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Abstract: Esters of iminophosphonic acids (iminophosphonates, or IPs), including a fragment,
>P(=O)-C=N, can be easily functionalized, for instance to aminophosphonic acids with a wide range
of biological activity. Depending on the character of the substitution, the Z- or E-configuration
is favorable for IPs, which in turn can influence the stereochemistry of the products of chemical
transformations of IPs. While the Z,E-isomerism in IPs has been thoroughly studied by NMR
spectroscopy, the factors stabilizing a definite isomer are still not clear. In the current work, density
functional theory (DFT, using M06-2X functional) and ab initio spin-component–scaled second-
order Møller–Plesset perturbation theory (SCS-MP2) calculations were carried out for a broad series
of IPs. The calculations reproduce well a subtle balance between the preferred Z-configuration
inherent for C-trifluoromethyl substituted IPs and the E-form, which is more stable for C-alkyl- or
aryl-substituted IPs. The predicted trend of changing activation energy values agrees well with
the recently determined experimental ∆G 6=298 magnitudes. Depending on the substitution in the
aromatic moiety, the Z/E-isomerization of N-aryl-substituted IPs proceeds via two types of close-in
energy transition states. Not a single main factor but a combination of various contributions should
be considered in order to explain the Z/E-isomerization equilibrium for different IPs.

Keywords: DFT calculations; SCS-MP2 calculations; Z,E-isomerism; iminophosphonates; thermody-
namic stability

1. Introduction

Aminophosphonic acids, as phosphorus analogs of amino acids, are biologically
persistent analogues of unstable tetrahedral carbon intermediates formed in enzymatic
processes, and therefore act as enzyme inhibitors [1]. Derivatives of aminophosphonic
acids are widely used as antibacterial, anticancer and antiviral drugs, herbicides, and
enzyme regulators, etc. [1–3].

Esters of iminophosphonic acids or iminophosphonates (IPs) include an ‘oxidized’
fragment of aminophosphonic acids (>P(=O)-C=N), which can easily be functionalized.
Therefore, they are convenient precursors in the synthesis of aminophosphonic acids, as
well as a wide range of other biologically active compounds. Fluorine-substituted IPs
deserve special attention because the introduction of fluorine into the molecule is not
always an easy task. At the same time, the presence of fluorine atoms in the molecule
significantly affects its chemical, physicochemical and pharmacological properties [4,5].
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Similarly to other imines, E/Z-isomerism is inherent for IPs (Scheme 1). Two main
mechanisms of isomerization are discussed in the literature: an imino-nitrogen inversion in
a plane through a transition state (TS) with a CNX bond angle ≈ 180◦ and a rotational pro-
cess, wherein the substituent X in the TS is out of the plane with the CNX bond angle < 180◦

(Figure 1) [6,7]. It should be noted that, at present, there are no unambiguous experimental
criteria for assigning the mechanism of isomerization to inversion or rotation. However,
as shown by our quantum chemical study of quinonimines [7], a mixed isomerization
mechanism including the rotation component in the process of inversion is realized only
under certain conditions, and is determined mainly by the steric influence of the neigh-
boring substituents. One year later, Gálvez and Guirado [8] have reported on the similar
mixed isomerization mechanism in other imine derivatives. Moreover, according to [8],
electron acceptor substituents determine the inversion mechanism for the isomerization,
whereas the electron donor groups contribute to the rotational one. This conclusion is also
consistent with the data of earlier works [9,10].
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Figure 1. Two possible mechanisms of the Z/E-isomerization of imines. 

