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Abstract: Traditional networking is hardware-based, having the control plane coupled with the data
plane. Software-Defined Networking (SDN), which has a logically centralized control plane, has
been introduced to increase the programmability and flexibility of networks. Knowledge-Defined
Networking (KDN) is an advanced version of SDN that takes one step forward by decoupling
the management plane from control logic and introducing a new plane, called a knowledge plane,
decoupled from control logic for generating knowledge based on data collected from the network.
KDN is the next-generation architecture for self-learning, self-organizing, and self-evolving networks
with high automation and intelligence. Even though KDN was introduced about two decades ago, it
had not gained much attention among researchers until recently. The reasons for delayed recognition
could be due to the technology gap and difficulty in direct transformation from traditional networks
to KDN. Communication networks around the globe have already begun to transform from SDNs into
KDNs. Machine learning models are typically used to generate knowledge using the data collected
from network devices and sensors, where the generated knowledge may be further composed to create
knowledge ontologies that can be used in generating rules, where rules and/or knowledge can be
provided to the control, management, and application planes for use in decision-making processes, for
network monitoring and configuration, and for dynamic adjustment of network policies, respectively.
Among the numerous advantages that KDN brings compared to SDN, enhanced automation and
intelligence, higher flexibility, and improved security stand tall. However, KDN also has a set of
challenges, such as reliance on large quantities of high-quality data, difficulty in integration with
legacy networks, the high cost of upgrading to KDN, etc. In this survey, we first present an overview
of the KDN architecture and then discuss each plane of the KDN in detail, such as sub-planes and
interfaces, functions of each plane, existing standards and protocols, different models of the planes,
etc., with respect to examples from the existing literature. Existing works are qualitatively reviewed
and assessed by grouping them into categories and assessing the individual performance of the
literature where possible. We further compare and contrast traditional networks and SDN against
KDN. Finally, we discuss the benefits, challenges, design guidelines, and ongoing research of KDNs.
Design guidelines and recommendations are provided so that identified challenges can be mitigated.
Therefore, this survey is a comprehensive review of architecture, operation, applications, and existing
works of knowledge-defined networks.

Keywords: intelligence; knowledge-defined networking; machine learning; ontology; software-
defined networking

1. Introduction

In contrast to conventional networking, which distributes the control plane across
network hardware, Software-Defined Networking (SDN) facilitates programming for net-
works by removing the fundamental network control logic from switches and routers to
encourage conceptual network control centralization [1]. Owing to the controller’s col-
lection of network condition data, SDN offers more network knowledge and the ability
to build safe pathways than typical hardware-dependent networking [2]. Infrastructure,
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control, and application planes are the three planes that make up SDN. The key benefits of
SDN over traditional networks are adaptability and programming capability. Numerous
benefits are gained as a result of the SDN controller’s network consciousness, including
adaptive node transmission power reservation, improved routing, dynamic radio interface
placement, etc. [3]. Additionally, SDN boosts networking services such as routing and load
balancing and makes global enhancements thanks to the gathering of network statistics. It
also promotes network creativity by making it possible for new protocols to be assessed
and set up at cheaper rates [4]. As the control is conceptually centralized in SDN, any
amount of physical devices can connect with each other via just one protocol. SDN has
assisted in making it possible to perform new tasks and provide new services, such as traffic
engineering, software development, virtualization of networks and automation, cloud-
based service management, etc. [5]. However, SDN’s dependability is seriously lacking,
as the controller often acts as just one element of malfunction [6]. Additional difficulties
for SDN include security flaws [7], and, due to the substantial movement of nodes and
changing network layout, network tasks such as routing and control of transmission [8,9].
Additionally, SDN encounters difficulties, including integration with outdated networks
that are not compatible with the OpenFlow protocol, the centralized controller’s inability to
independently control all traffic, the availability of only a few protocols for communication
between the controller and services, etc. [10].

There are primarily three types of SDN architectures: centralized, distributed, and
hybrid. In a centralized design, all logical control is centralized, and data plane nodes
execute activities in line with the SDN controller’s rules for traffic [11]. However, the
control plane connection between the data plane elements and the centralized controller
in this design has a larger delay [12]. Additionally, this design has limited extensibility
and has the potential for inaccuracy when control plane connections disappear or are
interrupted. Control is divided across numerous controllers in a distributed architecture,
and the controllers may interact with one another for coordination and uniformity. The
sole point of collapse and capacity issues seen in the centralized control architecture are
avoided by this design. To determine the best paths, this design takes longer time than the
centralized architecture [13]. A hybrid control architecture has been created to overcome the
shortcomings of both distributed control and centralized control designs. The centralized
controller in this system is able to adjust the degree of control exerted over the nodes from
total to none depending on the situation, allowing it to behave as a blend of fully centralized
control with a conceptually centralized control plane and fully distributed control, with a
portion of the control plane split among the end devices [14].

The literature that is now available describes four types of functionally centralized
control architecture for the SDN based on the organizational structure of the data and
control planes: fully hierarchical, hierarchical data plane, hierarchical control plane, and
standard. A fully hierarchical architecture contains tiered data and control planes that are
separated into upper and lower planes [15]. The upper data plane is made up of border
network forwarding devices such as wireless access points, eNodeB, and gNodeB, while
the lower data plane is made up of SDN-enabled nodes. The upper control plane has an
overall picture of the network and is made up of SDN controllers of the primary network.
The lower control plane is responsible for controlling the subsystems of the network and is
made up of SDN controllers of the edge network connected to the upper control plane by a
cable network. Because multiple secondary SDN controllers may be allocated to different
parts of the network, this design provides the maximum level of agility and programming
abilities. The control plane in a hierarchical data plane SDN architecture is non-hierarchical,
whereas the data plane is separated into lower and upper data planes [7]. The data plane
in a hierarchical control plane SDN architecture is not separated into upper and lower data
planes, but the control plane is [16]. The control plane is totally centralized and has the
least adjustability in the standard SDN architecture, which is equivalent to the original
SDN planes [17]. The standard SDN paradigm is the most generally used design, while the
full hierarchical SDN structure is the most rarely utilized model by academics as a result
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of its more complicated nature in terms of control and implementation, according to the
study conducted in [18].

