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Abstract: Multifunctional stimuli-responsive fluorophores showing bright environment-sensitive
emissions have fueled intense research due to their innovative applications in the fields of biotech-
nologies, optoelectronics, and materials. A strong structural diversity is observed among molecular
materials, which has been enriched over the years with a growing responsiveness to stimuli. Boron
dipyrromethene (BODIPY) dyes have long been the flagship of emissive boron complexes due to their
outstanding properties until a decade ago when analogues based on NˆO, NˆN, or NˆC π-conjugated
chelates emerged. The finality of developing borate dyes was to compensate for BODIPYs’ lack
of solid-state fluorescence and small Stokes shifts while keeping their excellent optical properties
in solution. Among them, the borate complexes based on a salicylaldimine ligand, called by the
acronym boranils appear as the most promising, owing to their facile synthesis and dual-state emission
properties. Boranil dyes have proven to be good alternatives to BODIPY dyes and have been applied
in applications such as bioimaging, bioconjugation, and detection of biosubstrates. Meanwhile, ab
initio calculations have rationalized experimental results and provided insightful feedback for future
designs. This review article aims at providing a concise yet representative overview of the chemistry
around the boranil core with the subsequent applications.

Keywords: boranils; boron complexes; fluorescence spectroscopy; dyes and pigments; TD-DFT
calculations

1. Introduction

The current research aiming to engineer new fluorescent dyes is highly dynamic and
primarily arises from fruitful collaborations between chemists, physicists, and biologists,
continuously fueled by the applications of molecular probes in many fields, e.g., biomed-
ical imaging, analysis, sensing, detection, materials science, etc. In particular, scientific
innovation has led to major developments in the field of organic electronics including
organic light-emitting diodes (OLED), photovoltaic cells, solar energy concentrators, or
transistors [1–3]. In parallel, fluorescent emitters have contributed to the advancement
of biotechnologies, mainly in biosensing and bioimaging [4–6]. Meanwhile, intense fun-
damental research has taken place aimed at designing original molecular structures with
exceptional chemical, photochemical, and thermal stabilities, allowing prolonged exposure
to harsh conditions of light and heat. Numerous families of dyes have been engineered
with that purpose in mind, including polycyclic aromatic hydrocarbon (PAHs) [7], such as
pyrene, tetracene, pentacene, perylene, porphyrins [8,9], coumarins [10], xanthenes [11]
such as rhodamines or fluorescein, cyanines [12], squaraines [13], and peryleneimides [14].
One of the most popular families of organic dyes in recent decades is undoubtedly consti-
tuted of 4,4′-difluoro-4-bora-3a,4a-diaza-s-indacene derivatives, also known as BODIPY
dyes [15–18]. Synthetic efforts notably allowed fine-tuning of the emission color, up to
the near infra-red (NIR) and replacement of the fluoro ligands on boron by functionalized
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alkynes [19]. BODIPY dyes display outstanding photophysical properties, such as narrow
absorption and emission bands, high molar absorption coefficients, and fluorescence quan-
tum yields frequently reaching unity in solution. They also show remarkable chemical and
photochemical stability. Nonetheless, they typically display weak emission intensity in the
solid-state, as amorphous powders or crystals or even being doped in rigid matrixes owing
to a flat scaffold, leading to tight packing and strong intermolecular interactions in the
solid-state. [13] One strategy used to circumvent this drawback is to introduce sterically
hindered substituents at the periphery of the BODIPY core to alleviate molecular aggrega-
tion [13]. This flat, rigid core is also at the origin of a strong overlap between absorption
and emission band, i.e., very small Stokes shifts, leading to auto reabsorption phenomena
and artificial decrease of luminescence intensity. In contrast, strong solid-state fluorescence
can be observed in the case of dyes displaying excited-state intramolecular proton transfer
(ESIPT) processes, where a tautomeric equilibrium leads to a major reorganization of the
molecular scaffold in the excited-state and a subsequent increase of Stokes shifts [20,21].