IPs can exist as an equilibrium of E- and Z-isomers (Table 1) [9]. The assignment of 
IPs to Z- or E-isomers has recently been performed by means of 19F and 31P NMR spectros-
copy [9,11,12]. The resonance signals of phosphorus and fluorine nuclei in Z-isomers of 
IPs (δР−0.1–3.3 ppm, δF−66.2–70.2 ppm) are high-field shifted compared to the corre-
sponding E-isomers (δР 1.5–4.9 ppm, δF−61–62 ppm) [9,11–13]. Structural features, the 
charge distribution in the molecules, electronic interactions, and reaction paths are tradi-
tional subjects of quantum chemistry investigations. Recently, we published the first ex-
ample of quantum chemical calculations for the process of the Z/E-isomerization of IPs 
[14]. Theoretical studies of the same process have previously been performed for other 
substituted imines [7,8]. The isomeric ratio is determined by the nature of the substituents 
at the C = N double bond, and the decisive contribution to the stability of each of the 
isomers belongs to the substituent R2 (Scheme 1). Thus, it is known that most derivatives 
with R2 = aryl exist mainly in the E-form [Z/E ≈ 1:(12–20)], while IPs with fluoroalkyl R2 
groups are preferably Z-isomers [Z/E ≈ (6–10):1] (Table 1). The variation of the alkyl sub-
stituent R3 in the phosphoryl group has little effect, while the nature of the fluoroalkyl 
group R2 can significantly influence the Z/E-isomeric ratio for IPs. Interestingly, in the 
more stable Z-isomer of trifluoromethyl-substituted IPs, the substituent R1 at the nitrogen 
atom is in the cis-position relative to the bulky dialkylphosphonyl group, i.e., the sterically 
less-favorable isomer is more advantageous. In turn, the structure of these compounds 
can significantly affect their chemical properties: their reactivity and the stereochemical 
outcome of enantio- and diastereoselective reactions, etc. 
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Scheme 1. Z/E isomerization of IPs.
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IPs can exist as an equilibrium of E- and Z-isomers (Table 1) [9]. The assignment
of IPs to Z- or E-isomers has recently been performed by means of 19F and 31P NMR
spectroscopy [9,11,12]. The resonance signals of phosphorus and fluorine nuclei in Z-
isomers of IPs (δP−0.1–3.3 ppm, δF−66.2–70.2 ppm) are high-field shifted compared to the
corresponding E-isomers (δP 1.5–4.9 ppm, δF−61–62 ppm) [9,11–13]. Structural features,
the charge distribution in the molecules, electronic interactions, and reaction paths are
traditional subjects of quantum chemistry investigations. Recently, we published the first
example of quantum chemical calculations for the process of the Z/E-isomerization of
IPs [14]. Theoretical studies of the same process have previously been performed for other
substituted imines [7,8]. The isomeric ratio is determined by the nature of the substituents
at the C = N double bond, and the decisive contribution to the stability of each of the
isomers belongs to the substituent R2 (Scheme 1). Thus, it is known that most derivatives
with R2 = aryl exist mainly in the E-form [Z/E ≈ 1:(12–20)], while IPs with fluoroalkyl
R2 groups are preferably Z-isomers [Z/E ≈ (6–10):1] (Table 1). The variation of the alkyl
substituent R3 in the phosphoryl group has little effect, while the nature of the fluoroalkyl
group R2 can significantly influence the Z/E-isomeric ratio for IPs. Interestingly, in the
more stable Z-isomer of trifluoromethyl-substituted IPs, the substituent R1 at the nitrogen
atom is in the cis-position relative to the bulky dialkylphosphonyl group, i.e., the sterically
less-favorable isomer is more advantageous. In turn, the structure of these compounds
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can significantly affect their chemical properties: their reactivity and the stereochemical
outcome of enantio- and diastereoselective reactions, etc.

Table 1. The ratio of isomers of iminophosphonates (see Scheme 1).

Entry R1 R2 R3 Z/E ∆G(Z/E) a

1 H CF3 Et 10:1 [12]
2 H CHF2 Et 5:1
3 H C3F7 Et 20:1
4 Ph CF3 Et 7:1 −16.0
5 4-MeOC6H4 CF3 Me 5:1 [9] −14.4
6 4-CNC6H4 CF3 Me 7:1 [9] −19.7
7 Me CF3 Et 10:1
8 cyc-Pr CF3 Et 11:1 [11] −5.9
9 Me Ph Et 1:17 [9]

10 CHMe2 Ph Et 1:20
11 4-MeOC6H4 Ph Et 1:13

a Calculated (M06-2X/6-311+G**, PCM solvent model, solvent: toluene) difference in Gibbs free energy (kJ mol−1)
between E and Z isomers. Negative values mean a higher stability of the Z-isomer.