Knowledge-Defined Networking (KDN) is the concept of using information to gener-
ate knowledge using machine learning models or rule-based models and making network
decisions accordingly [19]. The work in [19] presents a framework for cooperative knowl-
edge building and sharing. Research conducted in [20] also uses the KDN concept for
exploring the knowledge of risk reasoning through vehicular maneuver conflict. More
recently, KDN has been used where node mobility is analyzed to measure the centrality
degree of a region, and this knowledge is made accessible to nodes [21]. In research [22],
sensor information from multiple nodes in a common geographical area is used to generate
knowledge to recognize high-level contexts of control. Khan et al., in their research [23],
have applied deep learning [24] to learn the transmission patterns of neighboring vehicles,
which has resulted in fewer packet collisions. Knowledge creation, composition, and
distribution to reduce data volume and cost have been proposed in work [25], which uses
the concept of KDN. However, the preceding work failed to bring out a well-studied archi-
tecture for KDN, even though its applications have been studied by previous researchers.
A knowledge-defined network has been proposed by some researchers as an architecture
for applying Machine Learning (ML) to SDN [26]. KDN architecture uses the concept of
knowledge-based networking; in other words, it uses information to generate knowledge
using ML models or heuristic models. Even though the initial architecture of KDN was
proposed in 2003 in research [27], it has gained attention recently due to advancements in
machine learning. KDN has an additional management plane and a knowledge plane logi-
cally separated from the control plane compared to SDN, where the knowledge plane uses
machine learning or heuristic model-based methods to process the information collected
from the management plane and generate rules and knowledge to provide to other planes
of the KDN. KDN has been utilized to improve network performance through automatic
optimization of network traffic routing and load balancing based on real-time data analy-
sis [28]. KDN converts the manually configured control plane actions in conventional SDN
to a self-learning automated rule-generating control plane driven by knowledge generated
from artificial intelligence [29].

The use of Machine Learning (ML) technology for KDN security has been popular
in the recent past, where it has been used to detect intrusions [30], detect Distributed
Denial of Service (DDoS) attacks [31], and detect anomalies [32]. ML has also been used
for traffic classification [33], packet classification [34], predicting link failure [35], routing
optimization [36], etc. in KDN. For knowledge-defined vehicular networks, machine learn-
ing has been used for predicting vehicle-to-infrastructure link life times [37], detecting
DDosS attacks [38], trust-based routing optimization [39], etc. In [40], the authors show how
machine learning, meta-heuristics, and fuzzy logic can be used to generate knowledge for
knowledge-defined networks. AI/ML has been applied to the 5G network architecture to
make knowledge-driven decisions for slice management, network service orchestration, ver-
tical domain cross-layer optimization, management analytics, and anomaly detection [41].
By automating network management tasks, KDN can reduce the need for manual interven-
tion, lower operational costs, and increase energy efficiency [42]. Work in [43] shows how
the KDN concept can be used for closed-loop network monitoring to realize a self-driving
network concept. Similarly, another piece of research highlights how closed loop control
can be used for automatic routing in a KDN using deep reinforcement learning to learn
experiential knowledge, which also includes network monitoring to realize the interaction
with the environment [44]. A self-organizing routing algorithm that reactively finds the
most reliable route using a deep neural network in a self-organizing knowledge-defined
network has been investigated in [45]. Driven by the benefits of automation and recom-
mendation due to the knowledge plane in KDN, a self-driving system that selects the
optimal path for service function chaining and reactive traffic functioning using graph
neural networks has been studied in [46]. A framework for identifying heavy-hitter flows
using machine learning in KDNs has been investigated in [47]. ML has also been used
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for video flow classification in 5G KDNs [48]. However, the KDN concept is still very
pre-mature, and it lacks standardization and protocols for intra-plane communication [49].

Early surveys were totally focused on SDN architecture and applications without any
review of intelligent networking [50]. More recent surveys have reviewed the concept of
knowledge-based networking by categorizing machine learning applications in SDN and
identifying challenges in applying machine learning in SDN [51,52]. The survey carried
out in [53] collects and reviews machine learning-based SDN solutions that emphasize
machine learning-based solutions, evaluation parameters, and evaluation environments.
More closely related to our survey is the survey carried out in [54], which provides an
overview of the KDN architecture. However, the previously mentioned work discussed
more on machine learning-based applications applicable in KDN and challenges associated
with those applications rather than reviewing on the whole paradigm itself. However,
our survey comprehensively reviews existing protocols, languages, standards, interfaces,
models, and functions related to each plane of the KDN architecture and, finally, discusses
the benefits and challenges, providing design guidelines and recommendations, thus
providing a complete tutorial on the knowledge-defined networking concept to the reader,
with reference to the existing literature that is analyzed and discussed. The hierarchical
organization of this survey is graphically illustrated in Figure 1.

2. Overview of KDN
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Figure 1. Hierarchical organization of the KDN survey.

