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Abstract: Experimentally, a reversal of chemoselectivity has been observed in catalyzed Diels–Alder
reactions of α,β-unsaturated aldehydes (e.g., (2E)-but-2-enal) and ketones (e.g., 2-hexen-4-one) with
cyclopentadiene. Indeed, using the triflimidic Brønsted acid Tf2NH as catalyst, the reaction gave
a Diels–Alder adduct derived from α,β-unsaturated ketone as a major product. On the other hand,
the use of tris(pentafluorophenyl)borane B(C6F5)3 bulky Lewis acid as catalyst gave mainly the
cycloadduct of α,β-unsaturated aldehyde as a major product. Our aim in the present work is to
put in evidence the role of the catalyst in the reversal of the chemoselectivity of the catalyzed Diels–
Alder reactions of (2E)-but-2-enal and 2-Hexen-4-one with cyclopentadiene. The calculations were
performed at theωB97XD/6-311G(d,p) level of theory and the solvent effects of dichloromethane
were taken into account using the PCM solvation model. The obtained results are in good agreement
with experimental outcomes.
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1. Introduction

Cycloadditions are one of the strongest bond-forming reactions to prepare (het-
ero)cyclic molecules in organic synthesis [1–10]. Their usefulness arises from their versa-
tility and remarkable selectivity. Many synthetic routes to cyclic compounds are made
possible through Diels–Alder (DA) reactions, which can involve a large variety of dienes
and dienophiles [6,11,12]. In addition, various DA reactions have been studied theoretically
using computational chemistry tools [13–21]. Notably the molecular electron density theory
(MEDT) [22], proposed by Domingo in 2016, has recently become an important tool for
the mechanistic study of cycloaddition reactions, about which an important number of
papers were published in the last few years [23–32]. According to MEDT, changes in the
electron density are responsible for the feasibility of an organic reaction in contrast to the
frontier molecular orbital (FMO) theory [33], which uses molecular orbital interactions.
Moreover, several quantum-chemical tools are used in MEDT, namely, reactivity indices
derived from the conceptual density functional theory (CDFT) [34,35], the topological
analysis of the electron localization function (ELF) [36], and the quantum theory of atoms
in molecules (QTAIM) [37], to rigorously study organic chemical reactivity on the basis of
electron density.

In order to make the cycloaddition feasible, various catalysts are introduced in re-
actions. Lewis acid (LA) and Brønsted acid (BA) catalysts [38–42] considerably extend
the useful scope of DA reactions, enhancing the reaction rate and leading to significant
changes in chemo-, regio-, and stereo-selectivities in comparison with the uncatalyzed
process [43,44]. A large number of experimental works has been carried out to understand
the effects of LA catalysts on the selectivity and the nature of molecular mechanisms of DA
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reactions [45–48]. As acidity of the BA can promote highly selectivity in DA cycloadditions,
many works on this topic were also published [49–54]. Of note is that the design and
development of powerful catalysts is one of the ongoing challenges in modern synthetic
chemistry and is very important for the synthesis of natural products, pharmaceuticals,
and agrochemicals [55–58].

In 2005, Yamamoto et al. [59] reported a famous work showing high chemoselectivity
in the DA cycloaddition of α,β-unsaturated aldehydes 1 and α,β-unsaturated ketones 2
with cyclopentadiene (Cp), where an unexpected reversal of chemoselectivity, according to
the choice of the acid catalyst, was observed (Scheme 1).
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Scheme 1. Chemoselective DA reactions of (2E)-but-2-enal 1 and 2-hexen-4-one 2 with Cp. Only the endo cycloadducts were
experimentally observed.

When a strong BA, such as Tf2NH, was used as a catalyst, the DA adduct derived
from the α,β-unsaturated ketone was obtained as a major product. However, when a
bulky LA, such as B(C6F5)3, was used as a catalyst, the cycloadduct derived from the
α,β-unsaturated aldehyde was the major product. Yamamoto et al. [59] rationalized this
reversal of chemoselectivity by the choice of the acid catalyst by consideration of the
basicity of the electrophile and the steric hindrance of the acid catalyst. According to the
experimentalist, a bulky LA such as B(C6F5)3 preferentially coordinates to the sterically
less demanding α,β-unsaturated aldehyde, whereas aBA could be regarded as the smallest
LA, which would be insensitive to the steric effect. Therefore, a BA selectively coordinates
a more basic carbonyl group such as α,β-unsaturated ketone. To the best of our knowledge,
the chemoselectivity between LA and BA on this type of DA reaction has not been studied
theoretically. Our aim in this contribution is to explore the competitive reactions between
the aldehyde 1 and ketone 2 with Cp catalyzed by BA and LA catalysts to shed light on
the origin of catalytic efficiencies and chemoselectivity details of these reactions using
DFT calculations. The competitive chemoselective pathways of this studied reaction are
illustrated in Scheme 2.
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2. Computational Details