In this work, we investigated Z/E-isomerism for IPs 1–10 using density functional
theory (DFT) (M06-2X/6-311+G** level) and ab initio spin-component-scaled second-
order Møller–Plesset perturbation theory (SCS-MP2/cc-pVTZ level) calculations [15,16]
(Figure 2). In particular, the stability of the structures corresponding to the local energy
minima and transition states for the Z/E-isomerization process, their relative energies,
charge distribution, and bond critical points will be discussed in detail.
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2. Methods of Calculations

All of the calculations were performed with the GAUSSIAN-09 set of programs [17].
The M062X [15,16] function in combination with 6–31+G** basis sets [18,19] were used
for the geometry optimization and calculations of the vibrational frequencies. The equi-
librium structures were utilized for the generation of the PROAIMS wave function files
(wfn) at the RHF/6–31G* level of theory. NBO charges were derived using the NBO 3.1
procedure [20–22] implemented into the GAUSSIAN-09 set of programs at the M062X/6–
311 + G** level of approximation. The same level of theory was used for the single-point
energy calculations in combination with the PCM [23] and CPCM [24,25] solvent models, as
implemented into the GAUSSIAN-09 package (see ESI, Table S3). The Jmol program [26,27]
was used for the graphical presentation of the structures. Single-point MP2 energy cal-
culations for 5–7 were carried out using the TURBOMOLE program package (version
6.4) [28,29] and SCS-MP2 level of approximation [30–33] with triple-zeta cc-pVTZ Dun-
ning’s basis sets [34]. Resolution of the Identity (RI) approximation [35,36] was utilized in
all cases to increase the calculation speed and efficiency. Topological Bader’s ‘atoms in the
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molecule’ (AIM) [37] and Non-Covalent Interactions (NCI) analyses [38] were performed
using the Multiwfn program [39]. The energies of the hydrogen bonds were estimated
according to the values of the potential energy at the critical points [40].

3. Results

The structures of the Z- and E-isomers of N-methyl derivative 1 (respectively, 1-Z
and 1-E) and the transition state of the isomerization reaction (1-TS) optimized in the
approximation M06-2X/6-311+G** are shown in Figure 3.
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the Jmol program [26,27,41].

Our calculations predict higher thermodynamic stability for the Z-structure of 1 (1-Z)
(by 8.8 kJ mol−1) compared to the E-form (1-E) (Table S1). The calculated values of the
activation energies for the E→Z (∆G) and Z→E transformations (∆G’) are 83.0 and 91.8 kJ
mol−1, respectively. However, the data of quantum chemical calculations do not allow us
to find a trivial explanation of the observed advantage of the Z-isomer over the E-form.
In particular, the Z-structure seems to be stabilized by two hydrogen bonding (HB) H···F
(2.410 Å) and H···O (2.532 Å). These are confirmed by the existence of corresponding (3,
–1) critical points (CPs) obtained by the analysis of the electron density by Bader’s ‘atoms
in the molecule’ method (AIM) [37] (Figure 4, left, CPs 1 and 2). The estimated energies
of the hydrogen bonding [40] are −10.2 and −10.6 kJ mol−1, respectively. However, the
corresponding energies of the three HBs H···N (2.745 Å) and H···F (2.407 and 2.408 Å) found
in 1-E (Figure 4, right) for CPs 1, 2 and 3 (−6.9, −11.5 and −12.9 kJ mol−1, respectively)
in total even exceed the energy of the HBs in the more favorable 1-Z structure. Therefore,
hydrogen bonding by itself does not explain the higher thermodynamic stability of the
1-Z structure compared to 1-E. No new conclusions can be drawn either from the analysis
of the NBO charge distributions in either isomers (Figure 5). For example, the favorable
Coulomb interaction (Cδ–H3–Cδ+F3) could rather be expected for 1-E, whereas for the more
sTable 1-Z, the similar charge configuration Cδ–H3–Pδ+ is identical to that predicted for the
equilibrium structure of the less favorable 3-Z isomer without the trifluoromethyl group
(vide infra).