As evident from Figure 1, the rest of the paper is organized as follows: Section 2
presents a brief introduction to data, information, and knowledge (Section 2.1), then
presents an overview of the KDN architecture (Section 2.2), and compares it with SDN
and traditional networks (Section 2.3). Section 3 presents an introduction to knowledge
plane (Section 3.1); architecture of the knowledge plane (Section 3.2); functioning of the
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knowledge generation plane (the plane where knowledge generation occurs using heuristic
model-based methods and different machine learning techniques) is discussed in detail
with reference to the existing literature (Section 3.3); knowledge representation models, rule
generation techniques, and knowledge composition examples from the existing literature
are discussed in the knowledge composition plane (Section 3.4); and existing knowledge
and rule management and exchange protocols/languages, flow scheduling, and prioriti-
zation approaches for knowledge and rule distribution are discussed in the knowledge
management and distribution plane (Section 3.5) in detail. Section 4 presents the manage-
ment plane, explaining its function (Section 4.1), architecture (Section 4.2), management
interfaces/protocols (Section 4.3), network-monitoring frameworks (Section 4.4), and data
collection strategies and types of data collected (Section 4.5). Section 5 presents an intro-
duction to the control plane (Section 5.1), explains sub-planes and interfaces with protocols
and standardization (Section 5.2), describes control models (Section 5.3), and describes
control functions (Section 5.4). Section 6 presents the data plane, first with an introduction
to the data plane (Section 6.1), then presents the architecture and operation of forwarding
devices (Section 6.2), and discusses different transmission media used in the infrastructure
plane (Section 6.3). Section 7 presents the application plane first with an introduction to the
application plane (Section 7.1), then the architecture of the application plane (Section 7.2),
and, finally, different application scenarios with respect to existing literature are discussed
(Section 7.3). Section 8 discusses the benefits (Section 8.1), challenges (Section 8.2), de-
sign guidelines (Section 8.3), and ongoing research (Section 8.4) of KDN in detail. Finally,
Section 9 concludes the paper with recommendations and future research.

1.1. Objectives and Key Issues Addressed

The objective of this research is to educate the reader comprehensively on the knowledge-
defined networking paradigm. First, the reader is provided with an overview of the KDN
framework, and then each plane of the paradigm is discussed, such as standards, protocols,
models, interfaces, functions, applications, etc., with reference to the existing literature.
Another key objective of the survey is to study the benefits and challenges of the KDN
framework in order to provide design guidelines and recommendations that will encourage
academicians to perform more research on KDN. Finally, this survey qualitatively analyzes
the existing works on different aspects of KDN by grouping and stating characteristics and
analyzing the individual performance of the solutions.

1.2. Contributions to the Existing Literature

¢ We are the first to review on knowledge-defined networking, which will provide a
useful reference for future researchers who investigate more in this area;

*  We compare traditional networking with SDN and KDN;

¢  Each plane of the KDN architecture is discussed in detail with reference to the
existing literature;

*  Benefits, challenges, design guidelines, and ongoing research on the KDN architecture
are discussed.

1.3. Research Methodology

This survey is a qualitative research study that critically analyzes and interprets
existing research work on knowledge-defined networking. The population of the survey is
comprised of all original research works and web articles published related to KDN and
artificial intelligence /machine learning /knowledge-based SDN. Out of that population,
we sampled 613 of the most relevant research works published from 1980 to 2023 related
to architecture, operation, applications, interfaces, functions, languages, and protocols
of each plane of the KDN paradigm by searching scientific databases. We used IEEE
Xplore, the ACM Digital Library, ScienceDirect, MDPI, and Google Scholar as searching
databases. However, after careful analysis, we identified that 43 works presented very
similar content to one or more works already in the sample. Therefore, we removed these
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43 redundant references, which provided redundant concepts, to finally reach 570 original
research references in the cleaned sample. Later, we added five survey articles published
on knowledge-/machine learning-based SDN in order to compare our review with existing
reviews, thus increasing the total references to 575. Thus, the approach of the survey was
longitudinal. The research works were selected based on their relevance to the content
discussed in the survey. We used tabular data structures to analyze research qualitatively
by grouping them into categories and analyzing the characteristics of the frameworks. We
sampled research works based on relevancy without being biased by any publisher or
time of publication. However, priority was given to journal publications over conference
publications to improve the validity and reliability of the survey. Ethical considerations are
not applicable, as this is a survey in the computer networking domain.

2. Overview of Knowledge-Defined Networking (KDN)
2.1. A Nutshell on Data, Information, and Knowledge

A piece of data is defined as an atomic value with a unit, which is the most fundamental
element that is unprocessed and raw and contributes to knowledge generation. Let us
understand these concepts with reference to an example from a vehicular network. An
example of data can be the Global Position System (GPS) position (x1,y1,z1).

Information is a processed and organized collection of data that is more meaningful
than raw data and can be used to make a decision. An example of information can
be the distance from the controller to a vehicle, which is calculated by processing data
containing the status of the vehicle, such as the GPS position of a given vehicle at a given
timestamp (vehicley, 15:05, (x1,y1,z1)). In conventional networks such as Vehicular Ad Hoc
Networks (VANETS), information such as safety notifications, vehicle state information,
sensor measurement information, navigation information, etc. is exchanged between
the vehicles. Conventional vehicular networks use this exchanged information to make
decisions on network functions such as routing without generating knowledge [55].

On the other hand, in KDNs, the approach is shifted from the information-centric
approach to the knowledge-centric approach. Knowledge is defined as the state of under-
standing obtained through experience, learning, and the analysis of collected data/information.
In other words, knowledge is an abstract content obtained by learning and analyzing a
large amount of data/information [56]. Thus, the decision-making power of knowledge is
much higher than that of information. An example of the knowledge that can be obtained
using a set of previously mentioned information could be whether vehicle; is likely to have
a collision or not, which can be inferred by understanding and learning a lot of information,
such as safety notifications, sensor measurement information, navigation information, etc.,
about the given vehicle and other vehicles in the neighborhood.

2.2. KDN System Architecture

Figure 2 shows the high-level block diagram of the KDN architecture [27,57].
As evident from Figure 2, a KDN consists of five main planes, which are briefly
introduced below.

