue
configuration, as it is currently handled by OF-CONFIG, which has been standardized by
the Open Network Foundation (ONF). There are a few open-source SDN controller projects
with QoS support, such as OpenDaylight, Open Network Operating System (ONOS),
Floodlight (FL), etc. In order to disseminate descriptive knowledge and generated rules
having different QoS parameters, QoS-motivated routing with per-flow routing can be
employed [79]. Dynamic routing of flows is achievable due to the decoupling of control
and forwarding functions in a KDN architecture. QOGMP is a KDN control architecture
that has a distributed control architecture, where there is a broker on the top level for traffic
scheduling regarding flow coordination over multiple domains based on QoS requirements,
which can be used to disseminate knowledge to end devices [227]. Some have attempted
to give a high preference to high-priority traffic by allocating more resources while at the
same time considering the end-to-end latency requirements by using weighting parameters,
which is a joint resource allocation scheme for multiple traffic classes [228]. QoS APIs
have been utilized as an extension to OpenFlow to control configuration and management
of QoS parameters where aggregated bandwidth usage is accomplished by a rate limiter
and flows are mapped to priority queues using queue mapping to tackle bandwidth and
delay allocation [229]. Such QoS APIs can be utilized to disseminate knowledge and rules
considering QoS parameters. In a multi-operator KDN environment where KDN controllers
belong to different service providers, the KDN controllers directly communicate with each
other to advertise a set QoS of their network to others where network service providers buy
the best path from the other network for a price, which is an open exchange framework,
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having collaborations between the KDN controllers where rules and knowledge can be
effectively exchanged between the networks considering QoS requirements [230]. Packet
marking such as collaborative borrowing, queue management such as weighted random
early detection, queue scheduling such as weighted round robin, and priority queuing,
can be used for knowledge and rule dissemination, adhering to QoS management in
KDN environments [231]. Resource allocation using multi-objective optimization can be
used to allocate resources for different network flows, such as rules and knowledge, in a
heterogeneous network environment [232].

3.5.2. Knowledge and Rule Exchange and Management Protocols/Languages

The above-reviewed work can be used to effectively prioritize knowledge and rule
flows in order to exchange knowledge and rules between planes in a KDN. However,
in order for such flow prioritization and scheduling to be effective, knowledge and rule
exchange, management, and retrieval protocols can be utilized to make knowledge and rule
exchanging, retrieval, and management to be efficient, interoperable, scalable, and reliable.

As discussed in Section 3.4 on knowledge composition, RuleML, SWRL, and RIF can
be used for all representing, storing, and exchanging rules. In the knowledge distribution
and management plane, generated rules are required to be stored in a rule repository,
which can be implemented using any of the above languages. Note that rules in the
rule repository can be managed using insert, update, and delete operations of the rules
using the same rule languages. Furthermore, other planes need to have a rule engine
to evaluate the rules/knowledge transmitted from the knowledge plane and execute the
actions. A rule engine’s purpose is to execute rules or make inferences from knowledge
and make decisions based on the rule/knowledge evaluation. Forward-chaining in a rule
engine refers to using a set of rules to arrive at a conclusion, while backward-chaining
refers to a goal-driven reasoning approach that determines the rules to be applied to
reach a predetermined conclusion/goal. Given below are several existing rule/knowledge
evaluation techniques/rule engines:

• RETE is an algorithm used for rule evaluation and pattern matching that builds a
network of nodes that represent the conditions and actions of rules, where nodes are
connected in a way to allow efficient evaluation of the rules [233];

• Drools is a Java-based open-sourced rule engine that supports advanced features such
as query capabilities, rule chaining (forward and backward), and rule templating,
which uses RETE as the algorithm for pattern matching [234];

• VLog is a rule-based reasoner with a platform-independent Java API that supports rea-
soning using existential rules or knowledge represented in RDF or OWL formats [235];

• Bossam is a rule engine that can reason from OWL ontologies and also provides
support for forward and backward chaining [236];

• The C Language Integrated Production System (CLIPS) is a rule-based programming
language. The CLIPS rule engine can handle large rule sets and can evaluate rules
using a forward chaining algorithm to derive conclusions [237];

• Jess is a rule engine for the Java platform that infers conclusions/decisions from rules,
similar to other rule engines [238].

High-level users, such as network administrators/applications, can retrieve knowl-
edge or ask questions from a knowledge model using Knowledge Query Language (KQL),
which allows applications/users to receive knowledge more easily and effectively without
having to understand the details of the underlying knowledge implementation. Further-
more, some protocols allow knowledge modification (insert, delete, and update operations),
allowing knowledge to be effectively managed in the knowledge exchange and manage-
ment plane. Given below are the main languages/ protocols that can be used to query
and/or modify knowledge in KDNs:

• SPARQL Protocol and RDF Query Language (SPARQL) is a query language for RDF
to query knowledge models that appear in the form of RDF format. As generated
knowledge can be modeled using RDF and ontologies derived from such knowledge
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are based on OWL, which is based on RDF, SPARQL can be used to query knowledge
contained in those forms. SPARQL further has an update language extension, which
includes commands such as insert, delete, and update for modifying RDF-based
knowledge [239];

• SQWRL is an extension of SWRL (Semantic Web Rule Language) that adds support
for querying OWL ontologies. SQWRL allows users to query OWL ontologies using
a combination of SWRL rules and OWL axioms. SQWRL also supports complex
queries that combine multiple conditions using logical operators such as AND and
OR. However, SQWRL is designed specifically for querying OWL ontologies and does
not provide any opportunity to modify ontologies [240];

• Knowledge Graph Query Language (KGQL) is a query language specifically designed
for querying knowledge graphs that allows users to write complex queries over
knowledge graphs using a simple and instinctive syntax. KGQL supports pattern
matching, filtering, sorting, aggregation, path traversal, etc. KGQL also does not
support knowledge modification; thus, it is a read-only query language [241];

• Knowledge Query and Manipulation Language (KQML) is a message-passing protocol
that allows agents to exchange knowledge and perform tasks in a distributed AI
system, regardless of their underlying implementation. In KQML, a simple text-
based syntax is used to represent different message types such as queries, assertions,
and requests for action that can be exchanged using KQML. KQML is supposed to
exchange knowledge and does not explicitly support knowledge modification [242];

• GraphQL is another language that can be used to not only retrieve knowledge from
knowledge graphs, but also modify knowledge using insert, update, and delete
operations. Similar to other query languages used to retrieve knowledge, GraphQL
also allows the agents/developer to specify the knowledge in the form of a knowledge
graph that needs to be retrieved, allowing fast and efficient data retrieval [243].

The above-given protocols/languages can be effectively utilized along with a flow
prioritization and scheduling approach to exchange or retrieve knowledge and rules.
Furthermore, knowledge can be managed efficiently using protocols that allow knowledge
modification. For instance, old knowledge can be deleted to utilize limited storage in cases
where such knowledge is not required for current decision-making. Furthermore, existing
knowledge can be modified based on new policies, etc., with the aid of protocols such as
SPARQL, GraphQL, etc.

Table 3 summarizes existing languages, models, and protocols for data, knowledge,
and rules representation, modification, evaluation, and exchange.

Table 3. Summary of data, knowledge, and rule representation, modification, and exchanging
languages, models, and protocols.

Category Language/Protocol/Model Purpose Developer

Knowledge
representation

Resource description framework (RDF) [64] Represent knowledge as (subject, predicate,
object) triplets W3C

RDF schema (RDFS) [203] Represent knowledge using a knowledge graph
having entities and relationships W3C

Web Ontology Language (OWL) [204] Represent ontology using classes, properties,
individuals, restrictions, annotations W3C

Ontology Inference Layer (OIL) [205] Represent ontology using classes, properties,
individuals, restrictions, inference rules Dieter Fensel et al.

Knowledge Interchange Format (KIF) [207] Represent knowledge using complex logical
relationship between objects and concepts Genesereth et al.
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Table 3. Cont.

Category Language/Protocol/Model Purpose Developer

Rule
representation,
storage and
exchange

RuleML [209] Markup language to represent rules H. Boley et al.

Semantic Web Rule Language (SWRL) [210] Express rules and constraints W3C, RIF

Rule Interchange Format (RIF) [211] Rule language to represent and exchange rules
between systems W3C, RIF

Query and modify
knowledge

SPARQL [239] Query and modify knowledge which appears
in RDF W3C

GraphQL [243] Query and modify knowledge in
knowledge graphs Huahai He et al.

Query
knowledge

SQWRL [240] Query OWL ontologies W3C

Knowledge Graph Query Language
(KGQL) [241] Query knowledge graphs P. Liu et al.

Knowledge Query and Manipulation Language
(KQML) [242]

Exchange messages such as queries, assertions,
and requests T. Finin et al.

Data
representation

YANG [244] Describe state data of network devices and
their configurations Bjorklund

Common Information Model (CIM) [245] Representing information about network
infrastructure and services of devices Uslar M. et al.

Rules/knowledge
evaluation

RETE [233] Rule evaluation and pattern matching A. Gupta et al.

Drools [234] Rule pattern matching supporting querying,
rule chaining M. Proctor

VLog [235] Reasoning for rules or knowledge represented in
RDF or OWL D. Carral et al.

Bossam [236] Reason from OWL ontology, support chaining M. Jang et al.

CLIPS [237] Evaluate rules using a forward chaining algorithm F. M. Lopez

Jess [238] Rule engine for the Java platform F.H. Ernest

4. Management Plane
4.1. Introduction to Management Plane

There is a requirement for efficient and effective management of the network resources
in order for the control plane functionality to be effective. The main purpose of the manage-
ment plane, which operates in parallel with the KDN controller in the KDN architecture, is
to collect data and information from the devices in the network, discover and configure
QoS options in the network, monitor the network devices, configure the network, prevent
undesired traffic interruptions, etc. [58]. Traditional network management has been mostly
performed by humans, which can be erroneous due to human errors. In such networks, the
network operators must implement policies and complex tasks with a highly constrained
set of configuration commands in a command-line interface environment. As the network
state changes continuously, reconfiguring manually is time-consuming and less efficient.
Note that the management plane has been identified as the “Measurement” plane by some
researchers, which serves the same purposes as the management plane described above [57].
Therefore, note that measurement or management plane refers to the same plane. For the
rest of this paper, we use the term management plane in order to maintain consistency
in terminology, which refers to the same plane referred to in the existing literature as the
measurement plane.
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4.2. Architecture of the Management Plane

Figure 5 shows the expanded architecture of the management plane with detailed
flows between each functional block in the management plane and other planes [57,58].

Figure 5. Architecture of the KDN management plane with detailed flows exchanged between
management plane and other planes.

As shown in Figure 5, on the top of the architecture, there is an application plane for
defining policies for making network control and management decisions, whereas, on the
bottom, there is infrastructure (KDN or legacy switches). The Network Service Abstraction
(NSA) layer is an interface for the control and management decision-making applications
to connect with the rest of the architecture, which is an abstraction of the network services
such as email services, file transfer, domain name systems, etc. [246]. The NSA layer
provides a common interface for applications to communicate their service requirements to
the knowledge, control, and management planes. The management plane (management
abstraction layer) acts as an interface between the network services abstraction layer and
the physical infrastructure of the network. Note that, in Figure 5, the control module works
in parallel with the management abstraction layer.
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The management abstraction layer provides a unified interface for data collection,
device configuration, and monitoring of the underlying network, as shown in Figure 5.
Raw data can be collected from the network and can be either directly used for network
monitoring or provided to the knowledge plane for knowledge generation. The manage-
ment information base is responsible for collecting and managing network data required
for network monitoring tasks and knowledge generation. Note that raw data can also be
collected by the control plane for either information-centric decision-making or to provide
to the knowledge plane and use the generated knowledge or rules for decision-making.
Data collected by each of the management and control planes have been discussed in
Sections 4.5.2 and 5.4.1, respectively.

Network device monitoring can be either on-demand or continuous in nature. The
output of a network monitoring task (monitoring output) can be provided to the knowledge
plane for further knowledge/rule generation, as shown in Figure 5. The network monitor-
ing module will generate configuration rules by comparing data or knowledge available
with network monitoring policies [247]. These configuration rules will be provided to the
network configuration module to directly configure the data plane elements, as shown in
Figure 5. For example, consider a network energy-monitoring task. Assume that there
is a network monitoring policy that specifies that “The average energy consumption of
the network should be below 50%”. Assume that the network monitoring module detects
that “more than 50% of network nodes have an energy consumption greater than 90%”,
either using an information-centric approach or a knowledge-centric approach. Now, as
the network monitoring output clearly indicates that the network monitoring policy is
violated, it can create and issue a configuration rule to the network configuration module,
such as “Reduce energy consumption of each node by 20%”. Note that, in this example,
monitoring output is “more than 50% of nodes have more than 90% energy consumption”,
which can be provided to the knowledge plane to further generate knowledge and use
that knowledge to dynamically update energy management policies in the application
plane. Note that, if network monitoring output is provided to the knowledge plane, further
knowledge or rules on the monitoring output can be generated, and that output can have
an effect on the application layer’s policies. The management plane should frequently
query the switches to collect the data it requires, such as flow statistics, network topology,
configuration, etc. Monitoring accuracy and network overhead depend on the frequency
of polling, where a higher frequency yields both high accuracy and high overhead. Note
that, as evident from Figure 5, the network monitoring module can use data contained
in the management information base for network monitoring or can directly collect data
such as flow statistics, topology information, etc., using protocols such as SNMP. Network
monitoring can be basically used for fault management, mobility management, and energy
management tasks in KDN [248]. The functioning of these tasks is discussed in detail in
the application plane in Section 7.3.2. Note that applications can convey network moni-
toring policies through the network service abstraction layer to the network monitoring
module of the management plane, which defines procedures and guidelines by which the
particular monitoring task should be carried out. Furthermore, the knowledge plane can
have an effect on network monitoring by providing knowledge or rules to aid in network
monitoring. Note that, in KDN, both information- and data-driven network monitoring
and knowledge-driven network monitoring can occur. In data- and information-driven
network monitoring, which is the conventional network monitoring approach in SDN,
the network is monitored based on information and data collected from the network. In
knowledge-driven network monitoring, raw data collected about the network parameters
are provided to the knowledge plane to generate knowledge regarding the network status,
which will use the generated knowledge for network monitoring to decide on actions to
undertake considering network policies.
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The configuration rules generated by the network monitoring module are provided
to the network configuration module, which can be used to make decisions on network
configuration considering rules or knowledge received from the knowledge plane and
configuration policies received from the application plane. Note that the application
plane can collect network configuration details, while the network configuration module
can directly configure the network using a configuration protocol such as SNMP/OF-
CONFIG, as shown in Figure 5. For instance, consider the previous example, where a
configuration rule of “Reduce energy consumption of each node by 20%” is received from
the network monitoring module to the network configuration module. Assume that there
is a configuration policy specifying that “the minimum energy consumption of a node
should be 5% if the average network throughput is greater than 5 Mbps; otherwise, the
minimum energy consumption of a node should be 10%”. Furthermore, assume that there is
knowledge generated from the knowledge plane that specifies that the average throughput
is 9.5 Mbps. Thus, by considering the available knowledge, the input configuration rule,
and the configuration policy, the network configuration module can update the input
configuration rules to output a new configuration rule to effectively reduce the energy
consumption of each node. The updated rule for the given example should be “Reduce
energy consumption of the node by a maximum of 20% subjected to the constraint that
energy consumption of the node is not lesser than 5%”. Note that the device configuration
can occur iteratively for a few cycles until the network monitoring policy violation is lifted.
More details on configuration rule generation and configuration policy enforcement are
described in Section 5.4.3.

4.3. Network Management Protocols/Interfaces

In work [249], authors show that networks are hard to manage due to protocols
exposing all their internal details, such that a Complexity Oblivious Network Manage-
ment (CONMan) interface has been proposed, that includes minimal protocol-specific
information that reduces the difficulty in configuration management. Similarly, Platform
for Automated Operation and Configuration Management (PACMAN) achieves network
configuration management using active documents and is designed to be operated by
humans, which is prone to errors due to human errors [250]. Therefore, a software-defined
management plane has been proposed to automate the task of network management. The
OpenFlow Management and Configuration Protocol (OF-CONFIG), which relies on the
Network Configuration Protocol (NETCONF) for transport, has been introduced for the
management of resources in OpenFlow-enabled switches [251]. OF-CONFIG allows auto-
matic discovery of switches, provides a standard way to configure the switches by installing
flow tables and other settings, monitors the status of switches using traffic flow statistics,
etc., and updates the switches. However, some have complemented the capabilities of
OF-CONFIG/NETCONF while presenting a semantic-based approach that automates
the configuration of network devices, where they have formalized the semantics of the
switch configuration domain using a Web Ontology Language (OWL) and developed
an ontology-based information extraction system for the Command Line Interface (CLI)
of network devices [252]. They have further developed a learning algorithm to enable
automated interpretation of the command-line interface’s configuration capabilities in the
network. This framework is highly compatible with the KDN, as the knowledge plane
can dynamically create configurations in OWL format and provide them to the network
configuration module in the management plane to directly convey the configurations to the
switches, where the CLI will automatically extract the configurations from the ontology-
based configurations. A framework for automated network management in hybrid KDN
and legacy networks known as HybNET, considering the practical non-existence of fully
KDN networks, is described in [253]. A protocol for monitoring and configuration of
network devices in KDN known as Simple Network Management Protocol (SNMP) has
been proposed that can be used as an alternative to OF-CONFIG/NETCONF [254]. SNMP
provides a standardized way to remotely manage network devices, where network devices
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act as servers that provide information about their status, performance, and usage to the
centralized management client.

4.4. Network Monitoring Frameworks

A network monitoring framework known as Payless has been proposed for KDNs,
which uses an adaptive network statistics collection algorithm at different aggregation
levels using RESTful Application Programming Interfaces (APIs) to deliver highly accurate
information in a timely manner with a lower communication overhead [255]. A Represen-
tational State Transfer (REST) API is an API that conforms to the constraints of the REST
architectural style. OpenSample is a low-latency, sample-based measurement platform for
network monitoring that has been designed to collect network load and flow statistics [256].
Another network monitoring framework called OpenNetMon monitors the network by
collecting per-flow metrics to check whether end-to-end QoS parameters are actually met
while delivering the per-flow metrics to the knowledge plane to compute paths using traffic
engineering [257]. OpenNetMon also uses an adaptive rate for polling similar to Payless,
where the rate increases when the flow rates differ between the samples and decreases
when the flows stabilize. A joint HOst-NEtwork (HONE) traffic management framework is
a traffic monitoring framework used in KDN using a collection of traffic measurement data
that minimizes overhead by performing lazy materialization of fine-grained statistics and
processes data locally on end hosts [258].

4.5. Network Data Collection
4.5.1. Data Collection Methods (DCMs)

Note that the management plane can collect data for network monitoring (flow statis-
tics, network topology, performance metrics, etc.) and network configuration (configuration
data) using a management protocol such as SNMP/OF-CONFIG or using a network moni-
toring framework. One of the main purposes of the management plane is to collect network
data appropriately in order to generate knowledge using the knowledge plane. Further-
more, in the KDN paradigm, both network monitoring and network configuration functions
are knowledge-driven rather than information-driven, even though an information-driven
approach can be utilized, even in KDN. Thus, in a knowledge-driven approach, raw data
also contain management-related data such as topology data, configuration data, perfor-
mance metrics data, traffic flow data, etc., which are provided to the knowledge plane
for knowledge/rule generation to drive network monitoring and configuration functions.
As there are data types that cannot be extracted using one of the network management
protocols discussed in Section 4.3 or the network monitoring framework discussed in
Section 4.4, such as environmental data, detailed network traffic data, policy data, etc.,
which are used for knowledge generation or network monitoring, it is necessary to investi-
gate Data Collection Methods (DCMs) to collect such data for the management plane. In
other words, standard management protocols or network monitoring frameworks have not
been designed to collect the customized data required for knowledge generation.

Data collection can occur in two modes. The first mode is the reactive mode, in which
data from the infrastructure plane are pulled from the management plane reactively. The
other mode is the proactive mode, where the nodes proactively send data to the higher
planes without an explicit request from such planes. Usually, data are first collected by
the nodes (devices), and then collected data are sent to the management plane by each
node proactively [259]. However, this approach, which is usually used in the centralized
architecture of KDN, is not the optimal way to collect data, as redundant data may be
collected at the management plane, which yields higher communication costs, channel
utilization, and latency. Therefore, a data collection optimization framework using Integer
Quadratic Programming (IQP) has been proposed that minimizes total communication
delay, communication cost, and communication overhead so that only a selected number
of agents will unicast the collected data to the management plane while other nodes act
as only broadcasting nodes [260]. Other techniques involve packet sampling techniques,
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which have been proposed to sample wildcard flow entries to be collected as data [261]. An
adaptive network data collection system that dynamically selects network data collection
nodes based on network status and also samples network traffic based on flow character-
istics to reduce the volume of data collection has been utilized in [262]. A data collection
methodology to collect sensor measurements in an energy-efficient manner in a wireless
sensor network environment of a KDN has been studied in [263]. Another data collection
approach in vehicular network environments proposes to use a predictive data collection
algorithm that cooperatively uses the cellular and ad hoc interfaces, using ad hoc interfaces
where possible to limit the use of the cellular interface and reduce the communication cost
at which routing decisions for such multi-hop data collection have been realized based on
the network status [264].

4.5.2. Types of Data

The management plane collects data to gain insight into the behavior of the network
and its users in order to make decisions about network configuration and optimization. The
management plane may collect different types of data related to network management from
the infrastructure plane. The data collected and stored in the management plane is the basis
for knowledge generation. Different types of data, such as topology, configuration, traffic
flow, event logs, resource usage, performance metrics, sensor data, etc., can be collected by
the management plane.

It can collect configuration data related to the configuration of the network devices,
such as the operating system, device name, network interface addresses, routing protocols,
security settings such as access control lists, and quality of service settings [265]. The
collection of configuration data is useful for configuring the network using the manage-
ment plane.

Further, the management plane may collect devices’ resource usage data, such as
CPU utilization, memory utilization, network interface statistics, etc., in order to identify
potential performance issues and optimize network performance [266].

In addition, the management plane can collect data about network traffic flow, in-
cluding the source and destination of traffic, the amount of traffic, and the protocols used,
in order to form a global-level traffic matrix at the management plane [267]. These data
can be used to identify patterns in network usage and can be further analyzed using the
knowledge plane for energy management, mobility management, and fault management.
For instance, network traffic data can be analyzed to identify usage patterns of energy
consuming devices to aid in optimizing energy usage and facilitate proactive maintenance
of network infrastructure by identifying potential failures. Note that network traffic flow
data are collected jointly by the control and management planes.

Further, the management plane may collect event logs, which include information
about the events that occur in the network, such as system errors, security alerts, configura-
tion changes, etc. [268]. These event logs can be used for network troubleshooting.

Another piece of data that can be jointly collected by both the management and control
planes is the network topology information, which includes the location of the switches,
routers, and other network devices in order to develop a global view of the network [269].

Furthermore, the management plane may collect data from sensors such as temper-
ature, pressure, humidity, etc. for real-time predictive fault diagnosis of communication
infrastructure [67].

The management plane monitors and allocates resources for network devices. Specifi-
cally, the management plane involves fault, mobility, and energy management. Thus, it
collects performance metrics such as energy consumption, device mobility metrics (position,
velocity, acceleration), and device availability/failure rate [270].

Furthermore, the management plane can collect configuration policies and monitoring
policies related to monitoring tasks for device energy management, mobility management,
fault management, and configuration tasks in order to verify the policies. Monitoring
policies usually involve policies for resource allocation, troubleshooting, and analysis [271].
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4.5.3. Data Representation Models

Data models provide a standard and consistent way of modeling network data, which
makes it easier to automate and manage networks. Yet Another Next Generation (YANG)
is a modeling language used to describe the state data of network devices and their con-
figurations. The NETCONF and YANG data formats are often used together to offer a
standardized method for configuring and controlling network devices. Network admin-
istrators may use the YANG data model to define the data that are used to configure
network devices and to make sure that the data are consistent between various devices and
suppliers [244].