The replacement of the methyl substituent with the cyclopropyl group (Figure 6,
structures 2-E and 2-Z, models of the real compound, see Table 1, entry 8) does not pro-
vide significant changes in the relative stability of the isomers: the structure of 2-E is still
noticeably (7.5 kJ mol−1) less favorable than the 2-Z isomer. The only structural feature
is a conformational isomerism due to the rotation of the cyc-Pr substituent: in the most
advantageous structure, the hydrogen atom N-CH forms an HB with P = O oxygen of
the phosphonyl group (Z-isomer), or with the fluorine atom (E-isomer) (Figure 6). The
calculated ∆G and ∆G’ values (2-E→2-Z ∆G 78.4 kJ mol−1, 2-Z→2-E ∆G‘ 86.5 kJ mol−1)
are slightly lower than the corresponding values predicted for the isomerization process of
methyl derivative 1 (see above). At first sight, the transition state structure 2-TS could be
stabilized via two weak C–F···H–C hydrogen bonds, and electron density distribution anal-
ysis using the NCI method [38] indicated weak attraction between fluorine and hydrogen
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atoms (see ESI, Figure S1, left). However, the absence of the corresponding bond-critical
points in the AIM analysis (Figure S1, right) does not support this assumption.
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critical points in the AIM analysis (Figure S1, right) does not support this assumption. 
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Figure 6. Optimized structures of Z- and E-isomers (2-Z and 2-E, respectively) and the transition state of the isomerization
reaction 2-Z→ 2-E (2-TS).

In contrast to compounds 1 and 2, for methyl derivative 3 (Figure 7), the 3-E isomer
proved to be more stable than the corresponding 3-Z structure by 4.6 kJ mol−1, and the
inversion barriers increased sharply (3-E→3-Z ∆G 102.0 kJ mol−1, ∆G’ 3-Z→3-E 97.4 kJ
mol−1). The only important difference in the charge distribution in the molecule, compared
to 1, is the lack of a positive charge on the carbon atom of the methyl group, which replaces
the CF3 group (Figure 5). The close proximity of the similarly charged carbon atoms in
3E should destabilize the more stable E-structure compared with the Z-isomer. Thus, the
different charge distributions in 1 and 3 that influence the Coulomb interactions in the
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isomeric structures cannot serve as a suitable explanation for the configurational stability
in the series of interest.
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Figure 7. Optimized structures of Z- and E-isomers (3-Z and 3-E, respectively) and the transition
state of the isomerization reaction 3-Z→ 3-E (3-TS).

The replacement of C- and N-methyl groups in 3 by phenyl substituents (Figure 8,
structures 4-Z and 4-E) decreases the advantage for the 4-E-isomer to 1.7 kJ mol−1. There-
fore, the theoretically and experimentally found stabilization of the Z-isomers in com-
pounds 1,2 is mainly an effect of the trifluoromethyl group. The values of the activation
energy for the isomerization processes E→Z (∆G) and Z→E (∆G’) for compound 4 are
lower than those found for 1: 62.1 and 60.4 kJ mol−1, respectively (Table S1). The lower acti-
vation barriers can probably be referred to an additional stabilization of the 4-TS transition
state by conjugation effects.
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Previously [9], we investigated the process of Z/E-isomerization in N-aryltrifluoroacetimidoyl
phosphonates by dynamic NMR on 19F nuclei, and we calculated the rate constant of
the isomerization process and its thermodynamic parameters using the Eyring equation.
The activation barriers for the transformation were found to be quite low, such that it
proceeds even at room temperature [9]. For model 5 (Figure 9), our calculations predict
conformational isomerism for the structures corresponding both to the local energy minima
and to TS structures. As our calculations show, it is possible to localize for 5 two different
energy minima for the E-forms, 5-E and 5′-E (5′-E is 6.2 kJ mol−1 more stable than 5-E), and
the geometry of the corresponding Z-isomers, 5-Z and 5′-Z differs, too (5-Z is 5.7 kJ mol−1

more stable than 5′-Z and 9.2 kJ mol−1 more stable than 5′-E). The structure of 5-Z seems
to be stabilized due to CH,π-interactions: the distance from one of the hydrogen atoms of
the P-methoxy group to the carbon atoms of the Ph ring is almost identical, 2.8–2.9 Å, while
for the conformation 5′-Z CPhH···O=P, hydrogen bonding was found. For these two types
of conformational isomers, two different paths of Z,E-transformation and correspondingly,
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two transition state structures (5-TS and 5′-TS) can be located. Interestingly, despite almost
identical calculated total energies (the difference in ∆G values is only ca. 0.2 kJ mol−1