* Knowledge Plane—The knowledge plane consists of three sub-planes. The knowl-
edge generation plane generates knowledge using data/information, either by using
heuristic model-based methods or machine learning methods. In the knowledge com-
position plane, generated knowledge and universal knowledge are composed using
an ontology editor to produce composed knowledge, which can be used to generate
rules by orchestration with user intent. The knowledge distribution and management
plane is responsible for storing knowledge and rules using a knowledge base and
performing the inserting, updating, deletion, and exchange of knowledge and rules
using languages and protocols [25];
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¢  Management Plane—The management plane (also referred to as the measurement
plane) operates in parallel with the KDN controller and is responsible for collecting the
processes and data/information from the network devices, monitoring the network
device status, and configuring the network device. Note that, in KDN, the manage-
ment plane can be influenced by the application plane to implement configuration
policies and by the knowledge plane to aid in real-time network monitoring, whose
monitoring output can be used to dynamically configure the network [57,58];

¢ Data plane—The data plane is composed of forwarding devices that can store, forward,
or process data according to the flow rules sent by the control plane. In KDN, the data
plane is required to send data requested by the management and control planes [59];

¢ Control plane—The control plane consists of one or more SDN controllers based on the
architecture and is responsible for sending flow rules, access control rules, QoS-based
traffic prioritization rules, etc. to the data plane. Control in KDN is driven by both
application policies and real-time rules or knowledge generated from the knowledge
plane [60];

¢ Application plane—This plane provides a platform for network applications to com-
municate requirements to the underlying network infrastructure. It also enables
network administrators to define network policies specific to applications and de-
fine network configuration policies that are more aligned with high-level business
needs and objectives in a centralized manner, where the application logic is decoupled
from hardware. In KDN, application policies can be dynamically updated based on
knowledge [61].

Application

Combirjed Knowledge

Contro f 1

: Management Control

Data

Figure 2. High-level block diagram of the KDN architecture.

Note that knowledge, management, and control planes in KDN can be abstracted to a
combined control plane, as shown in Figure 2, where the combined control plane’s task is
to manage the network and make control decisions driven by knowledge and application
policies [62]. The abstracted combined control plane in KDN and the logically centralized
control plane in SDN have exactly the same tasks of network management and network
control. However, the abstracted combined control plane differs with respect to the control
plane in SDN by the fact that control actions in KDN are self-learning, adaptive, and
knowledge-driven, while the control plane in SDN is driven by application policies, since
SDN does not have a knowledge plane.
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2.3. KDN wvs. SDN wvs. Conventional Network

Traditional networking is the oldest approach to networking and involves manual
configuration and management of devices. This method of networking has been prevalent
since the beginning of networking, and it still prevails in modern communication networks.

SDN is a more recent approach that separates the control plane from the data plane and
enables greater flexibility in network design. The control plane is moved to a centralized
location, and network administrators use software applications to manage the network.
This paradigm allows network administrators to manage networks more easily and quickly
due to increased flexibility and programmability.

KDN creates a self-learning, self-optimizing, and self-healing network by integrating
Al and ML technology. Data analysis is a tool used by KDN systems to automatically
improve network performance, adapt to shifting network circumstances, and spot and
resolve potential network issues before they become bigger difficulties.

2.3.1. Decoupling of Logical Planes

In traditional networks, the data plane and control plane are tightly coupled, and de-
vices such as routers perform both data processing and control functions. Thus, traditional
networks are difficult to manage and automate.

In SDN, the main purpose is to decouple the data and control planes logically, which
allows network administrators to manage and program networks using software rather
than hardware. The logically decoupled controllers communicate with forwarding elements
using protocols such as OpenFlow, ForCES, etc. However, in SDN, network management is
embedded in the control plane, and there is no knowledge plane to generate knowledge.
Thus, SDN does not emphasize knowledge generation in arriving at control decisions.

Note that KDN architecture is an extension of the originally proposed SDN architecture
by decoupling the management plane from control logic and introducing a new logically
decoupled knowledge plane. KDN emphasizes knowledge representation, reasoning,
and decision-making to manage, configure, and control networks. It uses domain-specific
knowledge representation (knowledge ontologies) to automate the management of network
devices and create an intelligent network that can learn and adapt to changing conditions.

Thus, the key differences in KDN with respect to SDN lie in the logical decoupling of
the management plane from control logic and the introduction of a new logically decoupled
knowledge plane.

2.3.2. Network Programmability

In traditional networks, each network device is required to be manually configured,
which can become infeasible in large networks due to time consumption and the error-
prone nature.

Even though both SDN and KDN aim to improve network programmability, they differ
in the approach by which they implement it. SDN uses application programming interfaces
and software controllers to program network behavior, while KDN additionally involves
knowledge-based systems such as Al and machine learning in addition to application of
programming interfaces and software controllers to automate network control and management.

2.3.3. Control Plane

The control plane is dispersed among network devices in conventional networking.
Despite the logical centralization of the control plane in SDN, the controller’s decisions are
not guided by knowledge but rather by the policies of the network applications. In KDN,
the control plane is both logically centralized and self-learning, as control is based on both
network policies and knowledge generated by Al and machine learning techniques.
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2.3.4. Management Plane

In traditional networking, networking devices are managed and configured by the
network administrator using a distributed approach. In SDN, management is centralized;
however, it is embedded in the control plane and not decoupled as a separate plane. In
KDN, management functions are decoupled from control logic, and separate protocols are
used for data collection, network monitoring, and network configuration, which makes
troubleshooting in case of failure much easier than in SDN. Furthermore, network manage-
ment can be automated using knowledge learned from the network to update management
policies in the application plane to automatically adapt to network changes in real-time
with minimum human intervention.

2.3.5. Knowledge Plane

In traditional networking, decisions are made not based on knowledge at all. Such
networks are based on strict rules or policies enforced by network administrators. In SDN,
knowledge is also not generated; however, the centralized controller uses information
collected from the network, such as device statistics, status, etc., to develop a global
view of the network to help in arriving at control decisions based on policies enforced by
applications. In KDN, based on data collected from the network, machine learning or a
heuristic model-based approach will be used to generate knowledge, which will be used in
deriving rules with the aid of knowledge composition or by providing knowledge to the
control plane to use in arriving at control decisions. Furthermore, the knowledge/rules can
be provided to the application plane to update policies and to the management plane to
aid in network monitoring.