Another data model called the Common Information Model (CIM) offers a uniform
way to express data about network infrastructure and device services. A collection of
standardized object classes and characteristics that define different facets of network in-
frastructure and services serves as the foundation for using the CIM data model in KDN.
These object classes and properties provide a common language for different network-
ing devices and systems to exchange information about their configuration, status, and
performance [245].

Table 4 summarizes management protocols, network monitoring frameworks, and
data collection methods in the management plane.

Table 4. Summary of management protocols, network monitoring frameworks, and data collection
methods in management plane.

Category Protocol/Framework/Method Purpose Developer

Network
management

CONMan [249] Complexity oblivious network management with minimum
protocol specific data H. Ballani et al.

PACMAN [250] Network configuration management using active documents X. Chen et al.

OF-CONFIG [251] A protocol for configuring and monitoring OpenFlow switches R. Narisetty et al.

Ontology based
configuration [252]

Automatic configuration of switches using an OWL-based
ontology A. Martinez et al.

HybNET [253] Automated network management framework in hybrid KDN and
legacy networks H. Lu et al.

SNMP [254] A protocol for monitoring and configuration of network devices J.D. Case et al.

Network
monitoring
frameworks

Payless [255] Network monitoring with adaptive network statistics collection S.R. Chowdhury et al.

OpenSample [256] Sample based network load and flow statistics monitoring J. Suh et al.

OpenNetMon [257] Monitoring using adaptive rate polling to collect per flow metrics N.L.V.Adrichem et al.

HONE [258] Traffic monitoring using traffic measurement data P. Sun et al.

Data
collection

IQP [260] Data collection minimizing communication cost, delay,
and overhead S.N. Wijesekara et al.

Packet sampling [261] Collect sampled wild card flow entries P. Wette et al.

Adaptive data collection [262] Dynamically selects data collection nodes and samples network
traffic based on flow characteristics D. Zhou et al.

Sensor measurements
collection [263] Collects sensor measurements in an energy efficient manner W.H. Liao et al.

Predictive data collection [264] Predicts and uses multihop routing using ad hoc and cellular
interfaces for data collection Z. Jiao et al.

5. Control Plane
5.1. Introduction to Control Plane

The control plane in KDN is logically centralized and self-learning with respect to
knowledge, where the control is based on both application policies and knowledge learned
or rules derived from network data. As knowledge and rules are generated based on
real-time data, adaptive control decisions can be made, such as identifying congested
links based on knowledge of network traffic flow to direct traffic through less-congested
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links. This controlling approach is more efficient than the traditional SDN approach, where
network policies determine network control and knowledge-based decisions are not made.

5.2. Interfaces and Sub-Planes Connected with the Controller

The low-level architecture of KDN with sub-planes and interfaces between the planes [272]
is shown in Figure 6.

Note that, as shown in Figure 6 and as explained in Section 2, the control plane, the
management plane, and the knowledge plane can be abstracted to a combined control
plane [62]. This combined control plane in KDN additionally generates knowledge and
rules, and the controller’s actions are influenced by knowledge and rules compared to the
controller in SDN.

Figure 6. Architecture of KDN with sub-planes and interfaces between the planes.

5.2.1. Northbound Interface

The northbound API enables communication between the combined control plane
and the application plane. Thus, the northbound API in KDN communicates with all
management, knowledge, and control planes through the network service abstraction layer.
The network service abstraction layer allows applications to communicate their network
service requirements to the management, control, and knowledge planes. Furthermore, by
providing a standardized interface for application control of network resources, the network
service abstraction layer enables network service providers to develop and deploy new
services more easily. An interface that supports application portability and interoperability
among different control platforms is much desired where the programming language and
controller are independent in nature. In other words, the northbound interface hides the
complexity of the underlying combined control logic from the application plane. Unlike
the OpenFlow protocol, which is the dominant protocol used for the southbound interface
in KDNs, a single northbound API does not stand out from others, as the requirements of
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different applications are different from each other and different data models are used in
different control frameworks.

Firstly, there are in-built controller-specific ad hoc northbound interfaces. NOX has
a functionality-based ad hoc northbound interface that does not consider the safety of
network applications [273]. With the aid of parallel asynchronous event processing, the
northbound interface in ParaFlow provides concurrent execution of multiple applica-
tions [274]. The northbound ad hoc interface for the Rosemary controller is secure, as it
provides application containment and an application permission structure that prevents the
controller from stumbling in the case of application failure [275]. Application containment
in the northbound interface in Rosemary is achieved by spawning applications separated
by a micronetwork operating system, while the application permission structure involves a
sandbox approach for access control and authentication of applications.

Secondly, controllers such as FloodLight, OpenDayLight, etc. have RESTful-APIs for
the northbound interface based on the REST architecture. In REST architecture, commu-
nication takes place as stateless client-server communication, where client information is
not stored between get requests and each request is separate and unconnected [276]. Open-
DayLight has a model-driven service abstraction layer that allows integration of network
services requested by the application layer through the northbound interface. The applica-
tions can configure and retrieve network information through the RESTful-API in Open-
DayLight [277]. FloodLight has RESTful-APIs for obtaining and setting the controller’s
state and contains Java event listeners for event notification and passing emitted events.
The northbound API in FloodLight enables communication between an asynchronous,
event-driven, modular, and Java-based application framework and the controller [278].

Thirdly, there are intent-based northbound APIs for the applications to specify policy-
based directives, which are converted to forwarding rules by the control plane and com-
municated to the data plane. The network intent composition in the OpenDayLight (ODL)
controller allows external applications to give directives to the ODL controller using in-
tents [279]. Similarly, the Open Network Operating System (ONOS) distributed controller
also has an intent framework for applications to specify requirements as network poli-
cies [280]. However, only a few controllers, such as ODL and ONOS, support intent-based
APIs despite their high flexibility and application portability.

Fourthly, some researchers have attempted to build northbound APIs for communi-
cation between the application plane and the control plane. SFNet is such an API that
provides high-level primitives with which network applications can request resource reser-
vations and verify network status using JSON messages, where access is granted based on
resource availability [281]. TinyNBI is a northbound interface proposed to address portabil-
ity issues in different OpenFlow versions using a language-independent low-level interface.
In tinyNBI, there are abstractions defining capabilities, configuration, and statistics that
represent features of OpenFlow versions, where missing abstractions are handled either by
offloading or providing an error message [282].

Finally, there are a set of programming languages that can be used to write northbound
APIs in order to achieve the objectives of the northbound interface specified earlier. A high-
level programming language can be used to transfer application requirements into packet
forwarding rules. Common configuration languages such as Command Line Interface
(CLI) offer primitive abstractions for hardware configurations. New high-level languages
to interface with the controller that have emerged for configuring using the CLI are error-
prone and require a lot of effort. A programming language for KDN can be used to
achieve several high-level tasks such as flow installation using either reactive or proactive
approaches, static or dynamic policy definition, and network abstractions such as flow
matching, security, traffic engineering, etc.
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Flow-based Management Language (FML) is the very first KDN-based programming
language, known earlier as Flow-based Security Language (FSL), which is a high-level
declarative policy language based on logic programming [283]. This language allows the
writing of policies and provides abstractions to allow or deny flows, redirect flows to pass
through a given host, and specify flow bandwidth. Nettle, being one of the early program-
ming languages for KDN, supports event-based and time-varying operations, allowing
it to create dynamic policies that are based on functional reactive programming [284].
Procera, a KDN programming language, is also based on functional reactive programming,
which is an extension of Nettle, which has a set of abstract data types and signal functions
to describe policies by applying windowed histories to events [285]. Frenetic is the pro-
gramming language from which most of the current KDN programming languages have
been derived. It has a functional reactive combinator library to describe high-level packet
forwarding policies and a Structured Query Language (SQL)-like language for classifying
and aggregating traffic of the network [286]. Kinetic is a KDN programming language
evolved from Frenetic, which expresses policies in terms of finite state machines, where
states represent distinct forwarding behaviors and events trigger transitions between the
states [287]. It can encode a generic finite state machine that is applied to a packet group,
where each group has a separate state machine instance. PonderFlow is an extension of
Ponder language designed for specifying policies for OpenFlow-based networks that also
provides access control and implements authorizations and obligations. Obligations in
PonderFlow define what actions are to be performed by the controller when certain events
occur in the network [288]. Maple is a programming language consisting of an optimizer
and a scheduler, where the optimizer uses a trace tree data structure to store the invocation
of the algorithm on a particular packet and then generalizes rules in the flow table, whereas
the scheduler applies parallelism on servers binding the controller’s thread to a client
switch [289]. Merlin is a network programming language derived from Frenetic that has
been designed to implement network policies and also provides mechanisms to check
whether sub-policies violate global constraints or not. Merlin also provides constructs to
provide bandwidth limits and guarantees [290].

Table 5 summarizes the details of programming languages that can be used to achieve
high-level tasks in KDN.

Table 5. Summary of programming languages in KDN.

KDN
Language Paradigm Policy Definition Flow Installation Network Monitoring Policy Birth

Year
Base
Language

FML [283] Declarative (Logical) Static Reactive Access data collected from
other resources 2009 C++,

Python

Nettle [284] Declarative (Functional
reactive)

Dynamic and
static Reactive N/A 2010 Haskell

Procera [285] Declarative (Functional
reactive)

Dynamic and
static Reactive Data-Windowed history,

other resources 2012 Haskell

Frenetic [286] Declarative (Functional
reactive)

Dynamic and
static Reactive Data-Windowed history,

Query language 2010 Python

Kinetic [287] Declarative (Event
driven)

Dynamic and
static

Reactive,
proactive

Data-Windowed history,
other resources 2014 Python

PonderFlow [288] Declarative (Event
driven)

Dynamic and
static Reactive N/A 2014 Java

Maple [289] Imperative Dynamic and
static

Reactive,
proactive

Access information collected
from other resources 2013 Python

Merlin [290] Declarative (Functional) Dynamic and
static Reactive Windowed history of data 2013 OCaml
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5.2.2. Southbound Interface

The southbound API is the interface between the data plane and the control plane,
which is used to transfer data from the forwarding elements to the controller and control
from the controllers to the data plane elements. This communication takes place with the
help of standardized protocols.

OpenFlow is the most widely used protocol for the Southbound API standardized by
the Open Network Foundation (ONF), which is non-vendor-specific, allowing OpenFlow-
enabled devices from different vendors to be interoperable [291]. OpenFlow standardiza-
tion is driven by the decoupling of the control and data planes. It provides a common
specification to implement data plane devices and the communication channel between
the data plane and the control plane. There are different data flows from the data plane
to the control plane that are realized using OpenFlow. In an OpenFlow architecture, the
switch necessarily contains a flow table and an abstraction layer. A flow table element
consists of rules to match incoming packets (destination and source IP addresses, desti-
nation and source MAC addresses, destination and source port addresses, etc.), a set of
instructions/actions to undertake upon receiving a match, and statistics for the particular
flow such as the number of packets, flow duration, number of bytes, etc. When a packet is
received at an OpenFlow switch, it will extract the packet header and look for a matching
entry in the Flow table. If a matching entry is found, corresponding actions will be executed;
otherwise, corresponding actions for the table-miss flow entry will be carried out. The
action for a table-miss flow entry can be to drop the packet, search in the next flow table,
or forward it to the controller. A packet processing pipeline was introduced in OpenFlow
1.1, which can implement multiple flow tables per switch. When the switches are unaware
of forwarding actions for a matched incoming traffic flow or in the case of a table-miss
flow entry (when the action of the flow table is “forward to controller”), “packet-in” mes-
sages are sent from the switches to the controller. Then the controller will determine the
forwarding path and send the forwarding rule and action back to the switches in the form
of a “Flow-Mod” packet. When the controller sends flow table updates (Flow-Mod) for
a switch in response to a packet-in message, it is a reactive approach, whereas, when the
controller sends updates for a flow table without a packet-in message, it is a proactive
control approach. Furthermore, the controller collects flow statistics of forwarding devices
using “Switch Feature” messages and event-based messages such as link or port changes
of a switch using “CPort-status” messages. OpenFlow has a meter table in order to support
QoS in KDN, which comprises multiple meter entries. Recent versions of OpenFlow have
introduced the bundle concept, which allows performance of modifications on a group of
forwarding switches. OpenFlow uses Transmission Control Protocol (TCP) as the transport
layer protocol. Even though OpenFlow is the most widely used Southbound API protocol,
there are many other alternatives to it.

The main alternative protocol for OpenFlow is Forwarding and Control Element
Separation (ForCES), which also defines the control and data elements separated from
the network devices [292]. However, the difference compared to OpenFlow is that the
control plane and the data plane are kept close to each other (such as within the same
network device) without the need for a logically centralized external controller. Thus,
ForCES allows network programmability without changing the conventional network
architecture. This protocol works in master–slave mode, where the control element is
the master and the forwarding element is the slave. The forwarding elements consist of
logically functioning blocks that perform a specific function. The control elements instruct
the forwarding elements on how to forward packets using logically functioning blocks.
ForCES uses Stream Control Transmission Protocol (SCTP) as the transport layer protocol,
which is more reliable and secure than TCP. However, ForCES is less utilized in KDN
compared to OpenFlow, as ForCES lacks open-source support.
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OpFlex is another southbound API with the intention of distributing part of network
management back to the data plane in order to improve scalability. Policies are logically
centralized and abstracted from the data plane, where they are stored in a repository and
communicated to policy elements (data plane elements). It also has an observer repository
for storing network events and faults. However, OpFlex lacks network programmability
and dynamic network control [293].

Protocol Oblivious Forwarding (POF) makes the forwarding plane oblivious to the
protocol by using a generic Flow Instruction Set (FIS), where the forwarding element does
not need to know about the packet format [294]. In POF, forwarding elements are under
the full control of the controller, which will install keys and table lookups in the switches.
Thus, in POF, the packet header field is not required to be inspected in packet forwarding,
which speeds up packet forwarding, unlike in the OpenFlow protocol.

Another promising protocol for the southbound API is the Path Computation Element
(PCE) protocol [295]. In this protocol, the Path Computation Client (PCC) in the data plane
requests forwarding paths from the PCE residing in the control plane, which computes
paths with the aid of a traffic engineering database.

OpenState attempts to extend OpenFlow by extending OpenFlow match-action ab-
straction to extended finite machines, which is an attempt to decentralize some control back
to forwarding plane elements [296]. In OpenState, finite state machines facilitate several
stateful tasks inside the switches, where all tasks that involve local state are carried out
without explicit control instructions from the controller.

5.2.3. East- and Westbound Interfaces

A single network centralized controller has the possibility of failure or a tendency for
poor performance when interacting with a large number of user equipment. Furthermore,
under a single controller, malfunctioning of the controller can lead to a single point of
failure. Thus, a single control architecture has scalability and reliability issues. The solution
proposed for that is a logically centralized control plane with physically distributed multiple
controllers communicating with each other for synchronization using East and West bound
interfaces. These interfaces should provide common compatibility and interoperability
between different controllers and need to coordinate flow setups originated by applications,
exchange reachability information, and update it to keep the network consistent. The main
purpose of these interfaces is to provide interaction between the physically distributed
controllers in order to have a global view of the network. As interactions, data can be
exchanged between the controllers; they can observe/notify their capabilities; and they can
provide procedures for data steadyness models.

Application Layer Traffic Optimization (ALTO) is an east- and westbound API used to
optimize point-to-point traffic and provide guidance for peer selection. ALTO provides
guidance for peer selection by having information such as the location and characteristics
of all nodes in the network [297].

Hyperflow has an east- and westbound API that is based on an event propagation
system that publishes a change in a network domain controlled by a given controller to
other controllers whenever a change is detected, using a publish/subscribe system [298].
For instance, if a controller failure is discovered, it will be published to other controllers so
that affected data plane elements will be handed over to a nearby controller, thus improving
the availability of the system. Furthermore, HyperFlow is resilient to network partitioning
by continuing to operate independently. Similar to Onix and ONOS, every controller in the
physically distributed control plane of HyperFlow has a global network view.
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ONOS also has east- and westbound interfaces for physically distributed controllers,
which will protect the network from controller failures by connecting a given data plane
element with multiple controllers, where one will be the master controller and others will
be the backup controllers, using east- and westbound interfaces [299]. In the event of a
master controller failure, one of the backup controllers will take over. Furthermore, ONOS
has additional recovery protocols to recover from lost crashes due to controller updates.

Similar to ONOS, Onix also has each controller responsible for a subset of the network;
however, it has a global network view where scalability is ensured using network partition-
ing and aggregation, and communication between the controllers is achieved using east and
westbound interfaces [300]. Onix divides the network’s information base such that each
controller is responsible for a portion of it while aggregating the data using applications to
lower the information fidelity.

Note that east- and westbound interfaces are absent in an architecture that is both
logically and physically centralized.

5.2.4. Management API

The management API acts as an interface between the management layer and the data
plane, which uses protocols such as SNMP, OF-CONFIG/NETCONF, etc. for communica-
tion as described in Section 4.3.

5.2.5. Network Hypervisors

A network hypervisor’s primary function is to provide virtualization, which enables
the installation of different network operating systems on a single physical server. By
allowing several virtual computers to share the same hardware resources, hypervisors
perform this. As a result, hypervisors effectively cut the cost of the infrastructure. Virtual
machines’ ability to be moved, created, or destroyed on demand also makes it possible
to offer elastic services. The network infrastructure must be able to accommodate any
network topologies and addressing methods in order to allow complete virtualization.
However, it is practically challenging to realize such infrastructure. Topology and address
virtualization are made possible by network virtualization, which also enables resource
provisioning, management, and monitoring over virtual networks.

With the use of an abstraction layer to slice data based on ready-made OpenFlow-
capable switches, FlowVisor enables many logical networks to share the same OpenFlow
networking infrastructure, enabling the coexistence of numerous and heterogeneous net-
works. Traffic, CPU, forwarding tables, bandwidth, and topology are the dimensions taken
into account for slicing in FlowVisor. Each network slice supports a controller, allowing
several controllers to coexist in the same physical network while each controller is free to
operate on its own network slice [301].

Another network hypervisor called OpenVirtex creates virtual networks using control
functions, topology, and address virtualization, which is similar to FlowVisor, which acts
as a proxy between the network operating system and forwarding devices [302].

While FlowVisor is a full virtualization technology, FlowN provides container-based
virtualization that is designed to be scalable and provides the opportunity to share a
controller to manage multiple domains [303].
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HyperFlex decomposes the hypervisor into functions for virtualizing KDN networks
and also has a control plane isolation function for control plane virtualization such that
control plane resources are correctly shared between each virtual KDN network while, at
the same time, protecting the resources from exhaustion [304].

TeaVisor is a network hypervisor that guarantees bandwidth isolation by tackling the
overloaded link problem, which has three components: path virtualization, bandwidth
reservation, and path establishment [305].

VMware is another network virtualization platform where network functions are
embedded in the hypervisor and distributed across the environment, which provides
the entire network model in software. This network virtualization platform allows the
creation of virtual networks, each with its own service model and topologies, addressing
architectures having the same physical network [306].

5.2.6. Network Operating System

A network operating system should provide abstractions to access and interact with
lower-level devices, provide the ability to access resources such as hard drives, network
adapters, CPUs, etc. concurrently, provide services, and provide security mechanisms.
The common services offered by a network operating system are providing network state
and network topology information, device discovery, and the distribution of network
configuration. Thus, the core functions provided by a network operating system are topol-
ogy management, device management, notification management, statistics management,
routing, and security mechanisms in conventional SDN architecture. However, in KDN
architecture, a network operating system will additionally have the functions of knowledge
creation and knowledge management. As a result, in the KDN design, the network service
abstraction layer requires all of these services to be provided by either the control plane,
management plane, or knowledge plane. As shown in Figure 6, a network operating system
offers a platform for the implementation of the knowledge plane, the management plane,
the control plane, and the network service abstraction layer in the KDN architecture. Keep
in mind that, in the KDN design, the management abstraction layer is responsible for all
management-related activities, while the controller is in charge of other duties such as
routing and security, and the knowledge plane is in charge of knowledge creation and
administration. However, in the original SDN architecture, all tasks of the network oper-
ating system were assigned to the controller. Before the advent of SDN, networks were
managed using proprietary network operating systems and device-specific instruction sets.
The purpose of a network operating system is to abstract device specific characteristics and
provide common functionality. Due to network operating systems, application developers
do not need to know about the low-level details of data distribution among forwarding
elements; they only need to specify policies, which will be converted into low-level details
by the network operating system and southbound APIs. The network operating system
resides inside the combined control plane, which works according to the policies defined
by the applications to provide knowledge-driven control and management operations to
the data plane in the KDN paradigm.

Network operating systems are discussed in detail with respect to the distribution of
the control plane in Section 5.3.1.

5.3. Control Models
5.3.1. Centralized vs. Distributed vs. Hybrid Control

Even though the originally proposed SDN architecture is logically and physically
centralized, having strengths such as programmability and flexibility introduced into the
network, due to difficulty in handling large networks and network failure under single
controller failure, other distributed control models have emerged. The control can be
categorized based on its distribution, as given below.

• Logically and physically centralized control model;
• Logically centralized and physically distributed with flat control model;
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• Logically centralized and physically distributed with hierarchical control model;
• Logically and physically distributed control model;
• Hybrid control model.

Each of the above control models is discussed in detail in the following sections. Each
of the control models, based on the degree of distribution of the control plane, is graphically
illustrated in Figure 7.

Data Plane Element
In order to implement different control architectures, a forwarding plane node should

have the components shown in Figure 7f. The KDN module performs packet processing
with the help of control messages received from the control plane, while the KDN mod-
ule configures the switch using the configurations received from the management plane.
Furthermore, the KDN module collects data to be sent to management and control planes.
The local control agent will receive control information, and the local control agent has the
passive action of just forwarding the received control messages from the KDN controller
to the KDN module in the node when the control channel is available. Note that, in KDN,
the control channel refers to the communication channel that exists between the switch
and the control plane, while the management channel refers to the communication channel
that exists between the switch and the management plane. Thus, the local controller is
an optional element that can be considered unavailable or not implemented in pure KDN
switches. However, in hybrid control architecture, when communication with the central-
ized controller is lost, the local control agent will act as an active backup controller, which
can switch to traditional ad hoc routing protocols, where the control information will be
exchanged between the nodes. Thus, in hybrid KDN switches, the local controller needs to
be implemented. The normal operation of a switch/node which is sending/receiving data
and forwarding packets sent by other nodes can be achieved using the data channel.

Logically Centralized and Physically Centralized Control
The core concept of SDN architecture, having a logically centralized control plane,

is secured in this architecture. Figure 7a shows the communication in a logically and
physically centralized control architecture. As evident from Figure 7a, this architecture
preserves the centralized SDN architecture, where all actions performed by the nodes are
explicitly defined by the SDN controller. This architecture is the simplest and easiest to
manage. Even though this architecture has the highest level of flexibility and programma-
bility, it has a higher delay due to the long-distance communication between the nodes and
the centralized controller. In this model, there is a single logical and physical controller
that is decoupled from the data plane. A single controller is responsible for controlling
all forwarding devices of the network, which is a perfect model in terms of simplicity.
However, in this model, the controller’s performance degrades when the network becomes
large, where controller bottlenecks can occur when dealing with large numbers of requests
from forwarding elements and can struggle to provide the same performance as in smaller
networks. Specifically, data center networks, having thousands of switching elements, have
overloaded the controller and shown a bottleneck in throughput, while service provider
networks (wide area networks), having geographically distributed nodes with a large net-
work diameter, have caused high latency in the controller [307]. Furthermore, the controller
can become a single point of failure, so reliability is low in this model.
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Different control models based on degree of distribution of the control plane and structure
of a data plane element. (a) Single controller (Logically and Physically centralized) [273]. (b) Logi-
cally centralized physically distributed with flat control [298]. (c) Logically centralized physically
distributed with hierarchical control [308]. (d) Logically and physically distributed control [309].
(e) Hybrid control [310]. (f) The structure of a node in KDN [311].