All DFT calculations were carried out with the DFT/ωB97XD functional [60] combined
with the 6-311G(d,p) basis set [61] implemented in the Gaussian 09 suite of programs [62].
This level of theory has shown to be suitable for geometry optimization and electronic
property analysis of (3 + 2) cycloaddition and (4 + 2) DA reactions [17,63,64]. Optimizations
were performed using the Berny analytical gradient optimization method [65,66] and the
stationary points were characterized by frequency computations in order to verify that
the transition states had one and only one imaginary frequency. Solvent effects were
analyzed by optimizing the geometries in dichloromethane (DCM) through the polarizable
continuum model (PCM) developed in the framework of the self-consistent reaction field
(SCRF) [67–70]. The global electron density transfer (GEDT) [71] was computed as a sum
of the natural atomic charge, obtained by a natural population analysis (NPA) [72,73]
of the atoms belonging to each framework (f) at the TSs, i.e., GEDT (f) = ∑

q∈ f
q. Global

reactivity indices derived from CDFT [74–81], namely the electrophilicity index ω and the
nucleophilicity index N, were calculated using the following expressions [74]:

ω = µ2
2η

N ≈ εHOMO(Nucleophile)− εHOMO(TCE)
µ ≈ (εHOMO + εLUMO)/2

η ≈ εLUMO − εHOMO

where TCE = tetracyanoethylene.

3. Results and Discussion

In order to explain the role of the catalyst on the reversal of the chemoselectiv-
ity of the catalyzed DA cycloaddition reaction of the α,β–unsaturated aldehyde 1 and
α,β–unsaturated ketone 2 with Cp, all the chemoselective pathways were investigated
(Scheme 2). The studied DA reactions were:
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(i) 1 + Cp in the absence and presence of the BA/LA catalysts; and
(ii) 2 + Cp in the absence and presence of the BA/LA catalysts.

The quantum chemical calculations are based on the analysis of CDFT reactivity in-
dices and calculated activation energies and free energies. The polarity of the cycloaddition
processes is quantified by GEDT calculations at the located TSs.

3.1. Analysis of the Global CDFT-Based Reactivity Indexes

Global indexes defined in the context of the CDFT [34,35], namely, the electronic
chemical potential µ, chemical hardness η, global electrophilicity ω, and nucleophilicity
N, were calculated in terms of the one electron energies of the HOMO/LUMO frontier
molecular orbitals at the ground states of the reactants in gas phase. The following table
recapitulates the global reactivity indices for uncatalyzed reactants 1 and 2, BA-catalyzed
reactants 1-BA and 2-BA, and LA-catalyzed reactants 1-LA and 2-LA (Table 1).

Table 1. ωB97XD/6-311G(d,p) global electronic properties (chemical potential µ, chemical hardness
η, electrophilicity ω, nucleophilicity N) of uncatalyzed reactants 1 and 2, BA-catalyzed reactants
1-BA and 2-BA, and LA-catalyzed reactants 1-LA and 2-LA, in gas phase.

Global Properties (in eV)

µ η ω N ∆ω 1

Cp −0.123 0.352 0.58 3.63 0.00
1 −0.162 0.351 1.02 2.56 0.44
2 −0.156 0.350 0.94 2.76 0.36