2.3.6. Application Plane

In conventional networking, services are provided depending on the capabilities of
underlying devices, and the application plane is closely tied to the network infrastructure.
This can limit the flexibility of the network and make it challenging to adapt to shifting
requirements. Instead of relying on the network infrastructure’s capabilities, SDN offers
more flexibility and enables services to be supplied in accordance with application needs.
In SDN, the application plane is decoupled from the underlying physical network and is
dynamically defined and reconfigured according to the requirements of the service. KDN
goes a step farther in terms of the application plane’s versatility. In KDN, the application is
continually optimized depending on the service’s requirements and network performance,
in addition to being developed dynamically. This strategy enables the more effective use of
network resources and may result in better service delivery.

2.3.7. Network Architecture

Traditional networks have a static network architecture, while SDN has a flexible
network. In KDN, flexibility is even greater than in SDN, as it is a self-learning network
that can adapt to changing conditions in real time.

2.3.8. Operational Cost

Traditional networking is expensive to operate, as it requires skilled programmers
to configure and manage the network. Using a logically centralized control plane, the
operational cost of SDN can be drastically reduced compared to traditional networks. The
operational cost savings in KDN are even higher than in SDN, as it uses Al and machine
learning techniques to generate and compose knowledge that can be used to automate net-
work management tasks with the least involvement of humans (network administrators).
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2.3.9. Security Features

Traditional networks have limited security features, which are basically implemented
using firewalls and intrusion detection systems. SDN provides better security compared to
traditional networks due to the centralization of security policies and easier deployment
of security protocols, even though SDN is known for different attacks such as denial of
service attacks, malware attacks, spoofing attacks, data modification attacks, etc. KDN
provides even more security than SDN by using ML to detect threats in real time using the

knowledge plane and mitigate the threats using the control plane.
Table 1 summarizes a comparison among KDN, SDN, and traditional networking.

Table 1. Comparison of KDN, SDN, and traditional networks.

Parameter/Feature

Traditional Network

SDN

KDN

Logical planes

Data, control, and
application coupled

Data, control, and application decoupled

Data, control, management, knowledge, and
application decoupled

Network
programmability

Manual and complex

Manual and simple

Hybrid and simple

Control plane

Distributed across
devices

Logically centralized and driven
by application policies

Logically centralized and self learning driven
by application policies and knowledge

Manual and centralized coupled with

Hybrid and centralized decoupled from

Management plane Manual and distributed
control plane control plane
Totally knowledge Knowledge ignorant. However, make Generate knowledge, compose knowledge,
Knowledge plane ; norznt & use of global network information in generate rules, store and disseminate them to
& arriving at decisions other planes
Tightly coupled with Decoupled with infrastructure and can Decoupled from infrastructure, can be
Application plane infrastructure be redefined dynamically based on redefined and optimized based on service needs

and inflexible

service needs

and network performance

Network architecture Static Flexible Flexible, self learning, and automated
Operational cost High Medium Low
Implementation cost Low Medium High
Security features Low Medium High

3. Knowledge Plane
3.1. Introduction to Knowledge Plane

The knowledge plane is a logical layer that is responsible for generating, processing,
and disseminating knowledge about the network. The knowledge plane helps network op-
erators improve their ability to manage network behavior and adapt to changing conditions.
The knowledge plane includes various types of knowledge, such as declarative knowledge
(rules), procedural knowledge (processes), and contextual knowledge (knowledge about
the environment and the conditions in which the network operates) [63]. The data for
generating knowledge can come from various sources, such as network devices, sensors,
etc., which are analyzed to generate insights and enable intelligent decision-making. By
making full use of the knowledge plane, network operators can proactively identify and
address issues before they become problems, optimize network behavior to meet changing
demands, and implement advanced security measures to protect against threats.

Knowledge representation/modeling languages can be used to represent and manipu-
late knowledge in a machine-readable format. They provide the data model and syntax
for representing the knowledge. Resource Description Framework (RDF), Web Ontology
Language (OWL), Ontology Inference Layer (OIL), RDF Schema (RDEFS), and Knowledge
Interchange Format (KIF) are the main knowledge representation languages that have been
proposed to be utilized in knowledge-defined networks. These knowledge representations
are discussed in detail in subsequent sections.
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3.2. Architecture of the Knowledge Plane

The architecture of the knowledge plane containing the three knowledge sub-planes
and its communication with the network [25] are graphically illustrated in Figure 3.

As evident from Figure 3, there are three sub-planes in the knowledge plane, which
are listed below:

*  Knowledge generation plane—Generates descriptive knowledge from raw data using
a knowledge generation model;

*  Knowledge composition plane—Identifies the relationship between different pieces
of knowledge to compose knowledge using an ontology editor, which can be used to
generate rules considering user intent;

* Knowledge distribution and management plane—Manages and exchanges raw data
(within the knowledge plane), descriptive knowledge, rules, and control messages
between the knowledge plane and other planes.
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Figure 3. Architecture of the knowledge plane and its interaction with the network.

The knowledge and rules generated from the knowledge plane can be helpful for
fault diagnosis and mitigation, automatic reconfiguration, intrusion detection, etc. It is a
requirement of the knowledge plane to operate successfully in the presence of limited and
uncertain inputs [27]. The knowledge plane architecture given in Figure 3 is described in
detail in the following sections.

3.3. Knowledge Generation Plane

The knowledge generation plane extracts descriptive knowledge from raw data using
a knowledge generation model that uses a learning technique that can be either a heuristic
model-based method or a machine learning method. Knowledge generation effectively
reduces the volume of information transmitted to the controller, as the descriptive knowl-
edge produced from a large volume of data is much smaller. Different types of data will be
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collected by the management and control planes, as is discussed in Sections 4.5.2 and 5.4.1,
respectively, and can be fed as input for knowledge generation. For example, the input data
to the knowledge creation plane can be the data traffic received at the controller, whereas
the output knowledge can be the traffic class.