The Network Operating System (NOX) is the earliest network operating system
that was designed for a physically and logically centralized control architecture with
an event-based programming model, which has shown limited performance in terms
of throughput [273]. NOX-MT (NOX-Multi Threaded) is an improved version of NOX
that uses multi-threading and optimization techniques such as I/O batching to promote
threshold performance [312]. Beacon is a Java-based open-source network operating system
that has been designed to provide the runtime ability to start and stop existing and new
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applications with high performance [313]. FloodLight is a flexible and easy-to-expand Java-
based network operating system created based on Beacon, which has high CPU efficiency
but requires more memory [278]. FloodLight-based controllers have shown vulnerability
to DDoS attacks, so a secure NOS called SE-FloodLight incorporating secure features has
been proposed [314]. All network operating systems discussed above (NOX-MT, Beacon,
and FloodLight) take advantage of parallel processing using multi-threading capabilities
in multi-core computers to implement concurrent systems in order to achieve the high
throughput requirements of networks.

Trema is an open-source OpenFlow controller framework that allows easy implemen-
tation of arbitrary network control applications, specifically for data centers [315]. RYU is
an open-source network operating system that is designed to expand the deftness of the
system by using simple traffic control that supports OpenFlow, NETCONF, OF-CONFIG,
etc. [316]. RYU executes different functionalities using events and handlers that are utilized
to actualize synchronization between application calls and the RYU controller. Meridian
is a platform for having a service-level model for application networking in clouds that
integrates application provisioning in the cloud with the network using programmable
interfaces [317]. Rosemary is a robust, secure, and high-performance network operating
system that has a network application containment and resilience strategy when spawning
applications [275]. Rosemary NOS has procedures for process containment, resource utiliza-
tion monitoring, and an application permission structure to prevent network application
failure leading to network control failure. As a result, Rosemary NOS’s major objective is
to secure and isolate applications through the use of a container-based architecture. The
Rice University-developed Maestro is a different physically and conceptually centralized
network operating system that is based on Java and offers APIs to construct modular
network management apps to access and change network information [318]. ParaFlow is
a C++-based multi-threaded centralized controller that makes use of parallelism in event
processing by event handlers and uses mutex-based synchronization for consistency. It has
a flow-based programming interface, where application programs can be developed based
on network flows [274].

Logically Centralized and Physically Distributed with Flat Control
In a logically centralized and physically distributed flat control architecture, the net-

work is horizontally partitioned, where each partition is controlled by different controllers
and there is no hierarchy (flat) between the controllers, as shown in Figure 7b. Even though
scalability issues in a single controller architecture are reduced by a flat hierarchy of con-
trollers, when the number of controllers is limited and fixed under very large networks,
scalability issues can still exist, as a given controller can handle a fixed number of user
equipment without having a performance bottleneck.

SMaRtLight is a fault-tolerant controller platform with a logically centralized flat
hierarchy master–slave mode of operation [319]. In SMaRtLight, a master controller is in
charge of the network, backed up by slave controller replicas synchronized with the master
to take over master control in case of master controller failure. Replicated state machines
and a shared data store are used to achieve consistency between the master controller and
slave controller replicas.

In HyperFlow, every controller in the physically distributed control plane has the
global network view, where a change in a network domain controlled by a given controller
is published to other controllers whenever a change is detected, such as controller failures,
such that affected data plane elements will be handed over to a nearby controller [298].

ONOS has a master–slave working principle, where it will protect the network from
controller failures by connecting a given data plane element with multiple controllers,
where one will be the master controller and others will be the backup controllers. In the
event of a master controller failure, one of the backup controllers will take over [280].
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Onix uses a network information base data structure to store global network state,
which is synchronized between other Onix controllers. Onix also has each controller, which
is responsible for a subset of the network, having a global network view, where scalability
is ensured using network partitioning and aggregation [300].

Ravana is a logically centralized and physically distributed fault-tolerant controller
platform that uses replicated state machines that are extended to switch-side mechanisms
to process control messages in order and exactly once, even during failures. In the Ravana
framework, the network programmers need to write applications for the main controller,
where the Ravana master–slave protocol will ensure replication of control logic to backup
controllers such that, when the master crashes, a slave controller will be elected to take
over the affected switches [320].

Distributed control systems should also have consistency, which means that data
updates on distinct nodes should be updated on the controller nodes. Some distributed
control systems have weak consistency, which means that updates in the data plane will
eventually be updated in the control plane. Weak consistency can cause different controllers
to read different values of the same property over a period of time. HyperFlow has weak
consistency compared to other distributed control operating systems.

Logically Centralized and Physically Distributed with Hierarchical Control
In a logically centralized and physically distributed hierarchical control architecture,

the network control plane is both horizontally and vertically partitioned. Note that vertical
separation results in a hierarchy of controllers, where some controllers are controlled by
one or more other controllers. We can find local controllers at the bottom of the hierarchy
and global controllers at the top, as depicted in Figure 7c. The local controllers deal with
local applications’ requirements with frequent events, whereas the global controllers deal
with non-local applications requiring a global network view with rare events. Due to the
global/root control having a global view of the network, the control is logically centralized.
This is different compared to flat-hierarchy distributed control, as, in that architecture
all controllers can have a global view of the network, as opposed to local controllers,
which have only a local view of the network in the hierarchically distributed architecture.
However, even though a physically distributed hierarchical control architecture provides
a solution to scalability, reliability, and vulnerability issues in a single controller, this
architecture can suffer from path stretch problems [321].

Kandoo is one of the very first proposed hierarchically distributed control frameworks,
having two layers of global and local controllers that partition control applications into
global and local [308]. Local controllers, which are not connected to each other and have
local network views, handle frequent events that occur in the data plane that do not
require a global view, while the global controller (root controller), which is connected to all
local controllers, handles non-frequent, non-local events that require a global view. Thus,
Kandoo effectively reduces the events received by the root controller by distributing the load
across multiple local controllers for frequent events. Even though the Kandoo framework
has addressed the scalability issue present in logically and physically centralized control
architectures, it does not have the fault tolerance to protect itself from failures and attacks.

Orion is a framework designed to overcome the scalability issue of flat control archi-
tectures and the path stretch problem in hierarchically distributed control architectures.
In Orion, a hybrid hierarchical architecture is proposed to reduce the complexity of the
control plane, while an abstracted hierarchical routing method is used to address the path
stretching problem [322]. Orion also has two control layers, where the bottom layer consists
of area controllers and the top layer consists of sub-domain controllers that have a global
network view for their own domain and communicate with each other for synchronization.

FlowBroker is a hierarchical control architecture having domain controllers and one or
more super controllers (brokers), where each domain controller can attach to more than
one broker based on their reputation for load balancing and reliability [323]. In FlowBroker,
brokers can also communicate with each other to share abstracted network states.
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B4 is a framework that is employed in a software-defined wide area network that
has a two-level hierarchy of the control plane [324]. The bottom control layer has Onix-
based controllers, which are responsible for local site-level control, where each of the
site-level controllers is managed by a global-level controller at the top level. Thus, there
is a logically centralized controller that can implement high-level control with a global
controller view without having a performance bottleneck with large networks. B4 has
many fault-recovery mechanisms at both levels of control. For instance, when the logically
centralized global controller is unavailable, B4 will replicate the global controller across
multiple wide-area networks. When a local site-level controller is unavailable, a new
controller will be appointed from the set of reachable standby controllers.

Similar to B4, Espresso also has a hierarchically physically distributed architecture,
which has higher reliability and full interoperability with the internet and heterogeneous
peers [325]. Espresso has a fail-safe static system where the data plane keeps the last known
good state to allow for control plane unavailability.

A recursive building block known as a logical xBar, which is a programmable entity
that can switch packets between ports, and a logical server, which manages forwarding
tables and control plane computations, are used to create a centralized hierarchical control
plane [326].

Logically Distributed and Physically Distributed Control
The main feature of conventional SDN is the logically centralized control plane, which

decouples the control and data planes and yields better management of intra-domain
networks. However, a logically centralized control plane has caused poor performance
in inter-domain networks, such as controlling heterogeneous networks, so a logically
distributed control plane architecture has been proposed for better control of such net-
works [327]. In a logically distributed control architecture, control is distributed among
several controllers. The logically centralized control architecture is not preserved in the
logically distributed control architecture, as shown in Figure 7d. As evident from Figure 7d,
there is no communication between a centralized controller and forwarding elements, as
there is no centralized SDN controller in this control architecture. However, forwarding ele-
ments in each network portion involve communication with a local controller for obtaining
network control. In this architecture, a given controller does not broadcast all its network
modifications to other controllers, unlike in the logically centralized flat architecture. Modi-
fications in a given network will be transferred to other controllers only when needed (such
as in the case of inter-domain service), where controllers will explicitly communicate in
such an instance.

A Distributed SDN Controller (DISCO) is a logically distributed and physically dis-
tributed controller framework implemented on FloodLight that is proposed for modern
heterogeneous networks in a multi-domain environment, where a given DISCO controller
will manage its own network, communicate with other controllers using an inter-domain
part to provide network services and share aggregated network-wide information (reser-
vation, topology state modifications, disruption), and use an intra-domain part for the
main functions of the controller such as network monitoring, reacting to network issues,
etc. [328]. DISCO can adapt to heterogeneous multi-domain network topologies to make
sure that link failures are mitigated and end points are migrated.

In D-SDN, the controller is distributed both logically and physically, which achieves
logical decentralization by using a hierarchy of controllers where main controllers delegate
control to secondary controllers to manage certain devices [309]. D-SDN has enhanced
fault tolerance and security compared to DISCO.

Software Defined Exchange (SDX)-based controllers are used to connect participants
of different domains using a shared platform, enhancing control over inter-domain traffic
management to improve wide-area traffic delivery. SDX, which is enhanced by logical and
physical distribution of control, relies on inter-domain control policies to provide end-to-
end services such as load balancing, traffic redirection, etc. However, SDX-based controllers
have shown security vulnerabilities and reliability issues [329]. Several variations of
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SDX based controllers have arisen, such as Cardigan [330], AtlanticWave SDX [331], etc.
Cardigan is a distributed SDX controller that applies routing as a service abstraction
to a RouteFlow-controlled IP network in order to reduce operational complexity. The
AtlanticWave SDX controller is able to provide multiple paths dynamically on demand,
apply QoS, prioritize policies, manipulate flow levels, etc. in a distributed manner.

Hybrid Control
A hybrid control architecture implements a combination of fully centralized and fully

distributed architectures. In other words, both centralized and fully distributed versions
of the control plane exist in a hybrid architecture. Based on the network conditions, the
hybrid architecture has the flexibility to adjust the distributed or centralized features from
zero to full, as shown in Figure 7e. As seen in Figure 7e, control plane communication
also involves receiving control messages from the centralized controller and exchanging
control messages between the nodes. In this architecture, the data plane elements can be
involved in decision-making and network control. This architecture is called hybrid, as
both the data plane and the control plane are involved in network control. This architecture
has higher scalability and higher resilience to failures due to the hybrid mode of operation.
For instance, when communication with the centralized controller is unavailable, this
architecture can run in full distributed mode, and vice versa, depending on the network
conditions. As an example of the hybrid mode, since the SDN controller has an overview
of the network, instead of sending whole flow tables to the nodes, it can instruct the nodes
to use a specific routing algorithm, but nodes should exchange control messages in a
distributed manner to build the flow tables.

Dey et al. have proposed hybrid routing to address scalability issues found in the
logically centralized architecture, where a local router in each data plane element handles
some part of routing and most of routing is controlled by the controller [332].

Considering the coexistence of legacy switches and SDN switches, consistent for-
warding graphs are constructed for coordination of forwarding of SDN switches and
distributed routing in hybrid control architecture, which also secures a high throughput
while maintaining forwarding consistency [333].

DevoFlow (Devolved Flow) is a hybrid control approach that reduces frequent interac-
tions with the control plane and the data plane in order to reduce overhead and delay by
distributing some of the control plane to the data plane. In the DevoFlow approach, the
controller is only involved in controlling significant and long-lived flows, whereas switches
make local control decisions [310].

Distributed Flow Architecture for Network Enterprise (DIFANE) is a scalable hybrid
control architecture where authority switches are assigned rules by the controller, which
has an algorithm to partition rules and minimize rule fragmentation [334]. DIFANE keeps
all traffic in the data plane by selectively directing packets through intermediate switches
that store rules.

OpenRouteFlow, which enables legacy routing as a software-defined routing service
that provides path-oriented and traffic-oriented subscription and publication services for
different scenarios of network control, has been used to achieve hybrid network con-
trol [335].

Fibbing is a hybrid control framework where the controller tricks the routers into
seeing a fake topology that is constructed to achieve the desired forwarding information
base. It applies central control over traditional distributed link state protocols such as Open
Shortest Path First (OSPF), where computation and installation of forwarding information
base on the data plane are carried out by traditional distributed protocols [336].

Hybrid control is secured in HybridFlow, which is a control architecture that controls
legacy devices using an SDN control plane that abstracts the hybrid SDN network as a
logical SDN network. HybridFlow, which was originally implemented in the POX [337] con-
troller, maps logical ports of the SDN network to physical ports of the actual network [338].

Table 6 summarizes the classification and details of controller frameworks based on
the degree of distribution of control.
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Table 6. Summary of details of different controller frameworks.

Architecture Name Northbound IF Developer Found Year Open-Source Consistency Scalability Progr. Lang.

Logically and
physically
centralized
control

NOX [273] Ad Hoc-API Nicira networks 2008 Yes Strong Low C++

NOX–MT [312] Ad Hoc-API Nicira networks 2012 Yes Strong Low C++

POX [337] Ad Hoc-API Nicira networks 2013 Yes Strong Low Python

Beacon [313] Ad Hoc-API Stanford University 2013 Yes Strong Low Java

Floodlight [278] RESTful-API Big-switch networks 2012 Yes Strong Low Java

SE-Floodlight [314] RESTful-API Big-switch networks 2013 Yes Strong Low Java

Trema [315] Ad Hoc-API NEC corporation 2012 Yes Strong Low C, Ruby

Ryu [316] Ad Hoc-API NTT labs 2013 Yes Strong Low Python

Meridian [317] Extensible-API ONF 2013 Yes Strong Low Java

Rosemary [275] Ad Hoc-API ON Lab 2014 Yes Strong Low C

Maestro [318] Ad Hoc-API Rice University 2011 Yes Strong Low Java

ParaFlow [274] Abstract-API Beihang University 2017 Yes Strong Low C++

Logically
centralized,
physically
distributed with
flat control

SMaRtLight [319] RESTful-API University of Lisbon 2014 No Strong High Java

HyperFlow [298] N/S University of Toronto 2010 No Weak High C++

ONOS [280] Intent, REST API Open Networking lab 2014 Yes Weak, Strong High Java

OpenDaylight [277] Intent, REST API Linux foundation 2013 Yes Weak, Strong High Java

Onix [300] NVP NBAPI Nicira Networks 2010 Yes Weak, Strong High Python, C

Ravana [320] N/A Princeton University 2015 No Strong Low Python

Logically
centralized,
physically
distributed with
Hierarchical
control

Kandoo [308] Java RPC University of Toronto 2012 Yes Strong High C, C++,
Python

Orion [322] N/A Tsinghua University 2014 Yes Weak High Java

B4 [324] RESTful-API Google 2013 No Strong High Python, C

Espresso [325] RESTful-API Google 2017 No Strong High Python, C
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Table 6. Cont.

Architecture Name Northbound IF Developer Found Year Open-Source Consistency Scalability Progr. Lang.

Logically and
physically
distributed
control

DISCO [328] RESTful-API Thales communication
and security 2014 No Strong High Java

SDX [329] RESTful-API Princeton University 2014 Yes Strong High Python

Cardigan [330] RESTful-API Victoria university of
Wellington 2013 Yes Strong High Java

AtlanticWave [331] RESTful-API FIU, GIT 2015 No Strong High Python

Hybrid control

DevoFlow [310] RESTful-API University of Waterloo 2011 No Strong High Java

DIFANE [334] RESTful-API Princeton University,
AT&T labs 2010 Yes Strong High Python

OpenRouteFlow [335] RESTful-API Tsinghua University 2015 Yes Strong High Python

Fibbing [336] N/A Princeton University 2014 No Strong High Python, C

HybridFlow [338] RESTful-API Fudan University 2016 Yes Strong High Java
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5.3.2. Packet vs. Flow Control

In conventional networks, the basic unit of control is the packet, where packets are
routed using the information contained in the headers, such as source IP, destination IP,
etc. Thus, the highest level of granularity of control is packet control. Fine-grained packet
forwarding refers to the ability to direct traffic using specific criteria, such as packet content.

The following are some advantages of fine-grained packet control. Due to its high level
of granularity, fine-grained control of traffic can increase flexibility and decrease network
congestion. Additionally, it enables the development of network rules tailored specifically
for each application to enhance performance. Additionally, it can boost network visibility,
which helps with debugging.

The following are some disadvantages of fine-grained packet control. It may introduce
more overhead in control plane communication as individual rules for each packet need to
be installed in the switches by the control plane, thus increasing the latency and slowing
down the network. It can be complex to implement in large networks, such that its
scalability is low. An attacker may use fabricated fine-grained forwarding to forward traffic
to a compromised server by bypassing security measures.

The traditional OpenFlow protocol implements packet-based flow rules that send a
packet-in message to the controller when the switch is unaware of the flow rule for a packet
(when a flow table mismatch occurs), where the controller will compute routes and update
the flow table entry of the switch. This reactive approach of OpenFlow for packet control
is a high-granularity control approach that introduces vulnerabilities in denial of service
attacks as well [339]. A routing protocol for cluster-based KDN where packet matching
for flow tables using 14 header match fields has been proposed in research [340]. A fine-
grained traffic monitoring system that generates flow rules for such fine-grained traffic
using a Markov decision process and a double-deep Q-network algorithm constrained
by the expected level of statistics details and flow-table limits has been implemented as a
high-granular control method [341]. A technique for reducing overhead for control plane
communication for packet forwarding, where a buffer is created in the switch for flow table
mismatches and collected mismatched entries are buffered and sent to the controller to
reduce control plane overhead and increase switch overhead, has been studied in [342]. A
system that attempts to prevent IP spoofing attacks using an IP source validation scheme
that has granularity in IP packets, with subnet-level granularity for intra-domain and IP
address-based granularity for inter-domain, has been studied in [343]. Considering the
fact that the controller enables a fine level of granularity for controlling traffic and creating
forwarding rules, the work in [344] shows that attackers can predict and reconstruct these
forwarding rules. A unified controller known as Magneto for fine-grained path control in
KDN and legacy hybrid networks, which uses magnet MAC addresses to dynamically map
IP addresses to magnetic MAC addresses at hosts using the address resolution protocol,
has been used for routing [345]. A fine-grained security policy implementation has been
feasible for the controller with the aid of virtual networks, which deny unauthenticated
access to the network [346]. A fine granular inter-domain routing matching multiple IP
header fields with the aid of the OpenFlow protocol for routing control can also reduce
redundant flow entries for inter-domain settings [347].

When thinking in terms of applications, they send packets as a flow of many packets,
such as QoS-based flows. Thus, applications may be better served using flow-based control.
Furthermore, abstraction of flows can result in aggregated flows that can be matched
to obtain the required task. Let us briefly discuss the pros and cons of coarse-grained
flow control.

Some advantages of coarse-grained flow control follow. In flow-based decision making,
the overhead for control plane communication is low. In most cases, only one packet of the
flow may be required to be inspected, thus reducing the complexity of the overall system.
The network is easier to manage and control, as scalability is high with this approach.
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Furthermore, security is high, as traffic from compromised sources can be quickly identified
and isolated.

The following are some disadvantages of coarse-grained flow control. This approach
is not as precise as fine-grained packet control and is less flexible, as it limits the ability
of the network to adapt to changing traffic patterns or respond to unexpected events.
Furthermore, it has less visibility of the network, as individual packets within a flow are
not monitored, which can increase difficulty in troubleshooting problems.

Admission control with flow aggregation for QoS provisioning, which uses a model
to analyze the required amount of bandwidth and buffer space at OpenFlow switches to
meet requirements in delay and packet loss, has been utilized [348]. A local fast rerouting
technique in case of link failures that aggregates traffic flows affected by the failure to
compute a local reroute path by the controller for the aggregated flow that reduces the
number of flow operations between the controller and the switch has been studied in [349].
A flow control mechanism that manages QoS and best-effort flows based on network
slices and schedules, which uses multi-objective optimization for priority forwarding,
multipath forwarding for best-effort flows, and an algorithm for flow allocation and slice
adjustment, is presented in [350]. The controller can utilize traffic flows for intrusion
detection by gathering statistical information about the flows from OpenFlow switches
and analyzing the flows by aggregating a set of features [351]. A framework known as
software-defined label switching combined central control with label switching to reduce
storage burden while maintaining per-flow control, is a hybrid approach that incorporates
part of the control plane into switches and has resulted in a lower number of flow entries
and overflows [352]. A framework for minimizing the number of flows while maintaining
end-to-end delay as a QoS parameter that aggregates flows using an algorithm for flow
control has been studied in [353]. A framework to mitigate the denial of service attack
on the controller by effectively rerouting malicious traffic, adjusting flow timeouts, and
aggregating flow rules has been achieved in [354]. Considering the fact that fine-grained
traffic flow measurement is challenging due to a lack of monitoring resource constraints,
a traffic aggregation and measurement paradigm that aggregates flows and uses them to
estimate network flows using optimization under the constraint of flow table size has been
studied in [355].

5.3.3. Reactive vs. Proactive Control

In the reactive control mechanism, network changes are triggered based on events
or traffic patterns. Reactive control mode involves switches contacting the controller for
decision-making, such as when the flow table does not have any entry for the flow/packet
(arrival of a new flow), so the controller has to be consulted, where the controller will
compute the path based on its policies and send the instructions for configuring the path
for the flow table as a reaction to the request by the switches.

Advantages of reactive control include that, as the configuration of the switches
occurs only when needed, it will result in efficient use of network resources and reduced
communication overhead. Reactive control supports dynamic network control such as
adding or removing switches without requiring a network-wide configuration, and it can
also adapt to changing traffic patterns in real time.

When considering its disadvantages, one of the main concerns with reactive control is
that it can provide a base for attackers to use trigger events to manipulate network behavior
or cause denial of service attacks. Furthermore, it can act as a hindrance for the controller
to obtain a global view of the network, as the controller only computes and installs flow
rules in response to trigger events. In addition, it can also cause unnecessary delays for
time-critical applications, as a trigger event is required for the controller to take an action.

The Procera language has been introduced as a language that supports reactive control
and includes a declarative policy language based on functional reactive programming [285].
A reactive approach for mitigating reconnaissance attacks using shadow servers is pre-
sented in [356]. A study that attempts to quantify the number of control plane messages
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exchanged between an ONOS controller and data plane elements has found that reactive
control results in a lower number of message exchanges, such that it addresses the scalabil-
ity issue of KDN [357]. A study that analyzes the traffic traces involved in the reactive flow
table update mechanism of OpenFlow states that there is a trade-off between the size of the
flow table and the rate of installation of a missing rule [358]. A security framework with a
reactive approach that analyzes potential attacks and isolates attackers for an industrial
network has been studied in [359]. A reactive, stateful firewall for KDN that filters TCP
communication according to network policies and processes the traffic into a set of Open-
Flow rules with the help of a finite state machine of protocols has been studied [360]. A
reactive control approach for mitigating security attacks such as port scanning, flooding,
ARP spoofing, etc. using exception control packets has been studied in [361]. The study
in [362] highlights that DDoS attacks can occur due to the reactive approach to flow rule
installation in KDN and analyzes a set of strategies to overcome the vulnerability.

In proactive control, the network controller pre-programs the forwarding elements
with a set of rules to handle all possible traffic flows before the traffic arrives at the switches.
In this approach, traffic is analyzed using different techniques, such as machine learning or
algorithms, and control is provided before problems occur.

Advantages of proactive control include that network downtime can be reduced by
taking proactive measures to maintain network availability. Security can be improved by
proactively implementing security policies before threats enter and spread through the
network. In a proactive approach, the overall quality of service can improve, such as with
less latency and high throughput, as network switches are programmed in advance.