1-BA −0.201 0.362 1.52 1.36 0.94
2-BA −0.193 0.367 1.40 1.60 0.82

1-LA −0.197 0.256 2.05 2.91 1.47
2-LA −0.192 0.265 1.89 2.94 1.31

1 Relative to Cp.

It turned out that the electronic chemical potential µ [34,82] of Cp, −0.123 eV, was
higher than that of the uncatalyzed and catalyzed aldehyde and ketone, indicating that
along the cycloaddition reaction the electron density will flux from the diene Cp to
the dienophile aldehyde/ketone, being classified as the forward electron density flux
(FEDF) [83]. The electrophilicity ω index [35] of Cp, 0.58 eV, being classified as a weak
electrophile, was lower than that of uncatalyzed and catalyzed aldehyde and ketone. In
the absence of catalysts, aldehyde 1 (ω = 1.02 eV) and ketone 2 (ω = 0.94 eV) can be
classified as moderate electrophiles [74]. By introducing the BA catalyst, the electrophilicity
of the dienophiles increased. It became 1.52 eV for BA-catalyzed aldehyde 1-BA and
1.40 eV for BA-catalyzed ketone 2-BA. By substituting the BA catalyst by the LA catalyst,
the electrophilicities increased and reached 2.05 eV for LA-catalyzed aldehyde 1-LA and
1.89 eV for LA-catalyzed ketone 2-LA, which made them strong electrophiles although
the aldehyde was predicted to be more electrophile than the ketone in the absence and
presence of BA/LA catalysts.

The nucleophilicity N index [84,85] of Cp, 3.63 eV, was higher than that of the un-
catalyzed aldehyde 1 (N = 2.56 eV) and ketone 2 (N = 2.76 eV), indicating that Cp acted
as a nucleophile and dienophiles 1 and 2 acted as electrophiles. In the presence of BA,
the nucleophilicity of the catalyzed aldehyde 1-BA and ketone 2-BA was reduced to 1.36
and 1.60 eV, respectively. Contrariwise, in the presence of LA, the nucleophilicity of the
catalyzed aldehyde 1-BA and ketone 2-BA was increased to 2.91 and 2.94 eV, respectively.
The difference in electrophilicity, ∆ω, for the DA reactions (1 + Cp), (1-BA + Cp), and
(1-LA + Cp) were 0.44 eV, 0.94 eV, and 1.47 eV, respectively, indicating the largest polarity
of the cycloaddition reaction between the aldehyde 1 and Cp corresponded to the 1-LA +
Cp catalyzed reaction. The same trends were found for the DA reactions between the ke-
tone 2 and Cp. In conclusion, compared to the uncatalyzed and BA-catalyzed DA reactions,
the LA-catalyzed DA reactions were predicted to be the most polar ones.
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3.2. Analysis of the Potential Energy Surface of the Uncatalyzed and Catalyzed DA Reactions of
1 and 2
3.2.1. Competitive Uncatalyzed DA Reactions of 1 and 2 with Cp

The competitive DA reactions between α,β-unsaturated aldehyde 1 with Cp and
between α,β-unsaturated ketone 2 with Cp (Scheme 1) were studied first in the absence
of catalysts. The first DA reaction of 1 with Cp led to the formation of the cycloadduct
CA-1 via TS-1 and the second DA reaction of 2 with Cp led to the formation of the
cycloadduct CA-2 via TS-2. The gas phase energies and Gibbs free energies in DCM at
−40 ◦C (experimental conditions of BA-catalyzed reaction) and at −20 ◦C (experimental
conditions of LA-catalyzed reaction) are summarized in Table 2 and the chemical structures
of the gas phase TSs, drawn using GaussView 5.0 [86], are given in Figure 1a.

Table 2. Total energies E and relative energies ∆E in gas phase, and free energies G◦ and relative free energies ∆G◦ in
solvent for the uncatalyzed DA reactions (1 + Cp) and (2 + Cp).

Gas Phase In DCM at −40 ◦C DCM at −20 ◦C

E
(in a.u.)

∆E
(in kcal/mol)

G◦

(in a.u.)
∆G◦

(in kcal/mol)
G◦

(in a.u.)
∆G◦

(in kcal/mol)

Cp −194.081227 −194.010442 −194.012466
1 −231.214513 −231.151897 −231.154155
2 −309.848932 −309.732115 −309.734767

1 + Cp −425.295740 0.0 −425.162339 0.0 −425.166621 0.0
2 + Cp −503.930160 0.0 −503.742557 0.0 −503.747233 0.0
TS-1 −425.268971 16.8 1 −425.115299 29.5 1 −425.118053 30.5 1