The generated knowledge can be modeled using the Resource Description Framework
(RDF) knowledge representation language. RDF represents knowledge as a set of triplets,
which consist of a subject, predicate, and object. In RDF, subjects and objects are identified
by Uniform Resource Identifiers (URIs), and predicates represent relationships between
them. This structure makes RDF a flexible and extensible knowledge representation model
that can represent diverse types of knowledge [64].

3.3.1. Generating Knowledge Using Heuristic Model-Based Methods

Heuristic model-based methods usually involve using a mathematical model to de-
scribe raw data [65] and using the inner correlation of the data [66] to generate knowledge.
Some use simple heuristic methods such as first-order logic, fuzzy logic, Markov logic, data
fusion, etc. to generate knowledge [67]. However, this type of technique may need to use
numerical analysis techniques to recover from missing values for the historical data.

In the literature on network communication, there are many examples of using heuris-
tic model-based methods to generate knowledge. Packet classification is the core of traffic
classification techniques that categorize packets with a traffic descriptor or with user-
defined criteria. The Aggregated Bit Vector (ABV) algorithm has been implemented in
parallel using Graphic Processing Units (GPUs) for packet classification in networks [68].
Some have used a Binary Content Addressable Memory (BCAM) scheme and a lookup
mechanism for packet classification, which has yielded lower memory consumption at the
expense of low throughput [69]. A new data structure known as the Range Query-Recursive
Model Index (RQ-RMI) has been used for training an algorithm for packet classification,
which can be considered as a computational approach [70]. A practical multi-tuple packet
classification algorithm called Dynamic Discrete Bit Selection (DDBS), which employs
dynamic heuristic schemes at the bit level in order to explore the characteristics of the
classification rule sets, has been conducted in [71], which has a high classification speed
with a lower storage requirement. Some have used cross-product and linear search for
packet classification, which have high feasibility and scalability [72]. A Tuple Space Search
(TSS)-assisted algorithm has been used in software-based switches (Open v) in KDN for
packet classification [73]. The TSS-based approach is a two-stage framework where partial
decision trees are constructed from rule subsets grouped with respect to small fields in
the first stage, and, in the second stage, a TSS-based algorithm is used to classify subsets
following tree construction. Interval-valued fuzzy logic has been used to classify video
streams under varying network conditions that affect the behavior of network flow [74].

Model-based heuristic algorithms have been used for generating knowledge in the
form of routing in KDN architectures. Early KDNs have used the extended Dijkstra
shortest path algorithm for generating routes [75]. An optimization-based segment routing
technique that uses Multi-Objective Particle Swarm Optimization (MOPSO), which is a
technique that divides the end-to-end path into segments, aiming to minimize the cost
of each segment, has been used for KDNs [76]. Some have attempted to optimize delay,
blocking probability, and network utilization when finding routes using an adaptive greedy
flow routing algorithm [77]. Another research work investigates on a dynamic and adaptive
multi-path routing algorithm that computes routes with constraints on packet loss, time
delay, and bandwidth, resulting in higher QoS for multimedia applications in KDN [78].
Similar to the preceding work, researchers have attempted to select an optimum path
satisfying video QoS parameters for routing using an algorithm [79]. Some use ant colony
optimization for routing in KDN to select the optimum path from multiple paths [80].
Recently, an integer programming problem for maximizing the ratio for energy saving
in KDN that quantifies energy efficiency based on link utility intervals has shown good
results as an energy-efficient routing scheme [81].
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Intrusion detection and security systems in KDNs have used heuristic model-based
methods to achieve that task. An optimization framework that optimally selects the
sampling rate for each switch to sample traffic flows for inspection of malicious network
traffic in large networks is presented in [82]. An information security management system
and an intrusion detection system with a fuzzy logic-based decision-making module have
been used in KDNs for making decisions regarding security [83]. A flow-based and packet-
based intrusion detection system known as Kangaroo intrusion detection, which uses
consecutive jumps, similar to a kangaroo, for announcing the attacks to the KDN controller,
and other IDSs that use an attack detection algorithm to detect attacks from packets and
flows, have been utilized in work [84]. A meta-heuristic approach to detecting DDoS attacks
in KDNs using the Lion optimization technique, which is robust enough to detect the DDoS
attack with the least magnitude of attack traffic, has been proposed [85]. An anomaly-based
intrusion detection system using fuzzy logic combined with an InfoGain feature selection
method has shown promising results for the detection of DDoS attacks [86]. An evolving
fuzzy system to discriminate anomalies (normal and attack network situations) has been
used to classify network traffic as normal or attack, by capturing time-series data, which are
analyzed to establish a model of the normal network situation that evolves over time [87].

Furthermore, heuristic algorithms have been used for controller placement problems.
Evolutionary algorithms have been utilized to solve a large-scale multi-objective controller
placement problem, where capacities of the controllers and loads of switches are considered
as constraints, and latency between nodes and controllers, the latency among controllers,
and load balancing are considered as objectives [88]. A heuristic algorithm that computes
the controller placements with at least the required reliability to yield a fault-tolerant
placement that focuses on the number of controllers, number of nodes under the controller,
and position of the controller has been studied in [89]. Some have considered energy
consumption minimization in placing the controller, which uses a binary Integer Linear
Programming optimization (BILP) problem, having constraints as the delay of the control
path and the load of the controller. However, due to the computational complexity of
BILP, a suboptimal solution using a genetic heuristic algorithm for energy-aware controller
placement that yields results close to the BILP solution has been proposed for large net-
works [90]. Another controller placement approach uses particle swarm optimization and
the Firefly algorithm to place the controllers, considering the effects of controller-to-switch
latency, inter-controller latency, and multi-path connectivity between the switch and the
controller [91].