Disadvantages of proactive control include that it has limited flexibility, as it does not
dynamically adjust to changes in network traffic. It also results in a high communication
overhead, and the system becomes complex when the network is large, thus having low
scalability. Proactive control has difficulty adapting to new or unknown threats, as pre-
computed policies may not affect such threats.

A proactive approach for mitigating reconnaissance attacks using the technique of IP
and port shuffling is presented in [356]. Network congestion control using a joint reactive
and proactive approach that couples the activity of both users and the network controller
using an optimization technique has been studied in [363]. In proactive flow management,
all required flow entries are installed in the switches by the controller, which causes
additional requirements such as switch memory hierarchy optimizations [364]. A proactive
approach to protecting blockchain nodes from domain name service amplification attacks
by using a stateful mapping scheme, an entropy calculation scheme, and a DDoS mitigation
module has been effective [365]. A proactive attack and failure resilience mechanism that
uses a sandboxing technique to isolate the controller from the host and employs live remote
checkpointing and migrating between different hosts to evade failures and attacks has been
studied in [366]. A framework that can proactively adapt to the attack surface of networks
and dynamically optimize defense strategies using moving target defense techniques has
been realized in a cost effective manner [367]. A proactive admission control and resource
management strategy for virtualized networks that maximizes the high-priority networks
subjected to substrate limitations and memory requirements of virtual network requests is
presented in [368]. A proactive routing rule placement technique for KDN that updates the
flow rules proactively, however, considering whether the routing path actually changed or
not, has been studied in [369]. By enabling the controller to add backup paths proactively
along with the working paths and enabling switches to perform recovery actions locally, a
failure recovery mechanism for KDN has been studied in [370].

5.3.4. Fully Consistent vs. Eventually Consistent Control

Data consistency is an essential factor in distributed control KDN architectures, specif-
ically in the logically centralized and physically distributed flat control architecture. A
controller’s consistency has three aspects namely: state consistency, rule-update consis-
tency, and version update consistency [371]. Version update consistency guarantees that
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version updates between the controllers are consistent. State consistency ensures that all
controllers have the same global view. Rule update consistency ensures that switches under
a controller have the same forwarding policies.

Full/Strong consistency ensures that all the controllers have the same view of the data
at all times, and any update made on the network is immediately visible to all controllers,
which guarantees that the data will remain consistent at all times. However, full consistency
can lead to high latency and reduced scalability.

The eventual/weak consistency allows a delay between the updates in the network
and the time at which those updates are reflected in all the controllers. Thus, for a short
period of time, there can be different views by different controllers. Eventual consistency
has higher scalability compared to full consistency.

In dynamic control, when a set of switching devices is handed over from one controller
to another during load balancing or in the event of a controller failure, the forwarding rules
in the switches may need to be updated [372]. Distributed consensus-based strong consis-
tency algorithms such as Raft have shown poor performance under controller overload
conditions and poor scalability and responsiveness despite their strong consistency [373].
On the other hand, eventual consistency models, even though they have high scalability,
availability, and communication overhead, do not have tolerable consistency, as there is a
time period during which the updates are not consistent [374]. As both methods have pros
and cons, some have adapted state consistency using a hybrid approach, having both full
consistency for critical operations that affect a large portion of the network and eventual
consistency for less critical changes [375].

Onix and ONOS are examples of controllers that have both full and weak consistency
levels. On the other hand, the SMaRtLight and Ravana controllers have strong consistency,
while the Hyperflow controller has weak consistency [376].

5.4. Controller Functions
5.4.1. Data Collection

In KDN architecture, the control plane collects data to aid in decision-making in the
control plane (either using an information-centric approach using direct data/information
or using a knowledge-centric approach by generating knowledge and rules from the
collected data), whereas management-related data (data for network monitoring and con-
figuration) and data specifically for knowledge generation are collected by the management
plane. Note that most of the data are collected by the management plane, while only
specific data that is required to aid control decision-making is collected by the controller
in the KDN architecture. However, some data, such as data related to network topology
and network traffic flow, will be jointly collected by the control and management planes in
order to develop a global view for making management and control decisions.

The control plane collects detailed statistics about the network traffic, such as the
number of packets and bytes transmitted, the rate of traffic flows, and the types of protocols
used. By collecting detailed traffic statistics, greater visibility into the behavior of the
network can be obtained, which will allow early detection of issues before they become
critical. By analyzing network statistics, the control plane can identify congested links and
adjust traffic flows to balance network utilization and improve performance. Network
statistics can be utilized to be confident that network traffic is prioritized according to QoS
demands [377].

The control plane can collect QoS data such as latency, throughput, packet loss rate,
bandwidth utilization, etc. in order to make sure that network traffic is prioritized and
delivered adhering to user requirements [378].

The control plane may collect data regarding policies of the data plane elements, such
as access control policies, QoS policies, routing policies, and security policies, in order to
verify policies [262].
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The control plane needs to collect data on security events such as network attacks and
intrusion attempts. These data will be used to identify potential security threats and trigger
policies that can mitigate the impact of these events, as the control plane is responsible for
enforcing security policies and responding to security events in real time. Furthermore, it
can provide security-related data to the knowledge plane to generate knowledge and rules
to refine application policies related to security [379].

The control plane may need to collect information about routing protocols, including
the configuration and behavior of the network devices, which will be necessary for traffic
engineering using the controller [380].

5.4.2. Path Computation

Path computation involves determining the optimal path that data packets should
take through the network based on various factors such as network topology, traffic flow,
and network policies. As the control plane has a global network view, that information
can be used to compute the most efficient path that a data packet can take to reach its
destination using an algorithm (such as shortest path algorithms) [381]. However, some
paths may be congested. Thus, making a decision only using the topology may not be ideal.
Therefore, the controller can consider the network traffic flow to identify congested links
in order to avoid them when computing the paths [382]. Furthermore, when routing, the
controller can enforce network policies such as encrypting sensitive data and forwarding it
through secure channels or giving priority to one type of traffic over others [383]. Instead of
proactively computing paths, paths may be computed on demand, such as due to changes
in a network topology or traffic flow. For instance, if a link fails or becomes congested, the
control plane can compute paths for the affected data packets reactively [384].

5.4.3. Policy Enforcement

Note that policy enforcement can occur on both the management and control planes.
However, each of these planes will enforce different policies that are identical to each
plane. As discussed in Section 4.5.2, the management plane is responsible for enforcing
configuration and monitoring policies. As discussed in Section 5.4.1, the control plane is
responsible for enforcing access control policies, QoS policies, routing policies, and security
policies. The policy flow in a KDN environment [247,385] is graphically illustrated in
Figure 8.

Before policy enforcement by the control plane, first, policies must be defined by the
network administrators, which specify how network devices must behave. These policies,
which are applicable to the control plane, can cover a wide range of applications such
as routing, security, access control, quality of service, etc. [386]. The control plane can
enforce/translate policies by programming network devices to perform specific actions
once certain conditions are met using a policy engine. A policy engine is used to translate
the network policies into rules by considering other data, rules, and knowledge [385]. As
evident from Figure 8, the controller policy enforcement and verification module generates
flow rules by comparing the collected data with other data such as network topology and
device capabilities, knowledge/rules from the knowledge plane, policy verification output
from the policy verification module, and the requirements of the policy. As an example
of policy enforcement, it can program switches to drop traffic that does not confirm to
QoS policy, or it can program firewalls to block traffic that violates security policies [387].
The controller can use protocols such as OpenFlow to program policies (in the form of
flow rules) into forwarding elements. From time to time, the control plane will verify that
policies enforced are correctly functioning in the data plane. For achieving that purpose,
the controller will collect policy data from the data plane and compare it with the existing
policies, as shown in the policy verification module in Figure 8. The policy verification
module will output the nodes’ identifying information that does not adhere to the existing
policies. If any policy violations are detected, the controller can take corrective action by
sending the flow rules generated by the policy engine for such nodes [388]. A dynamic
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policy update in response to a change in a network condition, such as updating security
policy upon detection of an intrusion in the network to block the threat, can be used
to achieve the automation desired in the KDN paradigm, where network policies are
dynamically updated to adapt to changing network environments with minimum human
intervention. Policy updates can occur in the application plane based on knowledge/rules
output from the knowledge plane in response to real-time network activity, as shown in
Figure 8.

Figure 8. Network policy life-cycle in a KDN.

Note that Figure 8 also shows the policy lifecycle for network monitoring and network
configuration in the management plane. As evident from Figure 8, in the monitoring policy
verification and enforcement module, configuration rules are generated from the policy
engine based on network topology and configuration, monitoring policy verification output,
data and knowledge, and network monitoring policy [247], as discussed in Section 4.2. The
generated configuration rules from the monitoring policy enforcement and verification
module will be compared with other data, knowledge, configuration policy verification
output, and configuration policies to update the configuration rules and be provided to
the data plane [389], as evident from the configuration policy enforcement and verification
module in Figure 8.

5.4.4. Traffic Engineering

Traffic engineering involves optimizing the flow of traffic to improve network perfor-
mance and reliability. The control plane can monitor traffic in real-time and detect areas of
the network that become congested. The control plane can distribute network traffic evenly
across multiple paths in the network, which will help avoid congestion on specific links
and improve performance. In [390], according to bandwidth utilization, traffic is redirected
from congested links by the centralized controller to enhance the efficiency of link usage in
terms of throughput, jitter, and packet loss rate. The controller can also allocate resources,
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such as bandwidth, in affected areas of congestion to reduce the congestion [391]. Further-
more, the control plane can enforce QoS policies to prioritize certain traffic over others. For
instance, video traffic can be given higher priority than file transfer traffic, as video traffic
is time-critical, in order to increase the overall quality of experience of the user [392]. The
control plane should ensure that traffic is rerouted in the event of a network failure. It can
use protocols such as Multi Protocol Label Switching (MPLS) for fast and reliable rerouting
of traffic, which will help minimize downtime and ensure network reliability. Specifically, a
protection scheme using pre-computed backup paths by the controller to use MPLS routing,
which guarantees instantaneous recovery time and a zero packet loss rate after failure
detection, can be employed [393]. Finally, dynamic policies can be used to adjust routing
policies to improve the efficiency of network traffic in response to network change events.
For instance, if the controller detects that network devices’ resource utilization is high, it
can enforce a policy to use a routing protocol that uses less device resources [394].

5.4.5. Network Virtualization

There are network virtualization technologies such as Virtual Local Area Networks
(VLANs), Virtual Private Networks (VPNs), etc. The control plane can build virtual
networks on top of real networks by utilizing these network virtualization technologies.
Network virtualization will increase network scalability and flexibility, since they can be
generated dynamically upon requirement [395]. Furthermore, these virtual networks can
be separated from one another to stop unwanted access to sensitive data and ensure high
security in the network. Service providers could offer services to several customers on
a single physical network thanks to these virtual networks, each of which may have its
own set of users and resources [395]. In addition to virtual networks, the control plane can
leverage Network Function Virtualization (NFV) to virtualize network services that can be
installed as needed, including firewalls, load balancers, routers, etc. [396]. NFV successfully
lowers service providers’ capital and operating costs.

5.4.6. Service Chaining

Service chaining involves directing network traffic through a sequence of network
services such as intrusion detection systems, load balancing, firewalls, etc. [397]. In policy-
based service chaining in conventional SDN, the sequence of network services is predefined
based on network policies, such as those enforced by the network administrators. In
dynamic service chaining, the network functions in the service chain can be updated based
on varying network conditions, such as real-time network traffic, which can be used in
KDN architecture. For example, in a KDN, by anomaly detection using the knowledge
plane, it can be detected whether there is a threat to the network or not. If a threat is
detected, the service chain can be updated by adding a firewall [398].

6. Data Plane
6.1. Introduction to Data Plane

The bottom layer of the KDN architecture is the data/infrastructure plane, consisting
of forwarding elements that are interconnected using transmission media. This layer’s
architecture and performance in KDN are very similar to those of SDN. However, there are a
few differences in the data plane of KDN compared to SDN. First, the data plane is managed
(configured and monitored) by the management plane and controlled (flow rule installation
containing forwarding rules, installing access control rules, prioritizing network traffic
based on QoS, implementing security policies, etc.) by the control plane. Furthermore,
in KDN, more data are collected by management and control planes compared to SDN.
Extra data collected in KDN are used for knowledge generation, as knowledge is used in
making network control decisions by the controller, network monitoring and configuration
decisions by the management plane, and to dynamically update application plane policies.
Due to the extra communication burden utilized for sending data to management and
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control planes, forwarding elements in KDN require more resources, such as bandwidth
and processing power, compared to switches in SDN.

Let us discuss the components of the data plane in detail, as given in the follow-
ing subsections.

6.2. Forwarding Devices
6.2.1. Architecture of a Forwarding Device

The architecture of a KDN forwarding device, along with flows between management
and control planes [399], is given in Figure 9.

Figure 9. KDN forwarding device architecture in data plane with different flows exchanged with
other planes.

The forwarding devices can be physical/virtual switches, routers, wireless access
points, etc. These devices are configured and monitored by the management plane, while
flow rules are installed by the controller, as evident from Figure 9. Note that, compared to
an SDN switch, a KDN switch has data to be sent to the management and control planes.
Note that, as evident from Figure 9, device topology data and traffic flow statistics data
are jointly collected by the management and control planes (using OpenFlow), while data
such as resource utilization, event logs, sensor data, etc. are collected by the management
plane (using SNMP/OF-CONFIG + DCM), while data such as QoS data, security events,
routing protocols, etc. are exclusively collected by the controller (using a DCM). Forwarding
devices do not have the intelligence for control in order to take autonomous decisions, as all
rules are explicitly defined by a logically centralized controller. As discussed previously in
Sections 4 and 5, and as evident from Figure 9, protocols such as SNMP/OF-CONFIG can
be directly used for device configuration and to collect configuration data, while protocols
such as OpenFlow can be used for flow rule installation.

Figure 9 depicts a pure KDN switch with data flows, where only KDN-based forward-
ing using flow tables takes place. However, the pure KDN switch architecture is difficult to
integrate with legacy networks. In Section 5.3.1, we presented the high-level architecture of
a hybrid KDN switch. Note that, in the presented hybrid switch, the KDN module refers to
the pure KDN switch presented in detail in Figure 9. Note that the local control agent is not
implemented in a pure KDN switch, while the control channel is directly connected to the
KDN module in that switch.
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As shown in Figure 9, an OpenFlow flow table basically consists of three fields called
rules, instructions, and statistics. Rules contain the switch port, source MAC address,
destination MAC address, source IP address, destination IP address, source TCP address,
destination TCP address, Virtual Local Area Network (VLAN) ID, etc. to match against
incoming packets. Once matched, one of four actions—forward to port, forward to con-
troller, modify header fields, or drop packet—will be taken. If there is a mismatch, the
corresponding action for the incompatible (unmatched) flow table entry will be carried
out. The action for a mismatch can be one of dropping the packet, searching in the next
flow table, or forwarding to the controller. In order to request the controller in case of a
missing flow table entry, the forwarding device should send a “packet-in” message to the
controller, where the controller will compute the paths and send a “Flow-mod” packet
back to the switch to modify the flow table with forwarding information for the packet.
Furthermore, the controller can collect flow statistics exclusively maintained by the flow
table in the statistics field using “Switch Feature” messages and event-based messages such
as port changes using “CPort-status” messages.

6.2.2. Physical Switches

Switch Processing
Compared to legacy network forwarding, which is IP or MAC address-based, Open-

Flow switching can occur based on TCP addresses, VLAN IDs, or switch ports, which
increases the length of the rule field and increases the processing complexity of the flow
table. Thus, recent work has proposed integrating a Graphic Processing Unit (GPU) along
with a CPU to accelerate packet processing in switches by utilizing the GPU’s parallel
processing capability [400]. A Network Processing Unit (NPU) from vendors such as Intel,
Cavium, Broadcom, etc. has been utilized as the processing unit in switches [401]. Some
have proposed network processor-based acceleration cards to improve the processing
capability of the switches [402]. Some have proposed a hardware implementation of the
OpenFlow programmable packet parser using a Field Programmable Gate Array (FPGA) to
increase the switch speed and reduce the waiting and service times [403]. Recent research
investigates the feasibility of a traffic offload hybrid switch using an Application Specific
Integrated Circuit (ASIC) and FPGA. This switch proposes to offload switching between
two different technologies: fast ASIC and programmable FPGA based on volume, priority,
volatility, etc., in order to yield high throughput and low latency [404]. Some researchers
have proposed using a combination of CPU and ASIC for processing different types of
flows. In particular, to handle frequently occurring small flows, a CPU with relatively
lower processing power is proposed, while to handle large and non-frequent traffic, an
ASIC implementation of the switch is proposed [405].

Switch Memory
In order to be compatible with legacy networks, most modern switches are manufac-

tured as hybrid switches, which support traditional forwarding based on routing protocols
in the switch combined with logically centralized control-based forwarding in KDN [406].
However, pure KDN switches only support KDN and do not support traditional routing
protocol-based switching. Ternary Content Addressable Memory (TCAM) is the most
widely used memory for forwarding elements in KDN, as it provides high-speed lookup
and forwarding capabilities, making it well suited for implementing the match-action tables
used in switches. However, TCAM is expensive and less power efficient, and the TCAM
capacities of current OpenFlow switches on the market can vary in a vast range from a few
thousand to a few millions [407]. Other memory technologies, such as Dynamic Random
State Memory (DRAM) or Static Random Access Memory (SRAM), do not provide the
same level of speed and efficiency as TCAM [408]. However, SRAM is more flexible and
scalable. Thus, there are proposals to use a combination of TCAM and SRAM in order to
have high flexibility and high packet classification performance [409].
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Flow Rule Management
A forwarding device is responsible for packet forwarding based on the flow rules

installed in its memory, with the help of a local processor. Thus, the main function of a KDN
switch is to process packets (forward based on installed flow rules) and collect and send
data to management and control planes. However, a given forwarding device has limited
memory and processing power. When the size of the network becomes large, the number of
flow rules in a given switch can also increase, so efficient flow rule management techniques
can be used to manage flow rules with limited space. Such management techniques
should make sure that an optimal number of flow rules are maintained without removing
flow rules that could result in violating network policies and constraints. Filling up the
switch memory can result in packet dropping and provoke frequent communication with
the controller to search for unknown rules, thus degrading the controller’s performance.
OpenFlow rules are more complex and consume more memory than forwarding rules in
conventional IP-based routers. Assigning a timeout to different flows in the flow table such
that, once the timeout is reached, such flows will be automatically removed from the flow
table is one way to manage flow table entries [410]. Another approach to managing the
flow table is to aggregate flow rules using prefixes or by splitting and distributing flow
rules [411]. Furthermore, flow rule caching using a two-tier approach has shown better
switch memory utilization [412]. Some have used OpenFlow switches to handle short
flows using flow rules, while large flows are handled by contacting the controller, which
has resulted in a significant reduction in flow-table entries [310]. Some researchers have
attempted to use distribution frameworks to decompose large flow tables into smaller ones
and optimally distribute them across the network while preserving the policies [413].

Forwarding Models
As reviewed in Section 5.2.2, there are numerous proposals for the implementation

of switch forwarding models using protocols such as OpenFlow [291], ForCES [292],
OpFlex [293], POF [294], PCE–PCC [295], OpenState [296], etc. OpenFlow and ForCES
both have a completely logically separated control plane from the data plane, whereas in
OpenFlow, the control plane is typically physically separated from the forwarding devices,
while in ForCES, the control plane can exist in the same device. In OpFlex, a part of the
control plane is redistributed to forwarding devices in order to improve the scalability
of KDN, even though the policies are logically centralized. Compared to OpenFlow, in
POF, flow instruction sets are used for packet forwarding, where flow table matching using
header fields is not necessary, which speeds up forwarding in switches. In OpenState,
OpenFlow match-action is extended to finite state machines for doing stateful tasks inside
the switches, which can be considered again as an attempt to decentralize some control
back to forwarding elements. However, OpenFlow is the most widely used implementation
for switches in KDN, as it implements the original SDN concept of complete decoupling of
the control plane from forwarding elements.

Table 7 summarizes existing protocol details that implement switch forwarding models.
Hardware Implementation
Switches can be implemented in general PC hardware, open network hardware, or

vendor hardware. In general, in PC hardware implementations, the forwarding device
is implemented as software running on the host operating system [414]. A fast data
path based on caching of flow table entries in onboard classification hardware on the
network interface card to improve lookup performance of PC-based OpenFlow switching
in Linux has been presented in [415]. The authors in [416] highlight that the performance
of PC-based switches is lower compared to dedicated hardware-based switches due to
the fact that packet input–output in the operating system’s network stack is a significant
bottleneck. This work analyzes several PC-based switch implementations such as Linux
IP forwarding, Linux bridge, Open vSwitch, Data Driven Packet Processing (DDPK), and
Layer 2 Forwarder (L2FWD) and shows that the performance of the DDPK is nearly six
times that of the Open vSwitch. Open network hardware-based switches are mostly used
for testing and development of forwarding devices, which provides a vendor-independent
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platform to build switches. NetFPGA is an open network hardware-based platform to
build high-performance networking systems in hardware, which uses FPGAs to implement
core data processing functions [417]. Using NetFPGA as the platform, SwitchBlade and
ServerSwitch are practical examples of the implementation of physical switches using open
network hardware [418]. Finally, vendor-specific switches provide several advantages over
open network hardware-based switches, such as better integration with products from the
same vendor, ease of deployment, support for specialized features from the vendor, etc.
However, there are some drawbacks, such as vendor lock-in, reduced interoperability with
other vendors, limitations in flexibility and scalability, etc. Cisco, Indigo, IBM, and Juniper
Networks are a few examples of vendors that create vendor-specific switches in KDN [419].

Table 7. Summary of protocol details that implement different switch forwarding models.

Protocol Architecture Forwarding Model Message Types Open-
Source Version

OpenFlow [291] Control plane physically, logically
decoupled from data plane Flow table Feature request, packet-in,

FlowMod, packet-out Yes v1.5

ForCES [292] Control and data planes logically
decoupled, physically together

Logical functioning
block

Configuration, notification,
query, response Yes v1.4

OpFlex [293] Part of control plane redistributed
in data plane

Policy based
forwarding

Policy requests, responses,
updates, withdrawals Yes v1.0

POF [294] Forwarding plane oblivious of
the protocol Flow instruction sets Configuration, packet-in,

packet-out, query Yes v1.0

PCEP [295] Logically decoupled control and
data planes Computed paths Open, request, close, reply Yes v1.0

OpenState [296] Decentralize some control to
forwarding plane using FSM Stateful Flow table Packet-in, FlowMod,

packet-out, StateMod Yes v1.0

6.2.3. Virtual Switches

A virtual switch is a software component that connects virtual machines and physical
network devices, which allows network administrators to manage network topologies in
a dynamic manner without having to make changes to the underlying physical network.
Virtual switches have the ability to create network segments and isolate traffic between
different virtual machines or groups of virtual machines, which will help improve network
security. Open vSwitch and VMware NSX virtual switches are popular examples of virtual
switches [420].

6.2.4. Optical Switches

Optical networks, as opposed to packet switching networks, rely on circuit switch-
ing, so KDN switches belonging to an optical network rely on optical circuit switching
technology. Unlike packet switching, which operates at the network layer of the Open
System Interconnected (OSI) model, circuit switching operates at the physical layer, using
light paths to establish connections between the switches. This approach has lower latency,
higher bandwidth, and improved efficiency compared to packet switching forwarding
elements. Micro-Electro-Mechanical Systems (MEMS)-based optical switches have been
used for large data center networks, which have enabled dynamic topology reconfiguration
and centralized control for traffic engineering in optical networks [421]. There have been
attempts to unify circuit switching in optical networks with packet switching in IP networks
using a unified controller [422]. However, such unification needs to be accompanied by
upgrading each physical optical switch with a virtual switch that converts control messages
received from the controller to commands acceptable by the physical optical switch. Some
have attempted to unify packet switching with circuit switching in optical networks by
integrating a Generalized Multi Protocol Label Switching (GMPLS) control plane that
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manages circuit switching with an SDN controller that manages packet switching [423].
GMPLS has been proposed as the control plane for wavelength-switched optical networks.
However, a recent survey suggests that OpenFlow shows better performance in terms of
less probability of blocking and average time of establishing a light path than GMPLS
architecture in large multi-domain networks [424]. A photonic integrated wavelength
selective switch aiming at providing flexible bandwidth for optical data center networks
that can be reconfigured dynamically using the controller has been presented in [425]. In
such a scheme, based on variable traffic patterns, the controller can effectively control the
bandwidth per link in optical networks. Similar works suggest how photonic integrated cir-
cuits in optical switches (photonic switches) can be automatically controlled and managed
using a centralized controller [426].