in favor of 5′-TS), the structures themselves differ significantly. In the case of 5-TS, it is
easy to recognize an iminium-type structure, in which the plane of the Ph moiety and
the plane of the C = N π-system are almost orthogonal to each other (the corresponding
dihedral angle in the optimized TS structure is ~65◦), which minimizes steric interactions.
The alternative (and somewhat more advantageous) structure of 5′-TS is of the quinone
imine type: the two π-systems are in the same plane, and the structure is stabilized by
two hydrogen bonds, F···H (2.78 Å) and O···H (2.96 Å). Therefore, the isomerization of
5 can proceed via two different reaction pathways, as the isomeric local minima for the
most favorable 5′-E and 5-Z structures can easily undergo transformations to 5-E and 5′-Z,
respectively, with much lower activation energies (not studied here in detail).
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As we have shown previously [9], the introduction of the electron acceptor substituent
(CN) in the para-position of the aromatic moiety significantly accelerates the isomerization
process, i.e., it reduces the activation energy of the inversion around the nitrogen atom.
The DFT calculations evidence that the substitution character in the aromatic ring affects
the structure of the ground and transition states (Figure 10): the only located TS structure
6-TS involving the acceptor nitrile group mimics structure 5-TS (Scheme 2), whereas the
donor methoxy group promotes the formation of the planar transition state 7-TS, which is
similar to 5′-TS discussed above.

The different polar structures predicted for 6-TS, involving the imino-nitrogen lone
pair in direct conjugation with the π-acceptor nitrile group, and 7-TS with the delocal-
ization of electron density from the π-donor methoxy oxygen onto the acceptor CF3 and
phosphonic groups (Scheme 2) is reflected in their geometry: the CF3C-N bond is slightly
shorter in 6-TS (1.228 Å) than in 7-TS (1.237 Å), and the interatomic distances C–P and
C-CF3 in 6-TS (1.858 and 1.541 Å, respectively) are still slightly longer than those predicted
for 7-TS (1.842 and 1.534 Å, respectively).
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It was found by a dynamic NMR study that the activation barriers of Z→E isomer-
ization in toluene-d8 increase in the order 6 < 5 < 7 (∆G 6=298 64.6, 67.1 and 73.4 kJ mol−1,
respectively) [9]. However, the gas phase DFT calculations failed to reproduce the experi-
mental trend of activation energies. In particular, the activation energy calculated for Z→E
isomerization in the 4-CN-substituted compound 6 (∆G 68.3 kJ mol−1) is even slightly
higher than the value predicted for the 4-methoxy derivative 7 (∆G 66.5 kJ mol−1). Finally,
the highest activation barrier in the studied series was predicted for phenyl derivative 5
(∆G 73.5 kJ mol−1). Such discrepancies were observed despite the use of the DFT functional
(M06-2X), which is known to reproduce well the thermochemistry of chemical reactions
and, in particular, the values of activation barriers [15,16]. As could be expected, taking
into account the solvent effects for the low-polar toluene using empirical PCM and CPCM
methods did not improve the compliance with the experiment (see Table S3). In particular,
while some qualitative agreement was found for 5–7 between the experimentally found
Z/E-isomeric ratio and the calculated differences in the Gibbs free energy values, corrected
for solvent effects (Table 1, Table S3), predicting the lowest advantage of Z-isomer for 7, the
predicted stability of 2-Z was obviously too low. Thus, the stability of Z-isomers seems to
be overestimated for structures 5–7, and—at the chosen approximation level—we cannot
expect any general correlation between the calculated and experimental data. However, the
application of a more superior RI-SCS-MP2 level of approximation [33] in combination with
the larger Dunning cc-pVTZ basis sets [34] and DFT corrections to ∆G values (Table S2)
to some extent lowers the advantage of Z-isomers for structures 5, 6 and 7 (3.3, 13.0 and
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5.3 kJ mol−1, respectively), and establishes the correct ratio of activation energies for these
model structures (see Discussion).