3.3.2. Generating Knowledge Using Machine Learning Methods

The input data or information may be utilized to extract features using machine
learning algorithms. Before putting raw data into machine learning models, high-level
features are typically extracted to create information in order to increase the accuracy of the
models [92]. However, for knowledge creation using ML techniques, high computational
resources are required. For example, for autonomous driving applications, frames of
images from multiple cameras or sensors are required to be input, which requires high
computational power in knowledge generation. In such cases, distributed knowledge
generation models can be used to divide the knowledge generation workload among
multiple machine learning models, where the knowledge generated by each model can
be later combined using the knowledge composition plane. Some research suggests that
Artificial Intelligence (Al)-based approaches yield better results for knowledge generation
than algorithmic approaches [27]. Five approaches to machine learning are available in
order to generate knowledge from the data/information in communication networks:

*  Supervised learning—In supervised learning, a training data set contains labeled
inputs with corresponding labeled outputs for the supervised machine learning algo-
rithm for training (fitting). During training, the ML algorithm learns the underlying
patterns in the input data to retrieve the outputs. Supervised learning involves either
a classification or regression problem. A classification problem has discrete output
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variables producing qualitative outputs, whereas a regression problem has continuous
output variables producing quantitative outputs [93];

*  Unsupervised learning—Unsupervised learning develops knowledge by choosing a
cluster of related items from the provided input data set (no supervision is required).
It does not train using a labeled data set [94];

*  Semi-supervised learning—In this method of learning, both labeled and unlabeled
datasets are used to train the machine learning model [95];

¢ Integration of supervised with supervised, unsupervised, or semi-supervised learning
approaches—In this integrated method, at least two machine learning models are used
to complete a specific job [96];

*  Reinforcement learning—With reinforcement learning, an agent in a given state acts
to maximize potential rewards from the surrounding environment in the future [97].

Now, let us review each of the approaches to machine learning for knowledge genera-
tion in knowledge-defined networks.

Supervised Learning Approaches for Generating Knowledge

Deep Neural Networks (DNN)

An Artificial Neural Network (ANN) is a collection of node layers, comprising an
input layer, an output layer, and optional one or more hidden layers in which each node
(neuron) is associated with a weight and a threshold value [98]. A Deep Neural Network
(DNN) is an ANN that necessarily consists of one or more hidden layers between the input
layer and the output layer of the ANN [99]. The weights and biases of the neurons are
adjusted to minimize a user-defined loss function during DNN training in order to find a
mathematical relationship between the inputs and the outputs [100]. Deep learning has
been used for detecting network intrusions and for flow-based anomaly detection in the
centralized controller, where deep learning has resulted in better performance (except for
accuracy) compared to an approach using a Recurrent Neural Network (RNN) [101]. A
self-organizing routing algorithm that reactively finds the most reliable route using a deep
neural network in a self-organizing knowledge-defined network has been investigated
in [45]. A Convolutional Neural Network (CNN) is an ANN that has at least one con-
volution layer that performs the mathematical operation convolution instead of matrix
multiplication [102]. Work in [103] uses a CNN and Continuous Wavelet Transform (CWT)
to detect DDoS attacks in KDNs by differentiating attack samples from normal traffic. A
Rectified Linear Unit (ReLU) DNN that can handle large databases of classification rules is
employed in [104] for packet classification in large networks. Some have used DNNs for
traffic classification and prediction in KDNs in order to process the huge amount of data
received by the centralized controller [105]. An energy efficiency optimization framework
based on traffic prediction in knowledge-defined networking using a DNN having a Gated
Recurrent Unit (GRU) layer capturing the temporal characteristics of the network traffic,
aimed at reducing network energy consumption while ensuring communication quality,
is presented in [106]. Flow-based anomaly detection has been used in intrusion detection
for a KDN system using a GRU-Long Short-Term Memory (LSTM)-based DNN [107].
Deep learning has also been utilized to identify the presence of link failures in a complex
multi-route optical network by analyzing a large amount of data received from the optical
network [108]. A link failure at handover mitigation scheme by continuously observing and
tracking signal conditions using an LSTM-based DNN, where the behavior of these signal
conditions is taken as input to the neural network, which acts as a classifier, classifying
the event in either handover failure or success in advance, is used in [109]. Thus, in the
preceding scheme, by advancing the prediction of handover status, handover failures
can be mitigated. DNNs have also been used to replace heuristic routing optimization
models such as mixed integer linear programming problems, which are trained on opti-
mal decisions using flows from known traffic demands [110]. Due to facing of frequent
communication interruptions and poor stability inherent in 3D Flying Ad Hoc Networks
(FANETs), a DNN-based routing consisting of a 3D two-space division and DNN-based
forwarding that yields better performance in terms of packet delivery rate compared to
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conventional routing protocols is presented in research [111]. Wijesekara et al. generate
knowledge regarding link lifetimes and one-hop channel delays related to wired and wire-
less communication channels in a heterogeneous knowledge-defined vehicular network
using DNN, in order to utilize the generated knowledge in a hybrid stable distance and
stable delay based OpenFlow compatible adaptive routing algorithm which yields bet-
ter routing performance in terms of packet delivery ratio, latency, and communication
cost [112]. A DNN-based routing framework called “NeuRoute”, which predicts a traffic
matrix in real-time using a DNN and generates forwarding rules to optimize network
throughput for KDN, is presented in [113]. A temporal-aware Quality of Service (QoS)
prediction using a DNN with GRUs with the aid of feature integration has been employed
in [114]. In [115], the authors present a DNN model for multiple attribute QoS prediction,
where multi-task prediction is achieved by stacking task-specific perception layers on the
shared neural layers.