6.2.5. Wireless Access Points, Base-Stations, and Vehicles

A wireless access point is a networking device that allows wireless devices such as
laptops and mobile phones to connect to a wired network using Wi-Fi technology, which
allows multiple devices to connect and share resources [427]. Similarly, a cellular base
station in a mobile communication network manages call handoffs and communicates
wirelessly using radio signals with mobile devices. Vehicles in a vehicular network commu-
nicate wirelessly, either using Dedicated Short Range Communication (DSRC) for Vehicle
to Vehicle (V2V) communication or using mobile communication with the aid of a cellular
base station for Vehicle to Infrastructure (V2I) communication [428]. Figure 10 depicts
the KDN paradigm implementation in a heterogeneous network scenario consisting of a
Wi-Fi network, a cellular network, a vehicular network, an optical network, and a wired
network. Therefore, for all the types of wireless communication described above, when
KDN is integrated into such networks, switching can occur through an access point in a
Wi-Fi network, a base station or a wireless access point in a mobile network, or a vehicle or
a Road Side Unit (RSU) in a vehicular network, as shown in Figure 10.

Figure 10. A KDN heterogeneous network scenario.
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Note that, in Figure 10, combined controller refers to a physical entity whose man-
agement, control, and knowledge planes have been unified. However, note that, in KDN,
these three planes are logically separated, even though they can be physically unified to
be represented as a combined controller. Thus, wireless access points, base stations, and
vehicles become forwarding devices in their corresponding wireless networks, which can
be configured by a remote combined controller in the KDN paradigm. Software-Defined
Radio (SDR) is the concept of controlling wireless transmission strategies in the physical
layer using software [429]. Thus, SDR can be integrated with KDN to provide physical
layer control of the wireless KDN switches, such as wireless access points, mobile base
stations, vehicles, etc., using a combined controller. Thus, these wireless switches’ physical
parameters, such as link association, channel selection, transmission rate, etc., can be man-
aged and controlled dynamically based on network statistics and network defined policies
in KDN.

6.3. Transmission Media

Transmission media convey either data between the forwarding elements or data,
control channel information, or management channel information between data plane
elements and the control plane or the management plane. There are basically three types
of transmission media: wired, optical, and wireless, which are briefly discussed in the
following sections.

6.3.1. Wired Media

Wired transmission media transmit electrical signals from a given source to a given
destination. The most frequently used material for electrical wires is copper. Copper
electrical wires can be categorized into two types: twisted-pair cables and coaxial cables.
Twisted pair cables are the most common wired medium used in LANs, consisting of
insulated copper wires twisted together to reduce electromagnetic interference from other
cables. In coaxial cables, a copper core is surrounded by a layer of insulation, a woven shield,
and an outer jacket [430]. These cables are used in LANs as they provide better resistance
to electromagnetic interference compared to unshielded twisted-pair cables. Copper wires
have excellent electrical conductivity to carry signals with minimum degradation, high
reliability as they can withstand harsh environmental conditions, are compatible with both
analog and digital signals, and are cost effective compared to optical fibers. However, they
have a lower bandwidth, are susceptible to electromagnetic interference, are susceptible to
eavesdropping and hacking, etc. [431].

6.3.2. Optical Media

Optical transmission media transmit light waves with modulated data over long
distances. Compared to copper wires, these provide higher transmission rates, longer
transmission distances, better resistance to electromagnetic interference, and are more
secure than electrical wires as they are difficult to tap and intercept [432]. The optical
fiber is a thin glass or plastic strand that guides the light signal from the transmitter to
the receiver. There are two main modes of optical fiber: single-mode and multi-mode.
Single-mode fibers with a diameter typically less than 10 microns are used for long-distance
communication to reduce dispersion and improve signal quality. Multi-mode fibers having
a large core diameter are less expensive, have a lower bandwidth, have a higher dispersion,
and are used for short-distance communication (up to a few kilometers) [433]. However,
optical fibers are expensive to install, consume more time to repair (which increases the
downtime), are more fragile than copper wires (i.e., can break easily), and are less immune
to signal attenuation from light wave absorption, scattering, and reflection [434].
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6.3.3. Wireless Media

Data transmission through electromagnetic waves without the need for physical
wires is referred to as wireless transmission. Data can be conveyed via electromagnetic
waves with a range of frequency ranges in various kinds of network configurations. For
instance, Wi-Fi uses radio waves having a frequency between 2.4 GHz and 5 GHz to provide
wireless internet access [435]. Frequency ranges from 700 MHz to 50 GHz are utilized in
cellular networks to link mobile devices to the infrastructure [436]. Wireless media enable
user equipment mobility without being constrained by wires, and, because of their great
flexibility and scalability, they are more ideal for deployment in KDNs. Cellular networks
are less suited to high-speed data transfer or the transfer of a huge amount of data since they
have less capacity than copper lines. Furthermore, compared to single-mode optical fibers,
wireless media might have a shorter communication range, inferior security due to the
ease with which attackers can intercept communications, and significant electromagnetic
interference from other devices [437].

Table 8 summarizes the comparison among the main transmission media used in
knowledge-defined networks.

Table 8. Comparison of transmission media parameters.

Parameter Wired Optical Wireless

Transmission range Low (Cat6a—around
100 m)

High (single mode—2 km to 40 km, multi
mode—300 m to 2 km)

Vary (4G—up to 10 km, 5G—up to few km,
Wi-Fi6—50 m indoor and 200 m outdoor)

Attenuation Medium (Cat6a—0.02 to
0.10 dB/m)

Low (single mode—0.0002 to 0.0004 dB/m,
multi mode—0.0030 to 0.0100 dB/m)

Vary (4G—0.0005 to 0.0050 dB/m, 5G—0.0005 to
0.0200 dB/m, Wi-Fi6—0.10 to 10 dB/m)

Propagation delay Medium
(Cat6a—5.3 µs/km)

Vary (single mode—around 5 µs/km, multi
mode—6.7 µs/km)

Low (4G—3.5 µs/km, 5G—3.5 µs/km,
Wi-Fi6—4.4 µs/km)

Maximum
throughput

Medium
(Cat6a—10 Gbps)

High (single mode—100 Gbps, multi
mode—10 Gbps)

Vary (4G—1 Gbps, 5G—20 Gbps,
WiFi6—9.6 Gbps)

Maximum
bandwidth Low (Cat6a—500 MHz) High (single mode—10 GHz, multi

mode—2 GHz)
Vary (4G—20 MHz, 5G—400 MHz,
Wi-Fi6—160 MHz)

Error rate Medium (Cat6a—10−12) Low (single mode—10−15, multi
mode—10−12)

High (4G—10−6, 5G—10−9 to 10−10,
Wi-Fi6—10−9 to 10−10)

Communication
cost Low Medium High

Installation and
maintenance cost Low High High

Flexibility Medium Low High

Security Medium High Low

Electromagnetic
interference Medium Low High

7. Application Plane
7.1. Introduction to Application Plane

The application plane is the top layer in KDN architecture and is responsible for
providing a higher-level view of the network that is more closely aligned with business
needs and objectives. These high-level goals and objectives of users are expressed in the
application plane as intents. The application plane in KDN is designed to understand
the requirements of the applications, while dynamically optimizing application policies
based on the knowledge of the network. Additionally, it offers a centralized control point
for network policies, allowing administrators to specify policies that are exclusive to a
single application or a collection of apps and to reliably apply those policies throughout
the network. Remember that an application policy is a set of high-level guidelines that
control how an application behaves. Its scope is more specific (application-level scope)
than an intent, and it may be established for a single application or a collection of apps.
Due to the fact that KDN can be implemented in a variety of network types, including



Telecom 2023, 4 544

wireless sensor networks, data center networks, optical networks, vehicular networks,
internet of things networks, etc., a wide range of applications may be possible. We discuss
KDN in different network scenarios in Section 8.3.7. The applications can be developed by
third-party vendors or customized by network operators to suit their requirements. The
application plane decouples the application logic from the hardware to express the desired
intents/policies in a centralized manner. Routing, load balancing, access control, firewalls,
etc. are typical examples of KDN applications.

7.2. Architecture of the Application Plane

The architecture of the application plane and its interface with other planes [438] are
given in Figure 11.

Figure 11. Architecture of the application plane, with different flows exchanged with other planes.

As evident from Figure 11, there are basically two sub-planes—the intent/policy
definition sub-plane and the intent/policy update sub-plane—in the application plane.
Note that the policy/intent definition sub-plane is enclosed within the policy/intent update
sub-plane. The purpose of the intent/policy definition sub-plane is to define policies and
intents using network administrators. Once intents and policies are defined, they can be
dynamically updated using the intent/policy update sub-plane using the rules/knowledge
received from the knowledge plane, the configurations received from the management
plane, and the network topology and statistics received from the control plane. Thus,
application policies and intents can be dynamically updated when the network state
changes. Note that, in the intent/policy update plane, there is a rule engine to infer
from knowledge/rules and other data received from other planes to produce decisions or
instructions to update the policies. As evident from Figure 11, both of these sub-planes
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enclose a set of applications. Note that some applications can be abstracted into a generic
application category. Thus, policies can be specified such that the base policies of the
base application are inherited by the derived (specific) applications. For instance, routing,
load balancing, and QoS provisioning can be abstracted into one traffic engineering base
class application. Therefore, an application policy defined for the traffic engineering
base application such as “The normalized network congestion must be maintained below
50%” is inherited by all the specific traffic engineering applications such as routing, load
balancing, and QoS provisioning, and it is not required to redefine the same policy in
those applications. However, each specific application inherited by a base application class
may have its own unique policies. For instance, the QoS provisioning application may
have a policy to “Give priority to video data”, which is not applicable to routing or load
balancing applications.

Note that the application plane communicates with the knowledge, control, and man-
agement planes with the help of a northbound API and a network service abstraction layer.
As reviewed in Section 5, the northbound API can be an interface from a network operat-
ing system, a RESTful-API, an intent-based API, or a high-level programming language.
This northbound interface directly interfaces with the network service abstraction layer,
which abstracts all network services and acts as the interface to communicate application
requirements to other planes and convey data, knowledge/rules from management, con-
trol, and knowledge planes to the application plane. As shown in Figure 11, descriptive
knowledge/rules, network topology and network statistics, and configurations flow from
the knowledge, control, and management planes, respectively. In the other direction,
from the application plane, intents flow to the knowledge plane, and policies flow to the
management and control planes.

7.3. Application Scenarios

Applications in KDN can be broadly categorized into traffic engineering, network
monitoring, security, network virtualization, cloud computing, big data, data center net-
working, and business applications. Each of these applications is discussed in detail in the
following sub-sections.

7.3.1. Traffic Engineering

Traffic engineering is the process of optimizing the performance and utilization of
network resources to ensure efficient traffic data flow. Traffic engineering applications can
achieve the purpose of traffic engineering in a variety of ways, which are described in the
following subsections.

Using Traffic Engineering Policies
Traffic engineering policies are a kind of set of rules that govern how traffic should be

routed through the network. The traffic patterns are dynamic and can change with time;
thus, traffic engineering policies should also be dynamically reconfigured considering the
traffic patterns [439]. Traffic shaping policies can be used to manage the rate at which traffic
flows enter or exit a network, preventing congestion and ensuring that network resources
are utilized efficiently [440]. Traffic isolation policies can be used to segment different types
of traffic flows from each other, improving network security and preventing malicious
traffic from affecting critical applications or services [441].

Routing
Routing is different from load-balancing, which involves determining the optimal path

for network traffic between two end points based on multiple factors such as the network
topology and status, routing policies, routing protocol, etc. The controller is responsible
for configuring the routing tables of each forwarding device by computing routes using
multiple factors. Thus, routing applications provide routing policies to the control plane
to use while computing routes. In [442], authors use machine learning to classify the
priority of each flow to match an application-specific requirement, and then multiple paths
are computed based on the application requirement. This work uses the Yen-K shortest
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path algorithm in computing routes, which has increased the availability of unloaded
paths for high-priority flows. Deep reinforcement learning with convolutional neural
networks has been utilized to route traffic considering application-level QoS parameters
in a KDN [443]. An application-aware routing scheme that considers different routing
parameters for different application classes to improve the performance of all application
classes has been studied in [444]. In particular, the preceding routing approach considers
end-to-end delay and link load for real-time applications, delay variation and link load
for streaming applications, and link load for miscellaneous applications, thus effectively
computing routes suitable for each application scenario.

Load-Balancing
Load-balancing refers to the process of distributing network traffic across multiple

paths or network devices to achieve better performance, higher availability, and faster
response times. In a KDN scenario, basically three types of load-balancing strategies can
be achieved:

• Static load-balancing: Static load-balancing refers to distributing network traffic using
multiple paths using fixed rules or policies, such as routing network traffic using
source or destination IP addresses, based on the type of application used, etc. However,
this approach is not the ideal approach for load-balancing, as the traffic load in a
real network scenario can be highly dynamic and fluctuating [445]. This approach
is totally application-based, where the load-balancing is determined by high-level
application policies;

• Dynamic load-balancing: Dynamic load-balancing adjusts the load-balancing rules
based on real-time network conditions without any influence from any high-level
policies. Dynamic load-balancing algorithms can use various metrics such as packet
loss, latency, and throughput to decide on how to distribute traffic on multiple paths.
For example, in [446], an algorithm for finding alternative best paths that have min-
imum link cost and low traffic flow is found when network congestion occurs on a
certain path. Even though dynamic load-balancing may achieve better performance
compared to static load-balancing, load-balancing entirely relying on real-time data
may be problematic in some instances. For instance, if, for some data, the machine
learning model predicts an erroneous output, then it can affect the load-balancing
process negatively. However, if application policies were also involved, the effect of
the erroneous knowledge could be reduced to some extent;

• Adaptive load-balancing: Adaptive load-balancing is the best approach suitable
to be deployed in knowledge-defined networks, as it combines both static and dy-
namic load-balancing techniques to achieve optimum load distribution by considering
present network status and application policies. For instance, in [447], the load status
and dynamic weight of each controller are considered along with pre-defined load
thresholds to adaptively achieve load-balancing. Some have used machine learning to
predict link state and then used the predictions as weights to calculate the optimum
path between network hosts [448]. A mechanism for load-balancing for distributed
controllers that monitors the imbalance state of the entire network and uses resource
consumption metrics for load-balancing to reduce communication among controllers
is presented in [449]. The service-oriented load-balancing concept is a type of adaptive
load-balancing scheme. In [450], data are collected in a cloud environment to measure
the delay of packets, which are used to spread the workload equitably by compar-
ing it with the round-robin scheduling policy of the applications. An application
is used to classify services, and load is balanced with the objective of maximizing
resource utilization and minimizing the response time of users, which is an adaptive
load-balancing approach [451].
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QoS Provisioning
By allocating traffic based on QoS needs, applications may ensure that their QoS

requirements are met [195]. Traffic that needs high bandwidth or low latency, for instance,
might be automatically routed along pathways that have been optimized for those particular
needs. Applications can be guaranteed to obtain the resources they require to operate well
in this way. Due to the presence of a knowledge layer, knowledge about the current network
conditions can be learned in real-time to provide the required resources to high-priority
traffic, such as video streams [452]. A QoS-aware flow rule aggregation that considers both
the flow rule capacity of the switches and the QoS requirements of applications has been
utilized in IoT networks [225]. Some have classified network traffic into application-level
QoS classes using machine learning, and a path is selected for routing those classified
packets based on minimum average link occupancy times or maximum average path
residual capacity [453].

7.3.2. Network Management

Network management applications define policies for different management tasks
such as fault management, mobility management, and energy management, which are
implemented in the management plane. The management plane in KDN will consider
both application policies and real-time network knowledge in arriving at management
decisions for different scenarios such as fault management, mobility management, and
energy management.

Fault Management
Fault management refers to the set of procedures and processes used to detect, iso-

late, and resolve faults that occur in the network. KDN can use knowledge generation
techniques to learn from past faults and adapt the network to prevent similar issues from
occurring in the future. Fault management involves several steps. First, the fault should
be identified, then isolated, and, finally, the network should be restored to normal opera-
tion. The network should be continuously monitored in order to identify faults and take
corrective actions in order to keep the network operational and ensure that user needs are
fulfilled. In SDN, approaches such as ndb (network debugging) are used to detect causes
of network failure by backtracing network events by collecting postcards received from
each packet at the switches [454]. Early solutions have conventional approaches such as
network checkpointing and rollback for failure recovery with the help of the centralized
controller [455]. A fault detection and recovery framework called SPIDER, which detects
link or node failures using stateful switches’ such as OpenState periodic link probing and
reroutes traffic flows in the event of failures, has been studied in [456]. Application failures
can negatively affect all underlying planes and cause them to function ineffectively. A
framework called LegoSDN has been proposed to recover from application failures, which
has enabled fast recovery times compared to controller reboots in the case of application fail-
ures [457]. Applications can cause interference with each other, degrading the performance
of the network. Thus, application interference detection and mitigation frameworks that
analyze the complex interaction behaviors of multiple applications to identify and avoid
unwanted network behaviors have been proposed [458]. Applications can also be used
for network troubleshooting, which involves monitoring network traffic to aid network
administrators in understanding the most likely network fault links so that humans can
take corrective actions as a maintenance step [459]. Furthermore, there are languages such
as FatTire to write network fault-tolerant programs that can specify the degree of fault
tolerance required to be used alongside fail-over mechanisms [460].

Mobility Management
Mobility management applications are used to manage the movement of network

users and their devices across different network domains. It should mensure that the
services are continued when the users move between different domains by tracking the
devices’ locations to seamlessly hand off connections between different network domains
such as cellular networks, Wi-Fi networks, vehicular networks, etc. Therefore, recent work
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has shed light on mobility management for efficient inter-domain and intra-domain han-
dover, which prevents packet loss and tunneling overhead to provide improved QoS to
mobile users [461]. A similar network monitoring framework uses an application policy
associated with fuzzy logic and a multi-path transmission control protocol for efficient
handover, avoiding the ping-pong effect [462]. A Light Virtual Access Point (LVAP) is a
software-based access point that runs on a virtual machine or container and provides wire-
less network access to client devices. LVAPs can be deployed on demand and dynamically
adjusted to adapt to changing network conditions. In [463], the authors show how LVAPs
can be used for efficient client handover in a global scope, which has proven to improve
the flexibility of management of wireless networks. Furthermore, mobility management
involves channel scheduling. An application policy that associates a channel scheduling
cooperation algorithm to enable multiple access points to cooperatively control centralized
downlink transmission to achieve higher system throughput and channel utilization by
avoiding co-channel interference has been studied in [464]. Another important task of
mobility management is the dynamic channel reservation, which dynamically allocates
spectrum. In [465], the optimal number of reserved channels is decided based on sec-
ondary user retainability and channel availability, while an application policy considers the
primary user channel availability minimum by monitoring the incoming traffic requests.
A Hierarchical Agglomerative Clustering (HAC) framework to control all sub-channels
in the network to decide on cluster merging in ultra-dense small cell networks with an
application policy to mitigate severe interference among small cell base stations has been
proposed in [466]. Furthermore, mobility management also includes offloading, such as
Wi-Fi device to device offloading from cellular networks when device to device communi-
cation is available [467]. By monitoring fluctuating traffic loads, work in [468] uses radio
resource allocation and transmit beamforming using optimization to allocate physical
resource blocks, user equipment, radio units, and the downlink transmit beamforming by
having an application policy to consider imperfect channel state information. Mobility
management also includes radio resource sharing. A framework known as LayBack, which
has an application policy to facilitate communication and computation resource sharing
among different wireless technologies and operators by organizing resources into layers,
uses KDN to manage fronthaul and backhaul resources, and coordinates the corporation
between different wireless technologies and operators, has been studied in [469]. OpenRa-
dio and SoftRAN are platforms that define policies to allow a software abstraction layer
for decoupling wireless protocol definition from the hardware to allow sharing of MAC
layers among different protocols for better handover, resource block allocation, etc. [470].
Open Radio Access Network (ORAN) is an emerging approach for designing and de-
ploying mobile network infrastructure that aims to create more interoperable wireless
networks [471]. Research in [471] suggests the integration of AI and machine learning into
ORAN so that KDN and ORAN can be integrated together for efficient wireless network
resource utilization and mobility management.

Energy Management
Energy management is a crucial application in a KDN that involves reducing net-

work power consumption while attaining other infrastructure goals such as less latency,
high throughput, high fault tolerance, etc., using specialized optimization algorithms and
application policies. For instance, applications can use simple high-level policies such
as shutting down or sleeping links or devices to reduce energy consumption [472]. An-
other energy-saving technique is Dynamic Voltage and Frequency Scaling (DVFS), where
the manager in KDN can manage the operating voltage and frequency of the switches
based on the knowledge of device workload to manage the energy of the devices [473].
Energy-aware routing has been employed with energy-aware application services such
as tunneling for fast rerouting, smooth node disabling, and detection of traffic spikes and
link failures, which has reduced the energy consumption of internet service providers
by 5% to 35% [474]. In [475], the authors discuss the feasibility of an application that
implements services in an ONOS network operating system to implement energy-aware
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traffic engineering strategies. Therefore, routing and traffic engineering can also be adapted
to optimize the energy efficiency of the network. Furthermore, applications can use net-
work virtualization to save energy of the network, as it reduces the number of physical
devices required. In [476], the authors use a multi-objective virtual network embedding
with the objectives of minimizing network congestion and energy consumption, where
they use a path service and a resource monitoring application in the manager. Network
function virtualization, along with an application policy to utilize a cluster head selection
algorithm in a blockchain-based distributed IoT network, has been utilized to save en-
ergy [477]. In [478], an integer linear programming optimization model is used to optimize
the energy consumption of IoT nodes by activating an optimal number of network function
virtualization nodes and assigning regular nodes to those activated by network function
virtualization. A task assignment and scheduling platform that is formulated as a deep Q
learning process strives to maximize energy efficiency by saving battery power under the
constraints of application dependence, thus minimizing energy consumption considering
the requirements of the applications [479].

7.3.3. Security

Security policies for access control, encryption, firewalls, attack/anomaly/intrusion
detection, etc. can be defined using security applications. Applications can enforce poli-
cies to detect and mitigate threats more quickly and effectively, helping to ensure the
integrity, availability, and confidentiality of network resources. KDN provides a platform
to check security policies to make sure that the network receives protection by preventing
security breaches.