The replacement of the substituent at the nitrogen atom by hydrogen (Scheme 3)
should additionally stabilize the Z-isomers compared to the E-structures due to a probable
formation of N-H····O=P hydrogen bonds (Figures 11 and 12). The calculated values of
activation energies ∆G related to the more stable Z-isomers 8-Z and 9-Z (Table S1, 107.2
and 119.7 kJ mol−1, respectively) are the highest for the studied series of IPs. A suitable
explanation for such high barriers, in addition to hydrogen bonding stabilizing the Z-
configuration, is the small values of the ∠HNC valence angle (Table S1, 109.9 and 110.7 for
8-Z and 9-Z, respectively), which are much smaller than the corresponding ∠CNC angle of
122.0◦ found for the 1-Z structure (the structure with the larger XNC bond angle is closer
to the transition state structure and requires less activation energy for the inversion at
nitrogen [7]).
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Figure 11. Optimized structures of the Z- and E-isomers of compound 8 (8-Z and 8-E, respectively), and the structure
corresponding to the transition state of the isomerization reaction (8-TS).
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As evidence for this assumption, the replacement of the methyl group in 1 by a
trimethylsilyl substituent (Scheme 4, structures 10) destabilizes the ground states for both
the E- and Z-isomers (Figure 13) due to the influence of steric factors. The corresponding
∠SiNC bond angles (138.0 and 136.2◦, respectively) significantly exceed the corresponding
values in 1-E and 1-Z (122.8 and 122.0◦), and are much closer to the geometry of the 10-TS
(Figure 13). This facilitates the Z,E-isomerization reaction [7], and determines the lowest
activation energies for the 10-E→10-Z (∆G) and 10-Z→10-E (∆G’) isomerization processes
in the studied series of IPs (9.8 and 25.9 kJ mol−1, respectively). Due to the significant
difference in energy in favor of 10-Z (∆G −16.1 kJ mol−1), IP 10 will exist in a rapid
dynamic equilibrium between the E- and Z-forms, strongly shifted towards the Z-isomer.
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The replacement of the diakylphosphonic group in 9 and 10 by the ester moiety
(Scheme 5, compounds 11 and 12, respectively) does not significantly affect the activation
energies of the Z,E-isomerization process. The most stable are E-isomers 11-E and 12-E,
which in their structure and the position of their substituents are similar to 9-Z and 10-
Z isomers. The structure 11-E (Figure 14), which is perfectly planar (symmetry Cs), is
obviously stabilized due to the hydrogen bond N–H····O=C, as evidenced by its short
H····O distance (2.238 Å). Structure 11-E is 35.9 kJ mol−1 more stable than 11-Z, and the
value of the activation energy of the process of Z,E-isomerization is 101.3 kJ mol−1 (relative
to the more stable isomer 11-E). Therefore, the presence of both isomers with a significant
advantage of 11-E should be expected both in the gas phase and in solutions (see Table
S3), and rapid isomerization will not occur even at elevated temperatures. In contrast—as
in the case of compound 10—for the trimethylsilyl derivative 12 (Figure 15), the value
of the activation barrier calculated at the DFT approximation level is only 24.3 kJ mol−1

in relation to the isomer 12-E, which—according to the results of calculations—is more
stable than 12-Z by 13.4 kJ mol−1. This agrees with the large predicted value of the ∠CNSi
valence angles (137.5 and 134.4◦, respectively, vide supra).
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4. Discussion

The experimentally found specific effect of the trifluoromethyl group stabilizing the
sterically less-favorable Z-form of IPs is reproduced well by quantum chemical calculations.
However, the key factor causing the stabilization cannot be easily identified: the driving
role of hydrogen bonding (HB) in the Z-isomer of 1-Z cannot be confirmed by HB energy
estimation. In addition, the AIM method unexpectedly indicates the presence of bond
CPs between fluorine and oxygen atoms (Figure 4, left, critical points 3 and 4), as well
as in some other CF3-substituted IPs (see Figure S2). The calculated O····F interatomic
distances (2.89 and 2.92 Å) are even slightly shorter than the sum of the van der Waals
radii of oxygen and fluorine (2.99 Å) [33]. The found O····F interactions cannot be referred
to the well-known ‘halogen bond’ [42–46], which withal is very rarely observed for the
fluorine–oxygen pair [47]: the predicted C-F-O bond angle is far away from the favored
value of 180◦, which is typical for halogen bonding. Generally, the presence of CPs cannot
be considered as evidence of bonding [48,49]. Thus, the found CPs could be considered as
an artifacts, not manifesting true bonding between fluorine and oxygen atoms. In this case,
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a steric compression of the O····F interatomic distances is unfavorable, and more likely
resulted from the effect of other factors stabilizing the equilibrium conformations. This is
confirmed by the NCI method [38], indicating repulsion between the fluorine and oxygen
atoms (Figure S3).