Decision Trees

A decision tree consists of nodes that represent decisions or attributes of data, and
the branches represent the possible outcomes or class labels that result from each decision.
In a decision tree, any path beginning from the root is described by a data-separating
sequence until a Boolean outcome at the leaf node is achieved. A creation of a decision
tree involves the recursive splitting of data based on the most informative features until a
stopping criteria is met [116]. Decision trees have been used for the detection of Distributed
Denial of Service (DDoS) attacks in KDNs [117]. A DDoS attack is a threat that is used
by cybercriminals to deny the service of a network resource, such as the controller in the
KDN paradigm, by making it unavailable to its intended users. Furthermore, decision trees
have been extensively used for packet classification in computer networks using different
cutting approaches such as Cutsplit, which exploits the benefits of cutting and splitting
techniques adaptively while having a low memory consumption [118]; Bitcuts, which has
fast tree traversal speed using bit-level cutting [119]; and Hypercuts, which is a decision
tree in which each node in the tree represents a k-dimensional hypercube, which uses an
extra degree of freedom and a new set of heuristics to find optimal hypercubes for a given
amount of storage [120]. Another frequently used classification task in decision trees is
network traffic classification. In [121], traffic classification using a decision tree is used for
vulnerability detection in the supervisory control and data acquisition network of a smart
factory. Some have used the C4.5 decision tree algorithm along with an entropy minimum
description length discretization algorithm for traffic classification, whose performance has
been enhanced by implementing it in a Field Programmable Gate Array (FPGA) and multi-
core platforms [122]. An improved decision tree-based algorithm for traffic classification
that uses C4.5 decision trees in the Hadoop platform called HAC4.5, which parallelizes the
decision tree algorithm using the Hadoop platform to classify big data traffic with higher
accuracy and low computational time, is presented in work [123].

Support Vector Machines (SVMs)

A support vector machine is a supervised machine learning approach used for clas-
sification and regression problems where an optimal decision boundary (hyperplane) is
used to differentiate the classes or for regression [124]. A multiclass classification support
vector machine has been used to detect two types of flooding-based DDoS attacks with
the minimum disturbance to legitimate users in a KDN [125]. Another research project
uses hierarchical flow- and packet-based anomaly detection using support vector machines
as an intrusion detection system in KDN. In this approach, the first level is a flow-based
IDS, which passes the flow to a packet-based IDS for further actions if the flow-based IDS
detects an attack [126]. Data traffic based on the application has been classified in a KDN
using an SVM, where the classification accuracy has been poor compared to the Naive
Bayes machine learning model [127]. Support vector machine-based application traffic
identification and classification such as Youtube, Facebook, etc. has been achieved in a
KDN scenario with high classification accuracy [128]. Some have classified packets based
on the action/flow of each packet in KDNs using support vector machines, where five
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features of the IP header have been extracted before classification [129]. In a study that
investigated the performance of the SVM supervised machine learning model and the
K-means clustering unsupervised machine learning model for traffic classification, SVM
yielded a higher classification accuracy than K-means [130].

Random Forest

A random forest consists of many decision trees, where each decision tree provides
its prediction such that the class with the highest count becomes the classification of the
model [131]. Random forest models have been used for classification, feature selection, and
proximity metrics for behavior-based intrusion detection in KDNs [132]. The purpose of an
intrusion detection system is to capture any malignant activities in the network before they
cause severe damage to the network. The DDoS attack on the controller of KDN, which
leads to resource exhaustion and the non-reachability of the services given by the controller,
has been detected using random forests. However, the random forest classifier has yielded
inferior performance to the SVM in detecting a DDoS attack [133]. A random forest has
yielded a higher classification accuracy and a lower false positive rate for detecting the
presence of an attack in a network intrusion detection system compared to neural networks
and Naive Bayes machine learning classifiers [134]. Internet protocol traffic classification
using the flow statistics collected by the controller and Transmission Control Protocol
(TCP) flow in KDN has been achieved using a random forest classifier, which yielded
a higher accuracy compared to gradient boosting classifiers [135]. Statistical learning,
which involves estimating application end-to-end quality of service metrics such as frame
rate and response time from device statistics, has been used in an OpenFlow network
using a random forest machine learning classifier, which produced a better classification
performance than the regression tree [136].

K-Nearest Neighbor

K-nearest neighbor is a supervised machine learning algorithm that groups data into
coherent clusters, based on the assumption that similar points exist close to one another,
and classifies the newly input data based on the similarity of previously trained data [137].
The K-nearest neighbor machine learning model has been utilized to detect DDoS attacks
in KDNs; however, it has resulted in lower classification performance compared to the
J48 classifier [138]. In heterogeneous vehicular networks that use a KDN paradigm, cell
selection for 5G millimeter wave communication considering the motion of nodes and
characteristics of base stations has been realized by classification using a K-nearest neighbor
model [139]. In KDN-based internet service provider networks, Transmission Control
Protocol-Synchronization (TCP-SYN) and Internet Control Message Protocol (ICMP) flood
attacks have been detected using K-nearest neighbor [140]. Detection of known and
unknown saturation attacks by properly selecting a time window for OpenFlow traffic
detection has been realized with the aid of a K-nearest neighbor classifier, where unknown
saturation attacks have been detected by appropriately selecting a time window [141]. This
research suggests that the time window of the traffic has a relationship with the model’s
classification performance. Even though packet classification has been achieved using a
K-nearest neighbor classifier, its performance has been inferior to that of DNNs, which
proves that it is less efficient at handling large datasets and the classification rules that
occur in network scenarios [104]. To cope with the problem of overloading of the controller,
a prediction mechanism for predicting harmful long-term loads of the controller in order to
offload the controller in a harmful long-term scenario using a K-nearest neighbor classifier
has been proposed; however, the prediction performance has been slightly inferior to
SVMs [142]. K-nearest neighbor has been utilized to predict the Quality of Experience
(QoE) in video data in real-time in KDNs [143]. Traffic classification as a knowledge
generation step by collecting flow features such as protocol percentage, packet count,
packet size, IP diversity ratio, etc. using a K-nearest neighbor has been realized in [144], in
order to classify different IoT devices and detect different DDoS attacks such as TCP-SYN,
UDP, and ICMP.
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