TS-2 −503.904754 15.9 2 −503.695977 29.2 2 −503.699094 30.2 2

CA-1 −425.337504 −26.2 1 −425.178925 −10.4 1 −425.176228 −6.0 1

CA-2 −503.975693 −28.6 2 −503.762314 −12.4 2 −503.759272 −7.5 2

1 Relative to reactants (1 + Cp); 2 relative to reactants (2 + Cp).
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The calculated activation barriers in gas phase and in DCM show that the second DA
reaction (2 + Cp) was kinetically more favored than the first DA reaction (1 + Cp) by 0.9,
0.3, and 0.3 kcal/mol in gas phase, DCM at −40 ◦C, and DCM at −20 ◦C, respectively. We
also noted that the second DA reaction was found to be more exergonic than the first one
by 2.0 and 1.5 kcal/mol in DCM at −40 ◦C and −20 ◦C, respectively.

3.2.2. BA-Catalyzed DA Reactions of 1-BA and 2-BA with Cp

In the presence of the triflimide Tf2NH as a BA catalyst, the competitive DA reactions
of BA-catalyzed aldehyde 1-BA and BA-catalyzed ketone 2-BA with Cp, giving CA-1-BA
via TS-1-BA and CA-2-BA via TS-2-BA respectively, were studied. Calculations were
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carried out in gas phase and in DCM at −40 ◦C. The results are summarized in Table 3 and
the chemical structures of TSs in solvent are given in Figure 1b.

Table 3. Total energies E and relative energies ∆E in gas phase, and free energies G◦ and relative free energies ∆G◦ in
solvent for the possible chemo pathways of DA reactions catalyzed by BA. The enthalpy and entropy contributions of ∆G◦

are included.

Gas Phase In DCM at −40 ◦C

E
(in a.u.)

∆E
(in kcal/mol)

G◦

(in a.u.)
∆G◦

(in kcal/mol)
∆H◦

(in kcal/mol)
−T∆S◦

(in kcal/mol)

Cp −194.081227 −194.010442
1-BA −2058.968156 −2058.860635
2-BA −2137.604500 −2137.442545

1-BA + Cp −2253.049384 0.0 −2252.871077 0.0
2-BA + Cp −2331.685728 0.0 −2331.452987 0.0
TS-1-BA −2253.033186 10.2 1 −2252.847153 15.0 1 2.6 (17.5%) 12.4 (82.5%)
TS-2-BA −2331.670205 9.7 2 −2331.430226 14.3 2 2.1 (14.9%) 12.2 (85.1%)
CA-1-BA −2253.094037 −28.0 1 −2252.885020 −8.7 1

CA-2-BA −2331.733508 −30.0 2 −2331.471355 −11.5 2

1 Relative to reactants (1-BA + Cp); 2 relative to reactants (2-BA + Cp).

Introducing Tf2NH as BA catalyst, the calculated activation barriers in gas phase and
in DCM at −40 ◦C show that the second DA reaction (2-BA + Cp) was kinetically more
favored than the first DA reaction (1-BA + Cp) by 0.5 and 0.7 kcal/mol in gas phase and
DCM at −40 ◦C, respectively. We also noted that the second DA reaction was found to
be more exergonic than the first one by 2.8 kcal/mol in DCM at −40 ◦C, which is in good
agreement with experimental outcomes.

3.2.3. LA-Catalyzed Reaction of 1-LA and 2-LA with Cp

In the presence of the LA tris(pentafluorophenyl)borane B(C6F5)3, catalyzed DA
reactions of aldehyde 1-LA and ketone 2-LA with Cp, giving cycloadduct CA-1-LA and
CA-2-LA via TS-1-LA and TS-2-LA, respectively, were studied. Calculations were carried
out in gas phase and in DCM at −20 ◦C. The results are summarized in Table 4 and the
chemical structures of TSs in solvent are given in Figure 1c.

Table 4. Total energies E and relative energies ∆E in gas phase, and free energies G◦ and relative free energies ∆G◦ in
solvent for the possible chemo pathways of DA reactions catalyzed by LA. The enthalpy and entropy contributions of ∆G◦

are included.

Gas Phase In DCM at −20 ◦C

E
(in a.u.)