Access Control and Encryption
Access Control (AC) mechanisms help ensure that only authorized users or devices

can access network resources. Applications can define policies for access control, which
will be integrated into flow rules by the controller and restrict traffic based on source and
destination addresses and ports. Encryption, on the other hand, protects sensitive data from
being disclosed to unauthorized parties. Some have proposed to implement access control
considering network resources, security requirements, reconfiguration conflicts, etc., which
implement both mandatory and discretionary AC [480]. As global-level network access con-
trol may not reflect fine-granular level access control, work in [481] suggests using user-level
and flow-level access control, where access tables are initiated by network administrators
and can be dynamically changed based on network activities. A controller-independent
application-level dynamic access controller that mitigates application to controller threats
by using 4 permission categories: read, add, update, and remove, has reduced application
abuse compared to static permission control [482]. Considering the fact that malicious
applications can launch hostile attacks using the northbound API, a secure application
management framework to granularly manage application permissions by analyzing the
legality of application permissions and using encrypted registration authorization has been
studied in [483]. Mandatory access control, which employs an application policy to use
extended attributes for access control based on security level, where the switch security
level is regarded as the attribute of the access control environment, has been studied in [484].
This extended attributes-based AC method also has a secure path planning method based
on particle swarm optimization for securing access data flow. A dynamic access control
scheme to control network resources with an application policy to use broadcast encryption
that deviates from updating permission lists to make sure that resources are available only
to authorized users has been proposed in [485]. A decentralized access control mechanism
called SILedger has been utilized based on blockchain and attribute-based encryption for
effective token-based authorization of applications in heterogeneous IoT domains, where
tokens are the currency of blockchain [486]. A framework known as P4-sKnock, which has
an application policy aligned with a P4-based two-level host authentication and access
control mechanism, where the first level introduces encrypted dynamic port knocking in
order to secure the dynamic port knocking sequence by encryption, and the second level
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follows an authentication measure using a challenge–response host identity verification
mechanism in order to authorize, quarantine, or block the host [487]. P4-sKnock prevents
man-in-the middle attacks, IP spoofing attacks, replay attacks, and provides post-port
knocking authentication. An administrative model to manage Role-Based Access Control
(RBAC) actions using custom fine-grained permissions to extend the capabilities of services
that define the authorization of network applications has been proposed in [488]. RBAC
creates custom operations to extend the capabilities of services and provide permissions to
administer AC. By using smart contracts for independent, immutable, verifiable policies
in blockchain, work in [489] uses blockchain for creating access control policies for IoT
devices, while providing a trackable policy management system to prevent forged policy
dissemination. Deviating from the static access control mechanism, Behavior-Based Access
Control (BEAM) defines policies to dynamically grant permissions based on network be-
havior, which can upgrade or downgrade assigned access permissions at run-time [490].
BEAM further verifies and builds trust for an application. In [491], attribute-based en-
cryption and certificate-based access control protocols are used to achieve access control,
while a blockchain is used to add various transactions among controllers, applications, and
switches where blocks are added using a consensus mechanism.

Virtual Private Networks (VPN)
To establish a safe connection between two networks over the internet, a virtual

private network is employed. It is possible to develop an application that constructs a
secure tunnel between two networks. MPLS VPNs rely on multiple protocols to function
correctly, which provide security, QoS, and flexibility in networks. In [492], based on the
network performance, the IPSec policy of the MPLS VPN tunnels is dynamically updated
to provide better security. A secure approach called software-defined VPN, where each
application is allocated its own overlay VPN and flow tables related to each VPN, are
pushed by the controller to switches to improve security by separating VPN traffic and
by utilizing service chaining [493]. A P4 switch-based concept for IpSec VPN, where P4
switches are served as tunnel end points for site-to-site and host-to-site applications without
the exchange of complex key exchange protocols, has been presented in [494].

Firewall
A firewall is a security system that monitors and controls incoming and outgoing

network traffic based on predetermined security rules. A firewall can be implemented
as an application that enforces policies to restrict or allow network traffic. In [495], the
authors present a concept called pre-firewall, which is a framework to monitor firewall
rules to avoid collision, redundancy, and overlapping issues, and present an algorithm to
resolve rule anomalies. A virtual firewall (ACLSwitch) that filters traffic across the network
at switch level using the OpenFlow protocol to distribute flow rules and defines policy
domains to allow different filtering configurations to apply to different switch domains
has been proposed in [496]. ACLSwitch allows subsets of switches to enforce different
security policies. Similarly, in [497], a network function virtualization-based virtual firewall
having policies to filter traffic with a Click module has been presented to efficiently use
network hardware resources, while having equivalent performance to a firewall based
on the POX controller. Another study uses network function virtualization to implement
a stateful firewall, which uses a set of guidelines and rules (policies) to avoid network-
hazardous connectivity [498]. A firewall called FlowTracker, which is a stateful firewall with
reduced controller processing and communication overhead, uses an adaptive connection
tracking policy to detect and monitor network traffic [499]. Similarly, in [500], a stateful
firewall is implemented in the controller to filter traffic based on the complete context of
incoming packets, having a policy to evaluate the entire context of traffic flows to filter
traffic. A framework called FleXight uses per-flow dynamic sampling to convey packet-
level information to the controller, which enforces a firewall application policy to detect
horizontal port scans [501]. An application known as ChainGuard, which provides security
to blockchains by filtering traffic to make sure that the origin of the traffic is legitimate,
where illegitimate packets will be intercepted by the firewall [502]. ChainGuard is capable
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of mitigating flooding attacks and providing access control functionality. Considering
the fact that firewall policies need to be changed when the types and sources of attacks
change, a computationally efficient firewall Rule Update Algorithm (RUA) to compute the
rules related to the updated policies while preserving non-updated policies is presented
in [503]. RUA is formulated as an Integer Linear Programming (ILP) problem to satisfy rule
protection and TCAM constraints with the objective of minimizing wasted bandwidth and
the number of rule placements. A firewall called P4Guard, which is a protocol-independent,
platform-agnostic software-based firewall that is configurable using a high level domain-
specific language to specify policies in order to specify packet processing logic using
P4 [504].

Anomaly/Attack/Intrusion Detection and Mitigation
Intrusion/anomaly/attack detection and prevention systems monitor network traffic

for signs of malicious activity and take actions to prevent it. These systems look for signs
of suspicious behavior or attempted attacks, which is different from the approach taken
by firewalls, which filter traffic based on a predetermined set of rules. These systems
will use one of signature-based detection, behavior-based detection, or anomaly-based
detection to detect attacks. Signature-based detection involves comparing network traffic
to a database of known attack signatures, while behavior-based detection looks for patterns
of activity that deviate from normal behavior. Anomaly detection uses statistical analysis
to identify traffic patterns that are unusual or unexpected [505]. Once attacks are detected,
KDN can install packet forwarding rules on switching devices to block the threat. The
application policy will determine which type of detection out of signature-, anomaly-, or
behavior-based detection will be utilized in the IDS.

A behavior-based Intrusion Detection and Prevention System (IDPS), with an ap-
plication policy to specifically detect port scanning using the port bingo algorithm and
denial of service attacks using flow statistics, has been investigated in [506]. This behavior-
based IDPS uses two rate-based connection monitoring algorithms, which are Credit-Based
Threshold Random Walk (CB-TRW) and Rate-Limiting (RL). In [507], the authors analyze
the performance of different machine learning techniques for an application that uses
anomaly-based intrusion detection to identify the classifier, which leads to a more secure
network. An intrusion detection system with an application policy to use signature-based
intrusion detection using a random forest classifier to detect and prevent denial of service
attacks has been studied in [508]. An anomaly-based intrusion detection system has been
used, which has an application policy to identify the attack type and the source of the attack
in a resource-constrained wireless network environment using an online change point
detector to monitor performance metrics that are impacted when the network is under
attack [509]. In collaborative intrusion detection, several intrusion detection nodes detect
intrusion at each node while mutually exchanging information such as attack signatures,
attack alarms, etc. between each other. A relatively new approach called Challenge-Based
Collaborative Intrusion Detection Networks (CBCIDN) is a detection framework with a
policy for identifying malicious nodes by calculating the nodes’ reputation by sending
a special message called a challenge message to the nodes [510]. CBCIDN is capable of
detecting newcomer attacks and betrayal attacks to quickly identify the malicious nodes. In
a distributed KDN control architecture, an intrusion detection system having an application
layer policy such that the controllers jointly train a deep learning and generative adversarial
networks-based global intrusion detection model without exchanging sub-network flows
for a vehicular ad hoc network has been investigated in [511]. Such a collaborative IDS has
been shown to be effective in both Independent Identically Distributed (IID) and non-IID
scenarios. Furthermore, for collaborative intrusion detection to have secure communica-
tion between each intrusion detection node, application policies have been defined to use
blockchain for establishing trust-based communication among detection nodes to propose
a Snort-Based Collaborative Intrusion Detection System (SBCIDS) [512]. SBCIDS receives
the latest updates from the controller to securely share the signatures among the Snort
nodes using the blockchain. A self-learning network intrusion detection system having an
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application policy to use Hidden Markov Models (HMMs) in a KDN, which can monitor
the whole network and learn from evolving network activity adaptively to react to intrusion
detection events, has been presented in [513]. Similarly, there have been numerous recent
research attempts at the implementation of self-learning intrusion detection systems in
KDN scenarios that have policies to use the prospect of machine learning to adapt and
evolve over time [514].

7.3.4. Network Virtualization

Network virtualization is the process of creating multiple logical networks on top of a
physical network infrastructure using network slicing, which allows multiple networks to
coexist and share the same physical resources, while each logical network appears as a sepa-
rate entity with its own network policies and configurations. Network virtualization allows
either network-level slicing that slices the physical network into multiple virtual networks
or flow-level slicing that slices the physical network based on different flows. FlowVisor is
the technology used for achieving network slicing by splitting the forwarding plane of the
networking devices into multiple slices, each with its own independent set of rules and
forwarding policies, which allows multiple tenants to securely share the same infrastructure
while maintaining their own isolated network topologies, routing, and forwarding policies.
Network virtualization allows multi-tenancy, which allows service providers to deploy
services over a single physical infrastructure in an isolated and cost-effective manner, sepa-
rated from services provided by other service providers [515]. Multi-tenancy makes the
network flexible in time, space, and the services provided. In [516], FlowVisor is used for
network slicing to improve network security by creating isolated virtual networks. FlowVi-
sor provides a centralized point of control for the network, allowing the administrator to
monitor and manage the traffic and resources of all the virtual networks. This makes it eas-
ier to experiment with new network protocols, test new applications, and isolate network
traffic for security purposes without affecting the rest of the network. Similarly, in [517],
VLAN tags are used instead of MAC addresses to identify users with an application policy
to slice a network based on roles using an authentication controller, which has resulted in a
lower flow setup latency. VeRTIGO is an extension of FlowVisor that allows the controller
to set the level of virtual network abstraction, allowing dynamic and advanced network
slicing [518]. VeRTIGO contains policies for more granular control over network resources,
enabling finer-grained management of network traffic and better isolation between tenants.
Additionally, VeRTIGO’s architecture is designed to be more scalable and flexible, allowing
for easier management of large-scale networks with high levels of traffic and complexity.
A Virtual Tenant Network (VTN) can be used to define policies for flow-based slicing,
which enables network operators to prioritize and segment traffic according to specific
criteria such as application type, user identity, or Quality of Service (QoS) requirements,
ensuring optimized network performance and security. An application having a routing
planning mechanism and a bandwidth resource planning mechanism has been utilized to
satisfy VTN user requests, which has increased the efficiency of routing assignment and
bandwidth utilization [519]. A multipath network virtualization scheme using policies
for network function virtualization that obtains a summary of network resources to select
and spread flow over multipaths, where network virtualization provides computing and
storage resources for flow splitting, packet reordering, etc., has been studied in [520]. A
network virtualization framework called Open Network Hypervisor (ONVisor) has been
designed with policies to provide isolated control and data planes per virtual network,
support for distributed operators, on-platform virtual network application development
and execution, and support for heterogeneous data planes [521]. By considering the short-
coming of efficiency in distributing physical network resources among virtual tenants in
the OpenVirtex network virtualization platform, an application for a QoS management
mechanism using a resource manager to distribute token buckets among virtual networks
according to their weights is proposed in [522]. Recently, researchers have suggested adding
applications with policies to integrate blockchain technology for network virtualization to
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protect owners of wireless infrastructure from double-spending attacks that allocate the
same radio frequency slice to multiple virtual wireless networks [523].

7.3.5. Big Data

Big data refers to extremely large (in volume, velocity, and variety) and complex data
sets that cannot be easily managed or processed using traditional data processing methods.
The ability to analyze and make sense of big data has become increasingly important in
various fields such as healthcare, business, scientific research, etc. KDN has been helpful in
solving issues that exist with big data applications such as data processing in cloud data
centers, data delivery, scheduling, etc. by efficiently managing the network [524]. On the
other hand, big data can help KDN with traffic engineering, mitigation of security attacks,
cross-layer design, etc. An efficient workload slicing scheme processes big data in order to
handle data-intensive applications in a multi-edge cloud environment, where inter-data
center data transfer is handled by an application policy based on an energy-aware traffic
flow scheduling technique [525]. A real-time big data streaming framework called Typhoon,
which operates based on a policy of partially offloading application layer data routing and
control to the network layer in KDN in order to achieve on-the-fly programmability and
high-performance data routing, has been studied in [526]. A big data simulation tool to
integrate big data applications with SDN is called BigDataSDNSim, which contains the big
data management system: Yet Another Resource Negotiator (YARN) and SDN-enabled
networks in a cloud computing environment has shown superior performance in Map-
Reduce applications [527]. BigDataSDNSim implements application policies such as the
Map-Reduce application selection policy and the Hadoop Distributed File System (HDFS)
replica placement policy. A service called AmoebaNet has been proposed to overcome
limitations existing in big data science, such as the last mile problem, scalability, and
programmability problems, by applying KDN to provide QoS-guaranteed services [528].
AmoebaNet allows application programs to program networks at runtime to optimize
for optimum performance. With the help of big data analytics applications, by using
multi-dimensional analysis of key performance indicators and machine learning to gener-
ate knowledge regarding traffic congestion, QoS can be managed in knowledge-defined
networks [529]. A web service manager called AWESoME is an application that identifies
and prioritizes the traffic of important web services by using big data algorithms to build
models describing the traffic of a large number of web services while installing flow rules
related to the services [530]. In KDN, big data can be analyzed using machine learning
techniques for clustering, forecasting, and managing traffic behaviors with the aid of big
data applications that define policies for network function virtualization [531]. Big data,
machine learning, KDN, and application policy-driven network function virtualization can
be integrated together to build a framework for self-organizing networks and for network
slicing [532].

7.3.6. Cloud Computing

Cloud computing refers to the delivery of on-demand computing resources, includ-
ing servers, storage, applications, and services, over the internet. In a cloud comput-
ing environment, by designing cloud computing applications with policies for network
function virtualization, network functions can be achieved by utilizing cloud computing
resources [533]. A framework that integrates cloud computing platforms with network
orchestration and compares single controller orchestration with orchestration with applica-
tion based network operations has been studied in [534]. An optimal resource allocation
and virtual machine placement model for multi-tier applications in large cloud data cen-
ters that optimizes the data center’s energy and communication costs that influence the
cloud’s performance has been investigated in [535]. In [536], QoS levels for each application
are defined, and queuing for different application flows is scheduled at the switches for
end-to-end QoS-guaranteed routing for cloud applications and services. A cloud-enabled
secure IoT architecture called CENSOR, which uses a scalable software remote attestation
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scheme that ensures integrity to achieve application-specific goals in the network, has
shown improved data communication and reduced overhead [537]. Cloud storage can be
secured by using cloud computing applications that have policies integrating blockchain
to create a deep trust between the transaction levels and the controller in KDN, which
provides reliability and versatility [538]. Cloud computing can be useful in the event of
natural or man-made disasters for providing rapid situational awareness. Driven by such
an application, work in [539] proposes an incident-supporting visual cloud computing solu-
tion to collect, compute, and consume at the network edge, coupled with cloud offloading
to a core computation using knowledge-defined networking.

7.3.7. Data Center Networking

Data center networking is the practice of connecting servers, storage devices, and
other computer resources within a data center. Data centers should be designed to provide
resources based on application requirements to provide services with less latency, intelligent
resource utilization, and improved efficiency. A Highly Efficient Switch Migration (HESM)
for load-balancing in an optical data center network, where switches are selected by
minimizing migration costs, has been studied in [540]. Applications define policies for
HESM, use multiple load metrics to measure the load of controllers, and select the optimal
target controller with the largest remaining resource. An application with a controller-proxy
method where the controller can dynamically delegate portions of event processing back
to data plane switches to reduce the workload of the controller has been proposed for
large-scale data center networks [541]. A congestion control technique for large data center
networks that has an application policy to allocate more bandwidth to burst flows and
reduce the bandwidth of background flows when switch congestion is detected has been
studied in [542]. An effective energy management application by switch-on–off policy
and an effective rerouting policy in a data center network that has achieved higher energy
efficiency is presented in [543].

7.3.8. Business Applications

Business applications are typically revenue-generating applications that define policies
that help organizations achieve their business goals. In [544], an intent-based northbound
interface with micro-services, and service-oriented design principles having a three-tier
application architecture and domain-driven design is proposed to define business-like ap-
plications. A framework known as FlowVista, which identifies flows using the Northbound
interface, where flows are matched directly by interacting with a business application, trans-
lates high-level business policies into low-level network flows [545]. Voice Over IP (VoIP)
is a very good example for the realization of FlowVista, as VoIP is driven by high-level busi-
ness policies. There has been a need for KDN-based high-performance computing solutions
for enhanced throughput and better utilization of bandwidth to meet business needs [546].
Enterprise Integration Pattern (EIP) is a combination of design patterns that combines
existing and new business applications in an enterprise environment. A communication
framework that enables communication between applications in an enterprise environment
and creates virtual local area networks using EIP by integrating with KDN to improve
programmability and global view has been studied in [547]. Similarly, in an enterprise
network, a context-aware communication framework using EIP to offer host anonymity by
replacing IP addresses with spoofed IP addresses and achieve context awareness through
KDN global visibility, where business application services route traffic based on business
service requirements rather than network layer information [548].
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7.3.9. Configuration

The application layer has network administrator-defined policies for network configu-
ration. Note that, in KDN architecture, these policies can be dynamically updated based on
the current network status or performance received by the application plane in the form of
descriptive knowledge or rules and based on current network configuration information
received from the management plane. This configuration application defines policies for
network backup and restore, compliance, logging and auditing, error handling, firmware
configuration, authentication, authorization, encryption, etc. The backup and restore policy
defines the frequency of backups, the location of backups, and the procedures for restoring
a switch configuration [549]. The compliance policy specifies the set of rules and regulations
that protocols such as OF-CONFIG should comply with, such as the OpenFlow specifi-
cation, security best practices, and industry specific-regulations [550]. The logging and
auditing policy specifies the types and events to be logged, the format of logs, the retention
period for log files, etc. The error handling policy specifies the procedures for handling
errors, such as error codes and messages that are used to indicate failures and errors during
configuration and management, retrying operations, reporting errors to the administrator,
etc. The authentication policy specifies the allowed authentication mechanisms and the
required credentials for providing access. The authorization policy specifies the types of
operations that are allowed or denied based on user roles, privileges, and permissions [551].
The encryption policy specifies the encryption algorithm and the key length to be used
for securing communication. The firmware configuration policy specifies the firmware
version that each device should run; the firmware upgrade policy specifies the schedule
for upgrades, target devices for upgrades, and the criteria for determining whether an
upgrade is necessary, as well as the policies for rollbacking firmware upgrades in case of
compatibility issues [552]. These policies will help configure the network swiftly to provide
better network management with minimal configuration problems.

Table 9 summarizes the details of different applications of the application layer.

Table 9. Network application scenarios.

Group Sub-Group Name Purpose Controller Performance

Traffic
Engineering

Policies

Roadmap [439] Reconfiguring policies for
traffic patterns SOX, Maestro Discuss performance of

traffic engineering

Sincon [440] Traffic shaping ONOS, POX CC throughput, forwarding times
increased by 3.8, 2.86

TSCH [441] Traffic isolation — High reliability in best effort traffic

Routing

AMPS [442] Application specific multipath
flow routing AMPS High availability of high priority

flow unloaded path

DRL-QoS [443] Application QoS aware routing —– Improved routing performance in
complex networks

App-RS [444] Application based
routing parameters Floodlight Better performance for all

application classes than CORouting

Load-
balancing

DLB [446] Dynamic load-balancing
considering congestion Floodlight High throughput, low delay, packet

loss in fat-tree DCN

ELB-MC [447] Controller load status, weight
based balancing Floodlight Low communication overhead in

control plane

ALBLP [448] Use link state prediction to
compute paths Ryu 23.7%, 11.7% better than OSPF,

Q-learning

Aloba [449] Use resource consumption metrics Floodlight Low overhead while reaching
network requirements

S-ICM [450] Uses measured network delay
of packets Onix Better at avoiding system saturation

than HFA, RR

SBLB [451] Maximize resource utilization,
minimize user response time Floodlight Significant reduction in average

response, reply time
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Table 9. Cont.

Group Sub-Group Name Purpose Controller Performance

Traffic
Engineering

QoS
provisioning

RL-QoS [195] Select routing algorithm for QoS
traffic flow Floodlight Best trade-off between QoS vs. QoE

ARVS [452] 2 QoS levels for base,
enhancement layer packets Floodlight Reduce 77.3% PLR, 51.4% coverage

against OpenQoS

Q-flag [225] Flow rule aggregation based on
application QoS POX Reduce average delay, QoS-violated

flows by 22%, 30%

QAR [453] Finds paths based on application
QoS requirements —– Better blocking probability,

dimension reduction

Network
management

Fault
management

NetRevert [455] Network checkpointing and
rollback —– Improvements on affected delay

during failure

SPIDER [456] Detects link failures using
stateful switches Ryu Losses are always lesser

than OpenFlow

LegoSDN [457] To recover from application
failures Floodlight Recover failed apps 3× faster than

controller reboot

MSAID [458] Application interference
detection, mitigation Floodlight,ONOS Detect known and unknown

interference within minutes

RADAR [459] Traffic monitoring for network
troubleshooting OpenDaylight Reduced cost and ties into

business metrics

FatTire [460] Write fault tolerant programs —– Able to respond extremely rapidly
to failures

Mobility
management

MM [461] Inter- and intra-domain handover —– Improved handover and resource
utilization efficiency

SVHAF [462] Fuzzy logic, MPTCP for handover —– No ping-pong effect, high QoS, low
undesired handover

APV [463] Using LVAPs for handover —– Handover resulted less significant
delays or packet losses

CCT [464] Channel scheduling cooperation
for downlink Ryu Good throughput, channel

utilization, packet loss rate

DCR-CRN [465] Decide optimal number of
reserved channels —– Reduced SU cost, network

unserviceable probability

HAC [466] HAC to mitigate interference —– Improves system payoff, less
interference, high SE

WiFi-D2D [467] Wi-Fi device-to-device offloading —– Improved offloading performance

JRRA-BO [468] Radio resource allocation,
beamforming optimization —– High achievable sumrate, low power

consumption

LayBack [469] Resource sharing among wireless
technologies —– Increased revenue rate compared

to CRAN

Openradio [470] Decouple wireless protocol
definition from hardware —– Can modify the PHY, MAC layers to

implement protocols

Energy
management

ECCKN [472] Policies to shutdown/sleep
links, devices —– Improved network lifetime, number

of alive, solo nodes

DVFS [473] Dynamic Voltage and
Frequency Scaling —– Low power consumption at any

operating frequency

SENAtoR [474] Energy aware routing and
services Floodlight Reduce energy consumption by 5%

to 35%

GETB [475] Services to test energy aware
traffic engineering ONOS Provides a platform to evaluate

energy efficiencies

CHS-NFV [477] Save energy using blockchain,
NFV, CHS algorithm Floodlight High throughput, low response time,

gas consumption

ILP-NFV [478] Optimize energy consumption
using NFV nodes Contiki Reduced communication energy

consumption, high PDR

EATS-DRL [479] Application based task scheduling
to reduce energy Ryu Upto 50% less time delay, 87%

energy saving
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Table 9. Cont.