The search for novel fluorescent scaffolds remains a challenging target in order to en-
rich the field of heterocyclic chemistry with expedite syntheses and easily functionalizable
scaffolds. Among these derivatives, many are based on the use of a central four-coordinate
boron (III) atom with the view to conveniently lock NˆN and NˆO ligands, flatten the
structures, and increase conjugation and molecular rigidity [22]. The ligands are typically
charged through deprotonation of phenol- or pyrrole-based structures, and two additional
anions (F or Aryl) on the boron center ensure global neutrality of the resulting dyes. Over
the years, many B (III) complexes have been engineered, highly inspired by the fantastic
luminescent properties of BODIPY dyes in solution [23,24]. The ultimate goals behind
these chemical engineering studies are to (i) expedite and upscale multi-step syntheses, (ii)
decrease spectral overlap between absorption and emission, and (iii) increase solid-state
emission intensity while retaining the outstanding optical characteristics of BODIPY dyes
in solution. Among these dyes, borate complexes based on an aniline-imine or salicy-
laldimine ligand, also known as boranils, have rapidly emerged as the most interesting
examples owing to their facile multi-gram scale synthesis and the fine-tuning of their
emission properties (Figure 1).
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This mini-review is focused on providing a short but extensive overview of the
chemistry of boranils developed up to now, through the description of reported examples.
The post-functionalization, optical properties in solution and in the solid state will be
discussed along with potential applications and theoretical aspects. Other recent elegant
examples describe fluorescent boron complexes called boranyls, including amide-based
difluoroboranyls [23,24], but these dyes do not fall within the scope of this mini-review.

2. Synthesis, Derivatizations, and Applications

Typical synthesis of boranils complexes takes place in two steps from commercially
available starting materials, i.e., substituted anilines and salicylaldehydes (Figure 2). Prepa-
ration of the anil derivatives is highly straightforward and can be easily achieved by
refluxing reactants in ethanol with the possibility to add trace amounts of p-TsOH. During
the course of the reaction the target imines typically precipitate pure out of the crude
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reaction mixture within one to three hours. Subsequent trivalent boron complexation using
excess of BF3 is performed. Et2O under basic conditions (DIEA or NEt3) leads to pure
boranils after purification on silica chromatography. The completion of the reaction can be
readily monitored by 1H NMR spectroscopy, the loss of the downfield signal between 12
and 15 ppm due to the H-bonded phenolic proton being distinctive. It is worth mentioning
that in boranils complexes, a typical coupling of the imine proton to the 11B center is
observed, leading to the appearance of a broad quartet [25–30]. Additionally, enhanced
Stokes shifts, ∆SS are usually observed (∆SS up to 9000 cm−1), as compared to BODIPY
dyes which contribute to lower detrimental reabsorption processes [25–30].
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As shown in Figure 2, a wide panel of boranils structures has been reported over the
years, with a strong emphasis on fine-tuning the emission color over the whole visible
range, while maintaining a strong emission intensity both in solution and in the solid-
state [31–37]. Of particular similarity between the major of fluorescent derivatives reported
so far is the presence of a dialkylamino moiety on the phenolic side of the dyes, as a way to
further stabilize the corresponding boron complexes in solution. Simple boranils dyes with
diethylamino moiety display UV-centered fluorescence emission (λem = 445 nm) with a
weak quantum yield (QY) of 0.05 [31]. This feature was ascribed to a twisted intramolecular
charge transfer (TICT), among other molecular motions occurring in the excited-state
leading to a heavy quenching fluorescent emission [38]. One strategy applied to enhance
these parameters is to introduce rigid electrodonating groups on the phenolic side such
as julolidine [39] or 1,2,3,4-tetrahydroquinoxaline [32]. The latter strategy appeared to
be particularly fruitful, as strong red emission (λem = 656 nm, QY = 0.24) was recorded
in this case. Another synthetic strategy commonly employed to redshift emission is
to induce a long-range intramolecular charge transfer (ICT) emission by increasing the
π-conjugated spacer between donor and acceptor. Notably, an extended 2-(6′-hydroxy-
5′-benzofuryl) scaffold triggered redshifted fluorescence emission with a pronounced
fluorosolvatochromism character, a feature typical of ICT processes [34]. A second example
displayed a π-extended core involving a styryl spacer [33]. This boranil complex showed
unprecedented fluorosolvatochromic behavior with a maximum emission wavelength
spanning the entire visible range up to the near-infrared (NIR). The facile synthetic protocol
employed for the preparation of boranils dyes can be straightforwardly extended to the
formation of di- and trinuclear B (III) complexes [31,35–37]. In particular, a simple dinuclear
boranil complex with a central phenyl linker stiffened the structured, as evidenced by a QY
of 0.90 [31]. More sophisticated examples involve a central naphthalene backbone leading
to important bathochromic shifts in emission, up to 683 nm [35]. An extensive series of dyes
based on this scaffold allowed a fine-tuning of the photophysical properties, as compared
to simply substituted boranils dyes, with strong QY values, up to 83%. It is worth noting
that the vast majority of boranil dyes display sizeable emission in the solid-state [36].