∆E
(in kcal/mol)

G◦

(in a.u.)
∆G◦

(in kcal/mol)
∆H◦

(in kcal/mol)
−T∆S◦

(in kcal/mol)

Cp −194.081227 −194.010442
1-LA −2439.454482 −2439.272585
2-LA −2518.095162 −2517.856115

1-LA + Cp −2633.535709 0.0 −2633.283027 0.0
2-LA + Cp −2712.176389 0.0 −2711.866557 0.0
TS-1-LA −2633.525405 6.5 1 −2633.258044 15.7 1 5.2 (33.3%) 10.5 (66.7%)
TS-2-LA −2712.169099 4.6 2 −2711.840294 16.5 2 5.0 (30.4%) 11.5 (69.6%)
CA-1-LA −2633.576707 −25.7 1 −2633.295055 −7.5 1

CA-2- LA −2712.223191 −29.4 2 −2711.882229 −9.8 2

1 Relative to reactants (1-LA + Cp); 2 relative to reactants (2-LA + Cp).

In opposition to the Tf2NH-catalyzed DA reactions, the B(C6F5)3-catalyzed DA re-
actions led to a reversed chemoselectivity. Indeed, in DCM at −20 ◦C, the calculated
activation barriers indicate that the activation free energy for the DA reaction 1-LA + Cp,
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15.7 kcal/mol, was lower than that of the DA reaction 2-LA + Cp, 16.5 kcal/mol, indicating
that chemo pathway involving the catalyzed aldehyde was kinetically more favored than
the chemo pathway involving the catalyzed ketone, in agreement with experiment. We
noted that the calculations performed in gas phase did not reproduce the experimental
finding, showing the importance of solvent effects in the calculation of activation barriers.
We also noted that the two competitive chemo pathways were exergonic. It is important
to note that intrinsic reaction coordinate (IRC) calculations indicated that the studied DA
reactions followed a one-step mechanism and the eventuality of a stepwise mechanism was
excluded. Indeed, the optimization of the last structures on the IRC curves in the forward
direction gave structures identical to those of cycloadducts, indicating the absence of stable
reaction intermediates.

To quantify the electronic and steric effects of BA and LA catalysts on the chemoselec-
tivity of the studied DA reactions, we calculated the enthalpic and entropic contributions
by partitioning ∆G◦ into two terms: ∆H◦ and −T∆S◦ (Tables 3 and 4). According to the
obtained results, we concluded that (i) both the steric and electronic effect are important
in BA- and LA-catalyzed DA reactions; (ii) the steric contribution is more important than
the electronic contribution in both BA- and LA-catalyzed reactions; (iii) the electronic
contributions for LA-catalyzed reactions, 33.3% and 30.4%, are more important than those
of BA-catalyzed reactions (17.5% and 14.9%); (iv) for BA-catalyzed reactions, the steric con-
tribution in TS-2-BA is more important than in TS-1-BA; and (v) in LA-catalyzed reactions,
there is a decrease of steric contribution and increase of electronic contribution compared
to BA-catalyzed reactions.

3.3. Relative Activation Free Energies and Boltzmann–Maxwell Populations

Table 5 summarizes the relative activation of Gibbs free energies, ∆∆G◦, for the TSs
corresponding to the four competitive chemo pathways, namely, 1-BA + Cp, 2-BA + Cp,
1-LA + Cp, and 2-LA + Cp reported in Tables 3 and 4. The Maxwell–Boltzmann populations
defined by [B]/[A] = exp(−∆∆G/RT) for the two equilibriums TS-1-BA 
 TS-2-BA and
TS-1-LA 
 TS-2-LA were also calculated and are recapitulated in Table 5.

Table 5. Relative free energies ∆∆G◦ (in kcal/mol) between barrier free energies ∆G◦ of TSs in DCM
and their corresponding Boltzmann–Maxwell populations (%).

In DCM at −40 ◦C in DCM at −20 ◦C

∆∆G◦ pop(%) ∆∆G◦ pop(%)