It was shown that the isomerization of compounds 5–7 can pass through two different
but close-in-energy TSs, having the iminium and quinone imine structures (Scheme 2).
The structure of TS is determined by the nature of the substituent in the aromatic moiety.
The discrepancies observed for the calculated values of the activation energies using the
DFT functional (M06-2X) were overcome by performing single-point energy calculations
at the more superior RI-SCS-MP2 level of approximation [33] in combination with the
larger Dunning cc-pVTZ basis sets [34]. The corrections to ∆G values calculated at the
DFT level of theory established the correct ratio of activation energies between 5, 6 and
7 (∆G(MP2) 73.2, 75.8 and 75.9 kJ mol−1, respectively). The activation barrier predicted
for the 5-TS transition state is now definitely lower than that expected for the alternative
reaction pathway via the 5′-TS transition state (∆∆G(MP2) -5.4 kJ mol−1). Therefore, the
complete 5′-E to 5-Z transformation proceeds can be formulated as 5′-E → 5-E → 5-TS →
5-Z, where the conformational equilibrium in the first stage requires much less activation
energy than the nitrogen inversion.

In conclusion, the structure of IPs is determined by a combination of factors such as
HB, electronic and electrostatic interactions, and steric factors. In general, the advantage
of Z- or E-isomers found in the experiment is well reproduced at the DFT level of theory.
For the modeling of subtle substituent effects, the use of the more superior MP2 level
of approximation is necessary. At the same time, the value of the activation energies
is determined primarily by steric factors: the smaller the valence angle on the nominal
nitrogen atom in the ground state of the compound, the higher the activation barrier for
the inversion at nitrogen. Within the studied series, the values of the activation energy
range from 10 to 110 kJ mol−1, which corresponds to the isomerization freely proceeding at
room temperature, or the simultaneous presence of both isomers in solution in the absence
of rapid exchange at the temperature limit of the standard NMR probe head (~120 ◦C).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/org2020008/s1, Table S1: Calculated (M062X/6–311+G**) total energy values (E), zero-point
energy correction (ZPE), thermal correction to Gibbs free energy (TCGFE), corrected energy values
(E+ZPE and E+TCGFE), relative energy values (∆E and ∆G) and the lowest vibration. Table S2:
Calculated (RI-MP2/cc-pVTZ) total energy values (E(MP2)), zero point energy correction (ZPE,
M062X/6–311+G**), thermal correction to Gibbs free energy (TCGFE, M062X/6–311+G**), corrected
energy values (E+ZPE and E+TCGFE, without scaling), relative energy values (∆E and ∆G), and the
lowest vibration (M062X/6–311+G**). Table S3: Calculated (M062X/6–311+G**) total energy values,
taking into account solvent effects (PCM and CPCM methods), zero-point energy correction (ZPE,
M062X/6–311+G**), corrected energy values (E+ZPE, without scaling), and relative energy values
(∆E). Figure S1: An illustration of weak C–F ···H–C attraction (green) (left) and bond critical points of
type (3, −1) and (3, +1) (CPs) (right) for 2-TS structure. Figure S2: Bond-critical points of type (3, −1)
and (3, +1) (CPs) for E- and Z-isomers of 1–3. Figure S3: An illustration of non-covalent interactions
for compound 1-Z. The gradient isosurfaces (s = 0.5 a.u.) are colored on a blue-green-red scale
according to the character of interaction, where blue indicates attractive interactions and red indicates
strong repulsive interactions. Cartesian coordinates for equilibrium (M062X/6–311+G**) structures.
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