Fluorescent dyes containing several B (III) centers are reported to be advantageous
over isolated dyes owing to an enhancement of the luminescence intensity and increase
of molar absorption coefficients [40–42]. Additionally, functionalization of multiple boron
fragments by sterically hindered substituents can prevent detrimental aggregates in the
solid-state. With a variation on the number of boranil units and the position of functional-
ization, several polyboranils derivatives were developed allowing for the fine modulation
of the photophysical properties. Functionalization at the boron center was also achieved
by the introduction of B (Ar)3 in lieu of archetypical BF3, usually present in boranil struc-
tures [25–30]. The presence of arenes contributes not only to the tuning the emission color
but also to the improvement of the chemical stability. A marked decrease of ICT processes
is also observed, as compared to their fluoride analogs [43,44].

The chemical stability of these appealing boranil dyes was further evidenced by the
possibility of postfunctionalization of the molecular core, as exemplified in Figure 3 [45].
Notably, hydrogenation reaction allowed selective reduction of the nitro group without
reducing the imino fragment. Amino-functionalized boranil synthon was subsequently
further utilized in a range of derivatization reactions, including the preparation of boranil
dyes with thiocyanate functional group. This thiocyanate-functionalized dye can be used
to label lysine residues of Bovine Serum Albumine (BSA) protein, resulting in thiourea
linked dye-protein assembly.
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Upon grafting into the protein, a strong luminescence enhancement is observed which
the authors attribute to the likely folding of the protein around the dye and the likely
location of the boranils complex in hydrophobic pockets.

Red/NIR-emitting fluorescent dyes can also be beneficially used as imaging probes
for tissues, cells, or even specifically target given cellular organelles such as mitochon-
dria, lysosomes, or nuclei [13]. Their low-energy fluorescence emission in the so-called
therapeutic window is a major asset to enhance imaging resolution owing to a stronger
tissue transparency [13]. A NIR-emitting boranil dye with a strong fluorosolvatochromic
emission profile has been embedded in Cremophor EL, an amphiphilic co-polymer which
allows a good solubility in PBS buffer and a fast and convenient intracellular diffusion
in HeLa cells. The cellular uptake and distribution was monitored using fluorescence
lifetime imaging microscopy (FLIM) and real-time widefield imaging. It was found that
the emission of the dye is strongly influenced by the local environment and that the dye is
preferentially internalized in acidic vesicles (Figure 4) [33].
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Another example involves the incorporation of phenyl rings on the boranil scaffold to
act as intramolecular rotors in order to trigger aggregation-induced emission (AIE). AIE
or Aggregation-Induced Enhanced Emission (AIEE), stemming from propeller-shaped
fluorophores, fully (AIE) or partially (AIEE) quenched in fluid solution but highly emissive
at high concentrations in aggregates; these have fueled extensive research in the last decade.
This interesting phenomenon allowed overcoming aggregation-caused quenching effect
(ACQ), at the origin of the extinction of fluorescence in the solid-state. A strong yellow
emission was observed in the aggregated-state, as a consequence of the restrictions of
intramolecular rotations. Moreover, this dye shows good biocompatibility and suitable
lipophilicity to selectively stain lipid droplets in living cells in fast and wash-free manner,
as well as yolk lipids in zebra fish [46].

Other examples of the utilization of the boranil scaffold in biology-related applica-
tions include red-emitting phenothiazine-substituted boranils for the selective detection
of thiophenol in water samples, in serum, on paper filter strips, and in living cells [47]. In
addition, a ratiometric fluorescent probe modulated by ICT and photoinduced electron
transfer (PeT) processes was developed for the selective detection and imaging of cysteine,
with an excellent selectivity between cysteine, homocysteine, and glutathione due to a very
specific conjugate addition-cyclisation reaction [48]. Finally, iodo-functionalized mononu-
clear or dinuclear boranils complexes showed photosensitized generation of singlet oxygen,
due to the stabilization of the triplet state owing to the heavy atom effects. Incorporation
of these dyes in polymer films allowed the photosensitized depollution of organic water
pollutants [49].