TS-1-BA 0.7 17.14

TS-2-BA 0.0 82.86

TS-1-LA 0.0 83.07

TS-2-LA 0.8 16.93

In the case of the BA-catalyzed reactions, the calculated Maxwell–Boltzmann popula-
tions shows that the population of TS-2-BA represented 82.86% of the mixture, whereas the
population of TS-1-BA represented only 17.14%, indicating that chemo pathway 2-BA + Cp
was kinetically more favored than the chemo pathway 1-BA + Cp in DCM at −40 ◦C. By
contrast, in the case of the LA-catalyzed reactions, the calculated Maxwell–Boltzmann pop-
ulations show that the population of TS-1-LA represented 83.07% of the mixture, whereas
the population of TS-2-LA represented only 16.93%, indicating chemo pathway 1-LA +
Cp was kinetically more favored than chemo pathway 2-LA + Cp in DCM at −20 ◦C. The
obtained results put in evidence the crucial role played by the type of catalyst in the reversal
of chemoselectivity in catalyzed DA reactions of α,β-unsaturated aldehydes.
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3.4. GEDT Analysis and Polarity

The global electron density transfers (GEDTs) [71] were estimated from natural popu-
lation analysis (NPA) [72,73] at the located TSs. The calculated GEDTs for uncatalyzed and
BA/LA-catalyzed DA reactions are summarized in Table 6.

Table 6. GEDT (given in e) of the uncatalyzed and BA-/LA-catalyzed DA reactions.

Uncatalyzed DA Reactions BA-Catalyzed
DA Reactions

LA-Catalyzed
DA Reactions

TS-1 TS-2 TS-1-BA TS-2-BA TS-1-LA TS-2-LA

GEDT 0.13 0.12 0.26 0.23 0.38 0.33

In the absence of catalysts, the GEDT values at TS-1 (0.13e) and TS-2 (0.12e) showed
electron density fluxes from Cp to aldehyde 1 and ketone 2. The flux was two times greater
in the presence of the BA catalyst and three times greater in the presence of the LA catalyst.
These results clearly reveal that both the uncatalyzed and catalyzed studied DA reactions
can be classified as polar processes. We noted that the calculated GEDTs (Table 6) correlated
well with the calculated activation barriers (Tables 2–4). Indeed, when passing from the
uncatalyzed reactions to BA- and LA-catalyzed reactions, an increase in the polarity led to
a decrease in activation energies and free energies. We also noted that the calculated GEDTs
(Table 6) also correlated well with the calculated electrophilicity differences ∆ω (Table 1).
Indeed, when passing from the uncatalyzed reactions to BA- and LA-catalyzed reactions,
the increase of ∆ω values led to an increase in polarity and consequently a decrease in
activation barriers.

4. Conclusions

The chemoselectivity of the (un)catalyzed DA reactions of α,β-unsaturated aldehyde 1
and ketone 2 with Cp was investigated at the ωB97XD/6-311G(d,p) level of theory. The
obtained results show that the most favored chemo pathway depends strongly on the type
of the catalyst (Brønsted acid vs. bulky Lewis acid).

(i) In the case of the uncatalyzed DA reactions, the 2 + Cp reaction was found to be
kinetically more favored than the 1 + Cp reaction both in gas phase and in DCM.

(ii) In the case of the DA reactions catalyzed by BA, the 2-BA + Cp reaction was found
to be kinetically more favored than the 1-BA + Cp reaction both in gas phase and in
DCM at −40 ◦C. Moreover, the calculated activation barriers, GEDTs at TSs, and elec-
trophilicity differences (∆ω) indicated that the BA-catalyzed reactions were predicted
to be more polar and faster compared to the uncatalyzed reactions.

(iii) In the case of the DA reactions catalyzed by LA, the 1-LA + Cp reaction was found
to be kinetically more favored than the 2-LA + Cp reaction in DCM at −20 ◦C. In
addition, the LA-catalyzed reactions were predicted to be more polar and faster
compared to the uncatalyzed and BA-catalyzed reactions.

(iv) The relative free energies and Maxwell–Boltzmann populations of the competitive
TSs, calculated in DCM, put in evidence the reversal of the chemoselectivity when the
BA catalyst Tf2NH -was replaced by the bulky LA catalyst B(C6F5)3, in agreement
with the experimental findings.
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19. Jasiński, R. A reexamination of the molecular mechanism of the Diels-Alder reaction between tetrafluoroethene and cyclopentadi-
ene. React. Kinet. Mech. Catal. 2016, 119, 49–57. [CrossRef]

20. Chen, S.; Yu, P.; Houk, K.N. Ambimodal Dipolar/Diels-Alder Cycloaddition Transition States Involving Proton Transfers. J. Am.
Chem. Soc. 2018, 140, 18124–18131. [CrossRef]
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