Group Sub-Group Name Purpose Controller Performance

Security

Access
control

AC [480]
Resources, security,
reconfiguration conflicts aware
AC

—– Easier to detect and resolve conflicts

AC-
Integrate [481] User and flow level AC —– Design and feasibility of a global AC

system is studied

Controller-
DAC [482] Application level dynamic AC ODL, ONOS,

FL, Ryu
Prevent API abuse—less than 0.5%
performance overhead

SEAPP [483] Secure application management
framework for AC Floodlight Effective security with negligible

overhead

E-ABAC [484] Extended attributes based AC POX Effective access control with little
impact on response time

BENBI [485] Dynamic AC using broadcast
encryption Floodlight Scalable as cost is independent of

SDN entities

SILedger [486] Decentralized AC using
blockchain, encryption —– Effective AC with negligible

overhead

P4-sKnock [487] P4-based 2-level host
authentication, AC ONOS Authenticate a new host within

500 ms, prevent attacks

RBAC [488] Role-based AC using custom
permissions Floodlight Feasibility of custom permissions

enabling AC is studied

SC [489] Use blockchain for creating
AC policies SDN-WISE Node size does not affect resource

access delay, throughput

BEAM [490] Behavior-based AC —– No performance analysis presented

PBAC [491] Encryption, certificate based AC
using blockchain —– Prevent several potential attacks,

better performance

VPN

MPLS-
VPN [492]

Update IPSec policy of the MPLS
VPN tunnels —– Results in QoS improvement

SD-VPN [493] Each application is allocated with
own overlay VPN OpenDaylight Improves scalability of overlay VPN,

security, low cost

P4-ipsec [494] P4 switch-based concept for
IpSec VPN ODL, ONOS Security use cases have benefit

from P4

Firewall

Pre-
Firewall [495]

Monitor firewall rules to avoid
collision, redundancy Floodlight No performance evaluation

presented

ACLSwitch [496] Filter traffic at switch domains Ryu Control network behavior
holistically, compartmentally

FlowTracker [499] A stateful firewall with adaptive
connection tracking POX Low controller processing and

overhead, latency increment

SFE-SBS [500] Context aware stateful firewall POX Distributed controllers perform
better than centralized

FleXight [501] Detect horizontal port scans —– Detects 99% susceptible victims with
0.75% overhead

ChainGuard [502] Filter traffic based on source
legitimacy for BCs Floodlight Mitigate DoS and DDoS

flooding attacks

DRP [503] Firewall rule updating policy
using ILP Ryu Less computation time to have

optimized rule placement

P4guard [504] Protocol independent, platform
agnostic P4 firewall ClickOS Faster packet processing time, lower

network latency
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Table 9. Cont.

Group Sub-Group Name Purpose Controller Performance

Security

Anomaly/
Attack/
Intrusion
detection

IDPS-PB [506] Behavior-based intrusion
detection:port scanning, DoS POX False positive rate decrease with

threshold increment

ABID-ML [507] Anomaly-based intrusion detection
using ML —– Decision tree ML classifier has the

best performance

EID [508] Signature-based intrusion detection
for DoS —– Classification accuracy reaches

99.7% for random forest

CDID [509] Attack and source identifying
anomaly detection —– Identifying probability 0.89, 0.93 for

centralized, distributed architectures

CIDN [510] Challenge-based collaborative
intrusion detection POX Resist the newcomer attack and

betrayal attack

CIDS [511] Collaborative intrusion detection
using ML —– Good precision, recall, accuracy,

F1-score

SBCIDN [512] Blockchain for trust-based
communication in CID Ryu 96% true positive rate for detection

HMM-
NIDS [513] Self-learning IDS using HMM Floodlight Packet flagged percentage for

different datasets are shown

ML-NIDS [514] Self-learning IDS using GRU-RNN POX 89% and 99% accuracy for
NSL–KDD, CICIDS2017

Network
virtualization —–

FS-VANET [515] Multi-tenancy in multiple service
provider networks —– No performance analysis is

presented

FlowVisor [516] Network slicing using MAC POX Results on tenant isolation is
presented

FlowVisor-
RB [517]

Role-based network slicing using
VLAN tags Floodlight Flow setup latency reduced by 14%

to 60%

VeRTIGO [518] Advanced and dynamic network
slicing —– No performance analysis presented

DRA-VTN [519] Routing and resource planning in
a VTN —– High routing assignment efficiency,

bandwidth utilization increment

MNFV [520] Multipath network function
virtualization —– Superior performance wrt.

load balancing

ONVisor [521] Network virtualization framework ONOS Low control plane, similar data
plane performance

T-AQoS-
VN [522] QoS control in virtual networks —– 1.6 times performance improvement

vs. other approaches

ECB-WNV [523] Secure network virtualization
with blockchain —– High per user throughput when

network is overloaded

Big data —–

SDB–BDS [524] Management of big data ONIX,POX,Ryu,FL Use cases are discussed

ODM-BD [525] Decision making for big data
processing —– Low energy consumption,

delay, cost

Typhoon [526] Big data streaming framework Floodlight Better throughput, management of
running applications

BigDataSDN-
Sim [527]

A simulator for analyzing big data
applications Floodlight Improve performance of

MapReduce applications

AmoebaNet [528] QoS guaranteed network service
for big data ONOS Solves last mile and scalability

problems in big data

BD-QoS [529] Big data technologies to manage
QoS POX Used ML to discover correlations,

make predictions

AWESoME [530] A web service manager application
for BD —– Scalable, negligible load,

reproducible

BD-ML-
NFV [531]

Apply ML, NFV for big data
traffic clustering —– High accuracy in traffic clustering,

forecasting

BD-ML-
NFVS [532]

Apply ML, NFV for big data
network slicing —– High accuracy in traffic

classification, took 5.7 min
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Table 9. Cont.

Group Sub-Group Name Purpose Controller Performance

Cloud
computing —–

NFV-C [533] NFV in cloud computing —– Reduce server response time,
improve QoE

CC-O [534] Orchestration integration with
cloud computing OpenDaylight Setup delay time varies in range

2.5–5 s

ENA-VM [535] Energy, apps, network aware
VM placement —–

Minimizes energy consumption,
placement cost, communication
traffic

CENSOR [537] QoS guaranteed routing for
cloud applications —– Feasible and effective for a

SmartCity usecase

Blk-
sdotcloud [538]

Blockchain-based security for
clouds OpenDaylight Better throughput, response time,

fast file transformation

IS-VCC [539] Incident supporting visual cloud
computing solution —– High QoE, throughput, low latency,

congestion

Data
center
networking

—–

HESM [540] Switch migration for controller
load balancing Ryu Reduce migration cost, improved

load-balancing

Cont-
proxy [541]

Network management of data
centers Floodlight Reduce controller workload,

improve scalability

SDTCP [542] Congestion control of large
data centers Floodlight Burst flows: High tolerance, Short

flows: better flow completion time

ERM-DC [543] Resource management application
in data center

ODL, POX,
NOX

77%, 37%, 63%—energy saving, RT
delay, bandwidth utilization

Business —–

IBA [544] Intent-based business applications ONOS Appropriate, effective, realizable,
practical for business applications

FlowVista [545] Translate business policies to
network flows OpenDaylight Portability, low bandwidth,

integratability

HPC-BE [546] High performance computing for
business environment —– 60–80% bandwidth utilization,

45–60% throughput

EIP-CF [547] Enterprise integration pattern
communication framework Ryu Improved security, efficiency,

reliability of enterprise networks

CACS [548] Context aware communication
framework for business Ryu Protects anonymity, computationally

complexity is O(N)

8. Discussion

As reviewed, many researchers have recently generated knowledge to aid in making
network decisions. Even though the architecture of KDN was proposed by researchers
in [27] about two decades ago, it had not gained recognition due to the technology gap
until very recently, when machine learning techniques had been well developed and
hardware resources could cope with the demanding resources of KDN. According to our
best knowledge, we are the first to conduct a survey on knowledge-defined networking. In
this section, we discuss the benefits, challenges, design guidelines, and ongoing research of
KDN.

8.1. Benefits

Compared to SDN, KDN architecture brings many benefits, such as enhanced au-
tomation and intelligence, higher adaptability, reduced downtime, improved security, etc.,
which are discussed below.

8.1.1. Enhanced Automation and Intelligence

KDN typically uses ML to learn from data, making it more intelligent and efficient.
This intelligence allows for higher automation, reducing human intervention in the man-
agement of networks as much as possible. Management of conventional networks has
been achieved using a manual approach, where network administrators define static con-
figurations for the network devices using a CLI. Such manual approaches are error-prone,
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consume a lot of time, and cannot dynamically adapt to network changes. SDN provides
a centralized platform for network management and makes it more easier than a manual
approach; however, SDN network management is based on static application policies. KDN
can automate network management by dynamically updating application configuration
policies based on knowledge of network status to automatically configure the network with-
out human intervention. KDN learns from large amounts of data to identify patterns and
anomalies, allowing the network to automatically adapt and optimize network operations.
For instance, the KDN can automatically adjust network resource allocation based on traffic
patterns to ensure that critical applications receive more resources. Maintenance can also
be automated using the concept of predictive maintenance, which uses the data collected
about device statistics, event logs, etc. as input to the machine learning models to predict
whether maintenance is required or not. If maintenance is required, network administrators
can take proactive steps for maintenance before the issues become problematic. Repetitive
network management tasks such as device configuration and software updating can be
automated using KDN, where the network will be monitored using the data collected from
the devices and configured when required without human intervention.

8.1.2. Higher Adaptability

KDN has a more flexible network architecture that can easily adapt to changing
network environments, which includes the ability to quickly add or remove network
devices and services and the ability to scale network resources up or down as required.
KDN can analyze vast amounts of data, identify patterns, and adapt network operations
accordingly. One way of achieving adaptability is by automatically adjusting network
resources based on knowledge generated by analyzing traffic patterns using machine
learning. In such a case, for instance, if the knowledge plane detects very high traffic, the
management plane can allocate more resources such as energy, bandwidth, etc. to make
sure that the network operates swiftly without performance issues. After some time, when
it detects low traffic, resource allocation can be dynamically reduced. Another example that
can be obtained from fault management is the ability of KDN to adapt to link failures, where
in such cases, the traffic can be rerouted in alternative paths, ensuring that the network
operates with minimal interruptions. On the other hand, when new devices are introduced
into the network, these devices can be automatically configured using the management
plane, and network policies in the application plane can be adjusted to accommodate
these devices. Furthermore, KDN can learn from data to generate knowledge or rules to
adjust network policies, optimizing network performance over time. In this manner, it can
dynamically adapt to network changes in real time.

8.1.3. Reduced Downtime

In fault management, machine learning can be used to analyze traffic patterns to
predict potential device or link failures even before they really occur, so that network
administrators can prevent such failures by proactively attending to affected devices either
by repairing or replacing them. Moreover, KDN can automatically detect network faults
such as malfunctioning of devices by analyzing patterns of data to generate knowledge
on device functionality so that malfunctioning devices can be isolated. Another example
is detecting malicious activities of network devices, where KDN can in realtime analyze
traffic patterns, security logs, etc. to detect any anomaly in a network device and can take
necessary actions. For instance, if malware is detected on a device, KDN can take action to
immediately isolate such devices to prevent it from spreading to other parts of the network.
In case of such device/link failures or device anomaly detection, KDN can automatically
reroute traffic through alternative paths or automatically switch to backup devices or links,
making sure that the network operates with fewer interruptions and minimizing the impact
of failures or intrusions on network operations.
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8.1.4. Improved Security

Using network data, KDN can learn, using either machine learning or any other
heuristic model-based method, the behavior of normal network traffic and traffic with
anomalies. When an anomaly is detected, it indicates a security threat. For instance, if there
is an unusual amount of traffic coming from a user, such suspicious users can be isolated or
reported to network administrators to make decisions. Additionally, if KDN uses machine
learning to identify a malware attack, it may instantly isolate the affected device to stop it
from spreading. To train machine learning models to accurately identify unknown assaults,
they can be synthesized from data from existing attacks using semi-supervised learning
techniques such as variational autoencoders, generative adversarial networks, etc. This
allows the detection of unknown attacks by KDN systems that otherwise may have gone
undetected in SDN systems. Furthermore, using the prospect of knowledge plane, KDN
can be used to detect different types of attacks, such as DDoS attacks, TCP–SYN attacks,
ICMP flood attacks, malware attacks, spoofing attacks, injection attacks, etc. allowing the
detection of a vast variety of attacks, where appropriate actions can be taken based on
the type of attack detected, thus improving the overall security of the network. Therefore,
KDN’s machine learning algorithms allow detection and response to such threats more
effectively than traditional network security measures.

8.1.5. Simplified Network Management

KDN can use ML to automate many of the routine tasks involved in managing the
network. KDN architecture has a logically separated management plane dedicated to
network management tasks. For instance, the KDN management plane can dynamically
allocate bandwidth, allocate spectrum, schedule channels, offload data, etc. by automat-
ically analyzing the mobility patterns of wireless devices and considering appropriate
mobility management policies. KDN can automate the process of configuring network
devices, which can save time and effort of network administrators. When there are new
devices in the network, KDN can automatically detect and configure them without human
involvement. It can further simplify troubleshooting by providing network administrators
with real-time insights into network performance and potential issues, which will help
them identify and resolve network problems. KDN can use predictive analytics, that is,
predicting problems in the network even before they occur, using data analysis techniques
to take proactive measures to prevent them. KDN allows centralized network management,
which enables network administrators to manage all network devices from a single loca-
tion, similar to SDN. However, the management in KDN is more simplified than in SDN,
as routine tasks such as device configuration can be automated, while the configuration
policies and management policies will have to be defined by the network administrators
only once, and the defined policies can be dynamically updated using the knowledge or
rules generated from the knowledge plane based on the network status to provide adaptive
network management.

8.1.6. Better Network Performance

As discussed in the policy enforcement section, a policy engine can be used to convert
high-level policies into rules by considering the policy requirements and in-network knowl-
edge. Consider a network monitoring task that involves monitoring the resource utilization
of network devices. KDN can improve resource utilization by identifying and eliminating
network inefficiencies, which include identifying underutilized network resources and
reallocating them to areas of the network that require resources. Network performance
can be improved by real-time network monitoring for fault management, where faults in
the network can be detected in real time using fault management policies and in-network
knowledge, which can help network administrators quickly identify and troubleshoot
network issues. Predictive network analysis can be used to predict events even before they
occur, such as network congestion, possible device failure, loss of communication with
the base station, etc., where early actions can be taken to reduce undesired effects. For
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instance, by predicting whether a mobile device is likely to have a loss of communication
with the base station, a handover mechanism can be activated to assign the mobile device
to an available base station before the loss of communication with the current base-station
occurs, such that the mobile device’s communication loss time is minimized. KDN can
automatically optimize network infrastructure based on network usage patterns, which
includes identifying bottlenecks and adjusting the network resources to ensure that traffic
flows smoothly. KDN can shape traffic in real time by dynamically allocating resources
based on traffic patterns, which will ensure that critical applications have the necessary
resources such as energy, bandwidth, etc. to operate efficiently and a high priority in
forwarding traffic, while non-critical traffic is deprioritized.

8.1.7. Enhanced User Experience

KDN can improve network traffic routing through efficient resource allocation and
knowledge-based routing optimization, which can help improve network speed and reduce
latency so that users can access network resources quickly and easily even during periods of
high network traffic. Compared to SDN, KDN can have a higher level of consistent network
performance as it optimizes network resources based on usage patterns, allowing users to
use the network with minimal performance issues. The network reliability is much higher
in KDN due to detecting and proactively correcting network issues even before they affect
the users with the help of machine learning, which will help reduce network downtime
and make sure users obtain continuous access to network resources. Furthermore, users
feel more secure in a KDN scenario than in an SDN scenario, as the knowledge plane can
detect diverse threats in real time and take corrective actions to have a minimum impact
on the end user experience. Furthermore, user application performance can be improved
by prioritizing network traffic based on the criticality of the application or using the QoS
requirements of the specific application such that critical applications or applications with
strict QoS requirements are prioritized over others. In the knowledge composition plane,
user intent is considered when orchestrating rules from the composed knowledge. Thus,
application plane policies are updated such that they are aligned with the high-level intents
of the users and, at the same time, based on network performance. Thus, in the policy
update process, high-level user intentions will not be violated, which will cause the KDN
to evolve over time without violating the principle of adhering to cater the requirements of
the end user.

8.1.8. Improved Network Visibility

KDN collects a wider variety of data compared to SDN. Non-conventional data, such
as device sensor data, can be collected by the management plane to generate knowledge and
gain more insight into the network infrastructure’s availability, health, status, etc. In SDN,
information-centric decisions are made based on collected information without generating
knowledge or rules from it. However, knowledge has more decision-making power than
raw data or information, as new patterns or concepts can be inferred from existing data.
Thus, the generated knowledge provides more insight into the underlying network than
information or raw data, thus providing a higher level of visibility into the network. Thus,
improved visibility due to knowledge generation can affect the management and control
planes to provide better network management and control decisions. KDN can provide
granular network insight, including network performance at the device and application
level, which helps identify any issue caused by the specific devices or applications. KDN can
collect data on user behavior, including the applications that are being used and how much
of each resource is consumed, which will help identify underutilization or overutilization.
KDN can collect data such as traffic patterns, network device status information, network
device resource utilization information, etc. to analyze patterns in the collected data using
machine learning to obtain complete visibility on the network’s performance, allowing it to
identify areas for improvement and take corrective actions.
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8.2. Challenges

As with any paradigm, we can identify challenges in knowledge-defined networks as
well. The following subsections will discuss each of the identified challenges in KDN along
with potential solutions for the challenges, if there are any.

8.2.1. Data

Obtaining data, in terms of both quality and quantity, is a challenge in KDN, as it relies
heavily on the accuracy and completeness of the data for training machine learning models
or to generate knowledge using any other model-based technique in order to self-learn and
optimize network performance. In terms of quantity, for training machine learning models
such as deep learning models, an enormous amount of data is required to obtain satisfactory
classification or regression performance [553]. Organizations may further have difficulty
collecting a large amount of data for machine learning training from real-world networks.

The data collected for training the knowledge generation models must be complete,
which means that they should represent every possible state. Thus, when training, data
from multiple networks under multiple network conditions must be obtained to train
for every possible instance of the network. In instances where complete data cannot
be obtained from a real network, the network administrators can alternatively generate
synthetic data from existing data to represent unknown/new data. For instance, consider
data related to DDoS attack samples, which only represent data related to a limited set of
attack patterns. In order to represent unknown or new attack data, attack samples can be
generated by using generative adversarial networks, and ML models can be trained on
a combination of original and synthetic data representing a complete security dataset in
order to have better performance. A collection of data that is incomplete, inconsistent, or
biased can lead to incorrect or unreliable results, which is problematic when optimizing a
complex system such as a network. Furthermore, these data must also be highly relevant
to the learning task, and additional features may need to be extracted before learning. For
example, in order to obtain a better classification performance for a network intrusion
detection system using machine learning, specific data related to network flows, event
logs, security events, etc. may need to be collected, and more pre-processing in terms of
feature selection may need to be carried out to increase classification accuracy. Another
requirement of the data is that they should not be outdated. However, due to the fact that
networks are dynamic, data can become outdated easily. When making predictions, they
should be based on the latest data that represents the state of the network. Predicting from
outdated data can lead to sub-optimal performance, as the outdated data do not represent
the current state of the network.

Therefore, gathering a large quantity of high-quality (relevant, complete, unbiased, con-
sistent, and non-outdated) data is challenging, as it requires the careful attention of experts.

8.2.2. Integration with Legacy Systems

Even though programmable networking paradigms such as KDN and SDN have
been proposed, many systems still rely on traditional networking systems that may not be
compatible with KDN systems. KDN involves the logical decoupling of knowledge, man-
agement, and control planes from forwarding elements, whereas in traditional networks
there is no knowledge plane while management and control planes are not decoupled from
the data plane. These legacy networks have not been designed with the same level of flexi-
bility and interoperability inherited by KDNs. In order for the legacy systems to become
compatible with KDNs, the organizations may need to invest in making them compatible.
The organizations may need to change the underlying infrastructure in order to convert
their legacy networks to be compatible with KDNs. For example, data should be collected
in KDN for knowledge generation. Thus, it will be difficult to convert a legacy network
to send data to management and control planes, as legacy systems may not support the
collection of certain types of data. The legacy networks support manual configuration and
management. On the other hand, KDN relies on the automation of network configura-
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tion dynamically adapting to changing network conditions, including the least amount of
human intervention, which may be difficult to achieve with old legacy systems designed
to be configured by humans. Furthermore, conventional networks may not support API
compatibility for programmability. As the control is not logically centralized in legacy
networks, they may not provide the network global level visibility and control required for
the proper functioning of the KDN. Thus, a lack of visibility can act as a barrier to collecting
the required data, which is essential for training or performing real-time predictions using
machine learning models. Thus, because of the requirement for significant infrastructure
changes, lack of flexibility, and difficulty in achieving the automation capability required
for KDN, it is difficult to integrate KDN with legacy networks.

However, there are alternative proposals to integrate legacy systems with KDN with-
out changing the legacy networks using a hybrid control approach. As discussed above,
pure KDN is difficult to integrate with legacy networks. As discussed in Section 5.3.1,
a hybrid KDN switch can be implemented with a local control agent that can be used
for legacy network routing by exchanging control information between the forwarding
elements, in addition to a KDN module that can be used for communication related to
KDN. Thus, in this architecture, KDN and legacy networks can coexist.

8.2.3. Privacy

Privacy concerns can appear as the KDN paradigm involves the collection of data for
network optimization by knowledge generation, which may include sensitive information
of users such as user identities, confidential information of users and devices, sensitive
sensor data such as private audio, video, or images, etc. There is a risk of the dissemination
of such sensitive data to third parties, which can ruin the reputation of users. Thus, in
KDN, private data should be handled in an ethical and secure manner. This paves the way
for additional requirements for data protection measures such as encryption, access control,
and monitoring to make sure that only authorized entities handle data and sensitive data
are not disclosed to external parties. Furthermore, machine learning models should be
trained to give fair and ethical results. If the knowledge generated by them produces
a discriminatory decision, it can affect the whole organization. Thus, machine learning
models should be trained with unbiased and non-discriminatory data to produce ethical
results without discriminating against individuals. For example, if a machine learning
model is trained in a discriminative manner to classify traffic coming from a certain group
of users as lower priority, then that group of users’ traffic will most likely be given low
priority under any network scenario. The ethical way to train a model is without such
discrimination, considering the dynamics of the network with the intention of improving
network performance. Therefore, in order to mitigate privacy risk in KDN, organizations
should implement robust data protection measures and ensure that knowledge generation
models are trained without bias or discrimination.

8.2.4. Interoperability

At the time of writing, all control, management, knowledge, application, and data
planes have well-defined standard protocols and interfaces for communication with each
other, as discussed in this survey. However, different vendors may use different data
formats and different machine learning or knowledge-generating models or algorithms,
knowledge representation formats, rule representation formats, etc., making it difficult
to integrate KDN technologies from multiple vendors into one platform. This can lead
to issues with data quality, compatibility, and performance among different KDN plat-
forms from different vendors. Furthermore, there is a lack of approaches for performance
evaluation of the knowledge plane. Due to that, it will be difficult to compare the perfor-
mance of KDN solutions from different networks, making it difficult to evaluate which
solutions are better. For example, consider two KDN networks that detect intrusion using
a supervised learning approach and an unsupervised learning approach. It is difficult to
compare the classification performance of the two approaches, as they are trained from data
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generated from two different KDN networks that may use different protocols, different
feature selection approaches, different machine learning approaches, etc.

8.2.5. Scalability

One of the strongest scalability issues found in the KDN architecture is the amount of
data collected for generating knowledge. KDN systems must obtain information from a
variety of sources, including sensors, network devices, etc. The amount of data that has
to be gathered and evaluated grows as a network becomes bigger. Due to the enormous
quantity of data, the knowledge plane could find it difficult to develop knowledge quickly,
which might cause a performance bottleneck. Machine learning models require significant
computational and memory resources to run, even at low data sizes. As the size of the data
increases, the machine learning algorithms may take a long time to process and may have
decreased accuracy. Furthermore, KDN inherits all scalability issues found in the SDN
paradigm, such as the controller scalability issue where the controller becomes overloaded
in large networks, the switch scalability issue where the flow table size increases beyond
the switches’ memory capacities, etc.

In order to increase scalability, organizations may employ several strategies. Machine
learning models such as deep learning may be used, which can process large amounts
of data quickly [554]. Instead of a physically centralized knowledge plane, a physically
distributed knowledge plane at the network edge may be employed to distribute the
workload among multiple machine learning models whose output may be combined to
generate the final output. Furthermore, management and control planes may also be
implemented as a distributed approach using one of the distributed architectures discussed
in Section 5.3.1 in order to improve the scalability of the KDN paradigm.