Tetraphenylethylene moieties have been by far the most studied AIE-inducing moiety
and they have been grafted onto the scaffold of many fluorescent dyes, including boron
complexes such as boranils (Figure 5) [50,51]. These dyes exhibit AIE/AIEE effect in
THF/water or CH3CN/water mixtures when the water fraction reached 75 to 80%, a
classical feature in AIE/AIEE luminescence. Another interesting feature is that these
probes showed membrane permeability which shows great potential for application in
cellulo. Chiral boranils complexes have also been shown to display AIEE effect leading to
a bright emission in the solid-state [52].
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Incorporation of Lewis acidic boron mesityl units onto the boranil core led to the
development of mechanofluorochromic dyes whose maximum absorption and emission
wavelengths can be modified depending on the spacer and the position of functionaliza-
tion. These compounds exhibit fluorescence variations in response to external stimuli
such as mechanical grinding (Figure 6, left) [53]. Lu et al. described a boranil dimer
directly linked through central nitrogen atoms with peripheral tert-butyl groups which
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could form organogels in n-hexane. Introduction of a central phenyl ring did not form
gels due to strong π-π interactions but the corresponding boranil complexes exhibited
piezofluorochromic behaviors (Figure 6, right) [54]. Blue-green emitting crystals could be
ground into yellow emitting amorphous powders and the initial emission can be recovered
upon heating. Other mechanofluorochromic examples of boranils include triphenylamine
functionalized dyes [55] and units comprised of thiophene and α-cyanostilbene [56].
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A very recent example by the group of Crassous details the preparation of mono- and
di-boranil substituted helicenes, whose enantiomers could be separated using chiral HPLC.
Both complexes display circularly polarized fluorescence in solution and in PMMA films
(Figure 7) [57].
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Other reported applications of boranils dyes include their use as metal-free phospho-
rescence emitters [58,59]. In particular, phosphorescent organic solid-state laser from a
nanowire microcavity of a sulfide-substituted boranil dye enables the observation of triplet
emission at 650 nm under pulsed excitation [59].

There has also been several theoretical works devoted to boranils [60–63]. The most
complete methodological study we are aware of, ref [60] demonstrated that the excited
states of boranil dyes show various admixtures of cyanine/ICT character depending on
the substitution patterns, making them especially challenging for Time-Dependent Density
Functional Theory (TD-DFT). In more details, the benchmark performed in that work
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indicates that: (i) a global hybrid functional, with a large share of exact exchange, e.g., M06-
2X, CAM-B3LYP, or B97X-D, is needed to reach accurate simulations of the absorption and
fluorescence signatures of boranil dyes; (ii) the selected theoretical solvation model strongly
impacts the quality of the simulations. For a typical push–pull boranil, theory allowed to
quantify the ICT nature, with a very large increase of the dipole moment upon excitation,
as well as a clear ICT from one end of the molecule to another (Figure 8). Likewise, for two
dyads, TD-DFT calculations could rationalize why BODIPY-boranil and bis-boranil dyes
behaved very differently [60].
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In 2018, a rather similar computational protocol was used to model the vibrationally-
resolved absorption and emission spectra of a more complex boranil derivative synthesized
previously [24] (Figure 9) [61]. Besides reproducing the experimental trends, this simulation
allowed one to pinpoint the vibrational modes responsible for the shoulder appearing in
the experimental fluorescence and phosphorescence spectra. [61] One can also find other
theoretical studies discussing infrared and NMR signatures of boranils [62,63].
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3. Conclusions

In conclusion, this small account summarizes recent advances concerning the design
and chemical engineering around boron complexes newcomers called boranil and their
reported applications. Compared to their BODIPY parents, these fluorescent dyes display
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attractive emission intensity in the solid-state, enhanced Stokes shift, and easier synthetic
pathways. Currently, due to their intrinsic asymmetric molecular structures, many boranil
dyes display ICT-driven emission, highly dependent to solvatation which tend to be
quenched in polar protic environment. Further studies currently aim at improving their
stability and fluorescence intensity in solution and diversify the range of applications.

Shifting the emission wavelength of the boranil core towards the NIR region while
keeping strong emission intensity remains a challenge which needs to be tackled to en-
vision applications in biotechnology. Moreover, some boranil dyes show interesting AIE
properties which represent an attractive approach for the engineering of high luminous
organic nanoparticles and solid emitters. Future perspective also includes the development
of white-light-emitting materials, based on boranils.
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