8.2.6. Reliability

The primary reliability challenge associated with KDN lies in the reliability of the
data. If the data collected by sensors or devices are inaccurate or incomplete, the KDN
system may make incorrect decisions, which can lead to poor network performance and
increased security risks. Another reliability issue is the reliability of the machine learning
or rule-based model for knowledge generation. For example, a machine learning model
for traffic classification may produce subpar classification results (low accuracy, F1 score,
etc.) even after being trained on comprehensive and reliable data, decreasing the system’s
dependability. Furthermore, data may not be able to be obtained from all the devices owing
to environmental variables such as device failure, system congestion, etc. In such instances,
the decisions made by the KDN systems may be inaccurate or incomplete.

To overcome these challenges, high-quality devices and sensors can be utilized in the
network to ensure that correct data are received and to use machine learning algorithms
trained very well for accuracy and reliability that can detect errors in data and correct
themselves. Before deploying knowledge generation models in a KDN, the network
administrators must make sure that the performance of the knowledge generation model is
satisfactory for a test dataset in terms of performance evaluation metrics such as accuracy,
F1-score, precision, etc. Furthermore, KDN systems should have additional fail-over
systems to function in the case of device failures or other environmental factors.

8.2.7. Consistency

Consistency in the KDN environment can happen due to changes in the network
environment, such as the addition of new devices to the system or changes to network
policies. If the KDN system cannot adapt quickly to changes in the network environment,
incorrect decisions may be taken by the system. If the knowledge plane is implemented as a
physically distributed system and if such a system has replicas of data, data inconsistencies
in replicas may lead to contradictory predictions from the machine learning models that
make predictions based on such inconsistent data.
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Organizations can implement change management processes to ensure that KDN
systems quickly adapt to network changes. In the case of a distributed knowledge plane
having replicas of data, such data should be consistent, either using eventual consistency
or a strong consistency approach, to make sure that the latest version of updated data is
reflected in each replicate.

8.2.8. Implementation and Maintenance Cost

KDN requires additional software, hardware, and human resources to collect, store,
and analyze data using a machine learning model or another heuristic model-based method
compared to SDN. The hardware and software costs are expensive to purchase and main-
tain, making it challenging for organizations to justify the investment. Hardware such as
processing units, memory resources, additional sensors for data capture, data integration
middleware, etc., and additional software such as database engines, machine learning
models, knowledge-representing data structures, rule engines, rule generators, ontology
editors, etc. are required. Particularly, machine learning models require high computational
and memory resources to implement, which can make it challenging to purchase hardware
satisfying such requirements. In order to reduce the cost of software, organizations may
consider open-source options. Furthermore, KDN requires special personnel with experi-
ence in networking, data analysis, machine learning, knowledge representation models,
communication protocols, languages, etc. who may provide their services for a high cost. If
trained personnel are not available, they need to be educated and trained to implement
and maintain KDN, which will also cost organizations.

8.2.9. Lack of Transparency

Decisions made by the control and management planes of KDN are based on knowl-
edge generated by knowledge generation models. However, these models are difficult to
be interpreted and explained. This lack of transparency can make it difficult to understand
why a decision was made, especially in cases where the decisions are unexpected or seem
contradictory. Furthermore, it will be challenging to identify the underlying reason for a
misclassification caused by a machine learning algorithm due to a performance issue.

Using explainable machine learning approaches, which make machine learning models
easier to analyze and comprehend, is one way to address the transparency problem stated
above. Using explainable ML, network administrators will benefit from having a better
understanding of how machine learning models operate by detecting the root causes
of issues.

8.2.10. Additional Resources

In KDN, all application policy updates, network monitoring and configuration, and
control plane decisions are knowledge-driven. In order to understand knowledge or rules
produced from the knowledge plane, all application, management, and control planes
must allocate additional resources to implement rule engines. A rule engine’s purpose
is to execute rules or make inferences from knowledge and make decisions based on the
rule/knowledge evaluation. Rule engines infer from knowledge/rules using techniques
such as forward chaining and backward chaining, which require considerable software and
hardware resources for implementation. Furthermore, the whole knowledge plane, which
includes knowledge generation models, knowledge bases, ontology editors, rule generators,
etc., needs both software and hardware resources for knowledge or rule generation, storage,
and sharing. On the other hand, in SDN, none of these additional resources are required,
as it does not have a knowledge plane.
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8.3. Design Guidelines

The success of a knowledge-defined network will depend on how effectively the
five layers and interfaces of the KDN architecture operate. For better functioning of a
KDN, all hardware, software, and human resources should be properly utilized with the
collaboration of vendors, researchers, and communities. In this section, we discuss how
each layer’s performance can be improved with better design.

8.3.1. Switch Design

Ternary Content Addressable Memory (TCAM) is the common choice for storing a
flow table in a switch. Along with TCAM, OpenFlow switches are usually designed with
Static Random Access Memory (SRAM) or Field-Programmable Gate Array (FPGA) and a
Graphics Processing Unit (GPU) or Central Processing Unit (CPU) [555]. OpenState has an
abstraction as a superset of OpenFlow primitives to enable stateful handling of OpenFlow
rules using extended finite state machines inside forwarding devices, which augment the
capability and flexibility of the switches [296]. The Programming Protocol Independent
Packet Processor (P4) allows the controller to specify the high-level functionality of the
switches, which will be compiled into a control flow graph that can be mapped to different
switches [556]. As the memory of switches is limited and may not be sufficient to store all
rules when the network becomes large, several strategies, such as timeout and eviction
mechanisms, flow rule aggregation, flow rule split and distribute, flow rule caching, etc., can
be employed to store the rules in the limited memory [557]. In order to cope with increasing
demands, such as in the case of a KDN, switches’ memory, processing, and communication
capacities should be upgraded. There have been attempts to improve security in switches
by providing switches with an additional virtualization layer that provides virtualized
security functions in the form of security applications or security service chains where the
controller is responsible for activating virtualized security functions [558]. Therefore, it is
better to have switches in KDN to have such virtualized security measures in the form of
access control, encryption, and intrusion detection.

8.3.2. Data Collection

Data are the fundamental components that determine the performance of a knowledge-
defined network. As reviewed in Sections 4 and 5, different types of data will be collected
by management and control planes. Data collected by the management and control planes
can be used for knowledge generation. For a given type of data, for example, network traffic
flow, it is important to gather data from as many nodes as possible in order to increase the
diversity and completeness of the data and reduce any bias in the dataset. As discussed
earlier, adversarial training can be used to train knowledge generation models with new
or unknown data. Furthermore, for the collected data, data annotation can be used to
label data with additional information, such as metadata, to make them more useful for
machine learning, providing a way for models to understand data more easily. Checking the
obtained data for mistakes and inconsistencies is a good idea before training, as incorrect
and inconsistent data might result in faulty machine learning models. Machine learning
models might be trained via active learning, in which data are periodically gathered to
improve the models’ accuracy. Finally, information should be gathered lawfully, ethically,
with the participants’ consent, and with their privacy protected. Private data should be
handled in an ethical and secure manner. Data protection measures such as encryption,
access control, and monitoring should be employed to make sure that only authorized
entities handle data, while sensitive data should not be disclosed to external parties.
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8.3.3. Management Plane Design

The network management plane in KDN should be designed for dynamic network
configuration, where the configuration is automated and dynamically adjusted based on
real-time traffic analysis, which reduces manual intervention and speeds up the configu-
ration process. The management plane should be designed for real-time monitoring and
analytics to monitor network performance. As one of the purposes of the management
plane is fault management, data should be collected by the management plane for predic-
tive maintenance to predict potential network failures and recommend proactive measures
to prevent them. KDN systems collect a vast amount of data that need to be efficiently
stored and processed. Traditional data storage mechanisms may not be sufficient to handle
the massive amount of data that KDN collects. Therefore, the performance and capacity of
the management plane may be enhanced by intelligent data storage technologies such as
distributed databases and object storage. By keeping it in memory, in-memory databases
such as Redis can offer quick access to frequently used data. These databases can be used
for regularly requested data such as network statistics, topology details, configuration
information, etc. [559]. Time-stamped data, such as network performance measurements
or telemetry data, may be stored using time-series databases such as InfluxDB, which are
built for processing massive amounts of time-stamped data [560]. The management plane
collects a large volume of data required for management and knowledge generation, which
can be challenging to store and manage. Data compression techniques such as gzip, Snappy,
etc. can be used to reduce the storage footprint of network data without compromising
its quality [561]. Data deduplication techniques such as content-defined chunking or delta
encoding [562] can be used to eliminate duplicate data in the management plane, as dupli-
cate data cause excess data storage and do not effectively contribute to training machine
learning models.

8.3.4. Control Plane Design

The control plane in the KDN architecture is also logically centralized, similar to
the originally proposed logically centralized SDN architecture. It should be capable of
handling large amounts of requests from network devices and applications, and should
be able to process generated knowledge or rules from the knowledge plane. Thus, the
processing capability of the controller must be very high. Controllers such as the NOX-
MT use multi-threading and optimization techniques such as input–output batching to
improve the controller’s performance [312]. McNettle is another computationally powerful
controller that can be used for KDN, as it can achieve a throughput of 14 million flows per
second and reduce the number of system calls to optimize cache usage, operating system
processing, and runtime system overhead [563]. In order to handle scalability issues and
due to a single controller being a single point of failure, a physically distributed control
architecture with multiple distributed controllers is a better design choice for the KDN. If
KDN uses a set of distributed controllers with different platforms, SDN hypervisors can be
used to achieve interoperability [564]. Alternatively, for distributed control systems, one
may use the same controller platform to achieve maximum interoperability. For distributed
controllers, state consistency using a hybrid approach, having both full consistency for
critical operations that affect a large portion of the network and eventual consistency for
less critical changes, is a much more desirable design approach for KDN [375].

8.3.5. Knowledge Plane Design

It is better to implement knowledge-generating models that can detect errors in data
and correct themselves. It is better to use explainable machine learning instead of conven-
tional machine learning to interpret how machine learning models make decisions and
diagnose problems, in order to make knowledge generation models accountable for their
decisions. The knowledge generation models must be transparent, meaning that their inner
workings and decision-making processes are visible to the users. Furthermore, knowledge
generation models must be robust and perform accurately and reliably under a range of
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conditions and input data. The knowledge generating models must be thoroughly assessed
and validated to ensure that they fulfill explainability, transparency, robustness, and other
requirements. They must also be trained on a variety of representative data to guarantee
that they can make appropriate judgments under a variety of circumstances. The subject,
predicate, and object triplet (RDF), the ontology (OWL), the logic-based representation
(KIF), or knowledge graphs (RDFS), which are organized representations of knowledge
for effective querying and reasoning, can all be used to describe knowledge. A machine
learning model that has been pre-trained on a big dataset and then fine-tuned on a small
task-specific dataset can be improved via transfer learning. Additionally, active learning
may be used to enhance the process by which knowledge-generating models are taught,
allowing the models to choose the most instructive instances to utilize as training data.
Additionally, attention techniques can be employed to narrowly concentrate attention on
the portions of the input data that are most crucial to the activity at hand. It is required to
define a clear knowledge ontology using an ontology editor for the knowledge composition
plane. An ontology is a set of concepts and categories that define the relationship between
different pieces of knowledge. By defining a clear knowledge ontology, different pieces of
knowledge can be clearly analyzed and combined based on their relationships in the knowl-
edge composition plane. Human expert input can be assisted in knowledge composition
where possible to increase the accuracy and effectiveness of the knowledge combination
process. A physically distributed knowledge plane is desired in order to distribute the
workload of data among multiple knowledge generation models instead of a single model.

8.3.6. Application Plane Design

Understanding the needs of the service to be offered is crucial when designing an
application. This involves determining the algorithms, data types, protocols, languages,
models, etc. needed for the service’s implementation. Additionally, network administrators
must ensure that all applications such as traffic engineering, network management, security,
settings, business, network virtualization, etc. have been deployed in order for the network
to function. Even though application testing should be carried out even after application
deployment to upgrade the application and discharge improved new application versions,
applications ought to be extensively evaluated before deployment to ensure that they
are operating correctly and meeting the service requirements. Applications should be
designed to handle failures and errors, which includes implementing redundancy and
fail-over mechanisms to ensure service continuity in the event of failures, irrespective of
the purpose for which the application is designed. The application layer should implement
appropriate security measures such as access control, authentication, encryption, etc. by
implementing security applications with security policies to protect the network from
unauthorized access and attacks. The APIs of a KDN should be well designed to provide
developers with easy access to network functionality and knowledge. Different APIs,
including RESTful-APIs, intent-based APIs, Ad Hoc APIs, Abstract APIs, etc., can be
used, depending on the application type, to transmit data, knowledge/rules, intentions,
and policies between the application plane and other planes. An API should have clear
documentation, be simple to use, and have effective error handling. Applications should be
continuously improved by collecting regular feedback from users to improve usability and
the user experience. Regular updates should be released, addressing bugs and improving
performance with new features. Furthermore, application personalization can be used
to cater to the specific needs and preferences of individual users using various methods,
such as providing recommendations based on user behavior, allowing users to customize
the interface, providing contextual information, etc. Finally, it should be tested whether
dynamic updating of application policies using a rule engine in the intent/policy update
plane of the application plane based on the generated knowledge/rules regarding the
current network status functions as desired without violating the high-level user intents.
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8.3.7. Different Network Scenarios

Knowledge-Defined Optical Networks
An optical network is a telecommunications network that uses optical fibers to trans-

mit information by converting electrical signals into optical signals that are transmitted
over long distances with low signal attenuation and high bandwidth capacity, providing
high-speed, reliable, and secure communication [565]. In optical networks, KDN can be
specifically used to predict fiber cuts and other physical disruptions. KDN can predict if
an optical fiber is likely to fail, enabling network administrators to perform maintenance
before it fails. As optical networks are sensitive to changes in environmental conditions
such as temperature, humidity, etc., KDN systems can be designed to account for these
changes and adjust network settings accordingly. In order to achieve the above tasks,
optical networks should be designed such that data from a large number of sensors on
optical fibers are collected and analyzed.

Knowledge-Defined Vehicular Networks
A vehicular network is an autonomous collection of mobile devices that communicate

with each other over wireless links and cooperate with each other in a distributed manner to
provide network functionality in the absence of fixed infrastructure [566]. These networks
are characterized by dynamic network topology, road-constrained mobility patterns, and
self-organizing, dynamic, and volatile links between the wireless nodes [567]. A vehicular
network uses different network communication technologies, such as Wi-Fi, cellular, and
Dedicated Short Range Communication (DSRC). KDN can be designed to enable seamless
handoffs between network communication technologies by using knowledge on network
availability, quality, signal strength, etc. for a given application. Furthermore, KDN can
be used for efficient resource allocation in vehicular networks. For instance, it can allocate
more resources to safety-critical applications such as collision avoidance systems while
allocating lower resources to infotainment applications. Furthermore, a knowledge-defined
vehicular network can be designed to prioritize traffic received from emergency vehicles
and use knowledge on congestion to optimize traffic flows.

Knowledge-Defined Internet of Things
An Internet of Things (IoT) network is an interconnected system of devices that can

exchange information and communicate with one another while producing a vast amount
of data that must be processed and transmitted to the cloud [568]. By analyzing patterns
in data traffic and routing it to the most effective pathways, KDN may be developed with
cloud computing applications to optimize the network and lower latency and network con-
gestion. Furthermore, typical security methods such as firewalls are frequently insufficient
to protect IoT devices from cyberattacks. KDN may be created to gather data from devices
and produce information using a knowledge generation model to identify anomalous
activity or behavior out of the ordinary in the network and to identify new dangers in order
to stop them.

Knowledge-Defined Mobile Networks
A mobile network is a wireless communication system that allows mobile devices to

connect to a telecommunications network and communicate with each other and other
devices [569]. KDN can be designed to optimize handover procedures by analyzing data on
signal strength, network congestion, etc. so that it can be handed over to the best network,
ensuring a seamless transition and avoiding dropped calls.

Knowledge-Defined Wireless Sensor Networks
A wireless sensor network is a group of interconnected sensor nodes that communicate

wirelessly to collect and transmit data from the physical environment [67]. KDN can be
designed to predict optimal sensor placement to ensure full coverage and avoid overlap.
KDN can be used to improve data collection in wireless sensor networks by analyzing
network data and identifying the sensors that are producing the most accurate data. This
allows for the identification and replacement of faulty sensors, leading to more reliable
data collection.
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8.4. Ongoing Research

There are ongoing research efforts to standardize KDNs, specifically, to introduce new
protocols, languages, and interfaces for KDN to make it more interoperable.

IEEE P2302-2021 Standard for Intercloud Interoperability and Federation (SIIF) pro-
vides a reference architecture and taxonomy framework for enabling interoperability and
federation between different cloud computing environments, which does not directly ad-
dress knowledge-defined networking but covers a number of areas relevant to KDN [570].
This standard covers areas related to KDN such as interoperability between different
cloud environments, security standards, a framework for orchestrating services across
different cloud environments, the governance required for intercloud communication,
and a taxonomy for describing different types of cloud services and environments. To
achieve semantic interoperability between IoT frameworks, recent efforts such as IEEE
P2413-2019 Standard for an Architectural Framework for the Internet of Things (IoT) have
produced a report for IoT Semantic Interoperability. These efforts standardize ontologies
for internet-of-things-based systems, such as domain ontologies, task ontologies, and user
ontologies [571,572]. A formal explanation of the connections and concepts in a particular
field is called an ontology. Semantic interoperability is the capacity of various devices
and systems to interchange information and comprehend one another’s meaning, even
when they speak different languages or have distinct vocabularies. KDN relies heavily on
ontologies because they offer a structured representation of information that can be used to
analyze network activity and make choices. Diverse bits of knowledge may be integrated
by creating a coherent ontology.

The Open Network Foundation (ONF) stratum project aims to enable programma-
bility, automation, and innovation in network infrastructure, which aligns with the goals
of KDN [573]. The stratum project is focused on developing an open-source, silicon-
independent switch operating system that enables hardware and software disaggregation
in network switches.

Metro Ethernet Forum (MEF) Lifecycle Service Orchestration (LSO) Sonata is a set of
standards developed to standardize the way in which network services are orchestrated
across multiple service providers and network domains. The MEF LSO Sonata attempts to
standardize KDN by defining a set of APIs and data models that enable the exchange of
information between different service providers and domains, which includes the use of
standardized data formats such as YANG models and JSON, to represent network services
and their attributes [574].

The International Telecommunication Union—Telecommunication Standardization
Sector (ITU-T) study Group 13 is working on standardization for Next Generation Networks
(NGNs), network virtualization of Future Networks (FNs), cloud computing, and the
Internet of Things (IoT) [575]. Even though this group does not specifically focus on
researching KDN, it develops standards for SDN and NFV and develops interfaces between
network components in NGNs, which include KDNs.

Table 10 summarizes details of ongoing research related to the standardization of KDN.
Table 10. Ongoing research efforts to standardize KDN.

Name Research Area Organization Site Address

IEEE P2302 SIIF:
Reference architecture
and taxonomy
framework

Interoperability, security, service orchestration,
governance, and taxonomy for different types of cloud
services and environments

IEEE
https:
//standards.ieee.org/ieee/2302/7056/
(accessed on 7 April 2023)

IEEE P2413 Standard for
an Architectural
Framework for the
Internet of Things
(IoT)—Semantic
interoperability

Semantic interoperability, semantic models, semantic
data representation and exchange, data interoperability
and integration, metadata and annotations, security and
privacy, service discovery and composition, context
modeling and management, ontology engineering,
knowledge representation and reasoning, machine
learning and data analytics, standardization, and
governance of IoT

IEEE, AIOTI,
oneM2M, and
W3C

https:
//standards.ieee.org/ieee/2413/6226/
(accessed on 7 April 2023),
https://standards.ieee.org/news/
semantic_interoperability/ (accessed on
7 April 2023)

https://standards.ieee.org/ieee/2302/7056/
https://standards.ieee.org/ieee/2302/7056/
https://standards.ieee.org/ieee/2413/6226/
https://standards.ieee.org/ieee/2413/6226/
https://standards.ieee.org/news/semantic_interoperability/
https://standards.ieee.org/news/semantic_interoperability/
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Table 10. Cont.

Name Research Area Organization Site Address

Stratum project
Programmable data plane, intent-based networking,
network automation, network security, network
telemetry

ONF https://opennetworking.org/stratum/
(accessed on 8 April 2023)

LSO Sonata AI/ML network service orchestration, network slicing,
intent-based networking, edge computing MEF

https://www.mef.net/service-
automation/lso-apis/inter-provider-
apis/lso-sonata/ (accessed on 8 April
2023)

ITU-T group 13 Next-generation networks, future networks and
emerging technologies, cloud computing ITU-T

https://www.itu.int/en/ITU-T/about/
groups/Pages/sg13.aspx (accessed on 8
April 2023)

9. Conclusions, Recommendations, and Future Research

This paper presents a comprehensive survey of knowledge-defined networking. We
first presented its high-level architecture and compared KDN with SDN and traditional
networking. The functions, protocols, sub-planes, models, interfaces, languages, etc. of
each plane were presented with real-world examples from the existing literature. Moreover,
we identified practical applications of KDN in diverse domains such as traffic engineering,
network management, security, big data, cloud computing, network virtualization, and
business. Among these applications, traffic engineering, network management, and security
stand out as the three most dominant applications in KDN, having many applications
under various sub-categories. For instance, generic application traffic engineering has
routing, load-balancing, and QoS provisioning as specific applications. Furthermore, we
discussed benefits, limitations, and design guidelines for KDN. Finally, we also discussed
some ongoing efforts by several parties to standardize KDN in order to make it more
interoperable.

As far as academic implications, this research provides a comprehensive survey
and a tutorial for knowledge-defined networking. This research can be used as a very
useful reference for future academicians during the innovation of new concepts related to
knowledge-defined networking in different application domains. Furthermore, this work
can be used to identify poorly researched or developed domains in KDN and perform
more research in those areas. Additionally, this research will pave the way to point out and
highlight challenges in implementing KDN and how to overcome them, which researchers
can further investigate to mitigate the challenges.

Based on this survey, the following recommendations can be provided for knowledge-
defined networking:

• Attention from experts is recommended to make sure KDN systems collect large
quantities of high-quality data in terms of relevancy, completeness, unbiasedness,
consistency, and non-outdatedness;

• In instances where legacy systems cannot be directly converted to pure KDN, a hybrid
KDN approach that implements a blend of legacy and pure KDN is recommended;

• In order to secure data, knowledge, and machine learning models, robust data protec-
tion techniques such as access control, encryption, and intrusion detection systems
should be used. Furthermore, for secure data, knowledge, and model sharing, KDN
systems can integrate distributed secure blockchain technology;

• It is recommended to implement interoperable APIs to improve the interoperability of
KDN systems that may use different standards to implement the KDN;

• Distributed knowledge generation (federated learning) and dissemination are recom-
mended to improve the scalability of KDN systems;

• In order to improve the reliability of KDN systems, the machine learning models are
recommended to be trained using high-quality data and tested thoroughly, evalu-
ating performance evaluation metrics such as accuracy, error, F1-score, etc., before
deployment in the network;

https://opennetworking.org/stratum/
https://www.mef.net/service-automation/lso-apis/inter-provider-apis/lso-sonata/
https://www.mef.net/service-automation/lso-apis/inter-provider-apis/lso-sonata/
https://www.mef.net/service-automation/lso-apis/inter-provider-apis/lso-sonata/
https://www.itu.int/en/ITU-T/about/groups/Pages/sg13.aspx
https://www.itu.int/en/ITU-T/about/groups/Pages/sg13.aspx
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• Explainable machine learning is recommended to make sure that the ML models are
accountable and explainable for the decisions they make and to aid in identifying the
root causes of issues when such models make errors;

• Transfer learning and active learning are recommended to fine-tune the machine
learning models’ training.

Quantum machine learning is currently generating a surge of interest among re-
searchers. It can be applied to KDNs to improve their performance, especially their
computational performance, with the aid of quantum computing. By assisting quan-
tum algorithms in KDN, this can open directions for new research and the development of
innovative applications due to its performance advantage. Furthermore, future research can
involve developing techniques for secure federated learning of machine learning models in
a complex KDN environment.
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