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Abstract: The simultaneous integration of information from sensors with business data and how to
acquire valuable information can be challenging. This paper proposes the simultaneous integration
of information from sensors and business data. The proposal is supported by an industrial imple-
mentation, which integrates intelligent sensors and real-time decision-making, using a combination
of PLC and PC Platforms in a three-level architecture: cloud-fog-edge. Automatic identification
intelligent sensors are used to improve the decision-making of a dynamic scheduling tool. The
proposed platform is applied to an industrial use-case in analytical Quality Control (QC) laborato-
ries. The regulatory complexity, the personalized production, and traceability requirements make
QC laboratories an interesting use case. We use intelligent sensors for automatic identification to
improve the decision-making of a dynamic scheduling tool. Results show how the integration of
intelligent sensors can improve the online scheduling of tasks. Estimations from system processing
times decreased by over 30%. The proposed solution can be extended to other applications such as
predictive maintenance, chemical industry, and other industries where scheduling and rescheduling
are critical factors for the production.

Keywords: smart sensors; fog computing; automatic identification; real-time systems; decision-making

1. Introduction

Nowadays, the decreasing sensor prices and the digital transformation are forcing
the industry to adopt more flexible data-based solutions. Together, with the continuous
growth in mass customization in the new industry 5.0 paradigm, the integration of data
towards decision support systems using cost-effective solutions will be even more cru-
cial [1,2]. Information acquired from sensors can be routed to higher levels of decision,
improving decision-making. However, there are several challenges. Decision support
systems often fail due to insufficient data quality and not due to algorithmic difficulties or
the volume of information [3,4]. In scheduling, for instance, data quality problems are in
both processing time estimations and business process mappings. These include custom
production workflows or resources behaving differently. The missing data often comes
from manual time studies, empirical knowledge, and unstructured sources [5]. These
lead to inefficient scheduling and productivity losses. However, improvements in data
acquisition in complex manufacturing and flexible environments did not receive enough
attention in the literature. The simultaneous integration of real-time information from
the cloud with sensors in different local architectures and acquiring valuable information
can be challenging. The engineered systems must ensure the proper sensors are used and
provide relevant data.

Intelligent sensors or smart sensors are distinguished from their non-intelligent coun-
terparts, by their integrated electronics with advanced communication and computational
processing capabilities. These include signal enhancements features, the capacity to store
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information for future analysis, onboard decision-making, and a two-way communication
interface, enabling functions such as remote self-calibration and self-diagnosis of faults [6,7].
Intelligent sensors decentralize the decision-making with signal processing in the lower
layers of the system hierarchy. It decreases the complexity of architectures by reducing the
number of data integration layers required against other traditional approaches. Regarding
communication connections, smart sensors may include wireless and Ethernet connectivity.
Equipping intelligent sensors with communication standards such as OPC UA PubSub over
Time Sensitive Networks (TSN) provide vertical and horizontal interoperability between
the sensor and the cloud enabling IoT platforms in a cloud-to-thing continuum [8,9]. In
Section 2.1. we present applications and information architectures for integrating intelligent
sensors towards real-time decision-making.

The main research question of the work is on how to effectively integrate and acquire
information from intelligent sensors towards assisting with cloud data-based decision-
making in real-time. To answer our research question, we applied intelligent sensors on a
real-time decision-making industrial problem. We use automatic identification sensors to
trigger and improve the decision-making of the dynamic scheduling of tasks in analytical
Quality Control (QC) laboratories. Sensor systems used were Radio Frequency Identi-
fication (RFID): High Frequency (HF) and Ultra High Frequency (UHF) as a Real-Time
Location System (RTLS); and Barcode: laser and image-based. Automatic identification
intelligent sensors perfectly align with IoT platforms and autonomous decision-making.
These include onboard pattern and object recognition features with advanced connectivity
options. QC laboratories are an enticing use case, facing a trend in personalized production
with growing regulatory complexity and traceability requirements. The dynamic schedul-
ing and planning of resources is a representative problem, which uses automatic intelligent
sensor identification. The focus is on the integration of data into useful information for
decision-making. In addition to the main question, other research question arises, more
specific to the use case, such as how to provide more precise task and subtask times, using
automatic identification, under a mass customization environment to improve dynamic
scheduling. The introduction of automatic identification in our implementation increased
the digital information available, improving scheduling operations. The main contributions
of this paper are:

• On industrial architectures and intelligent sensor technologies to achieve the digital
twin and support decision-making, relying on the simultaneous acquisition of real-
time data from the cloud and edge devices in a cloud-fog-edge architecture.

• An implementation to integrate business data with intelligent sensors for automatic
identification, to estimate the duration of tasks and subtasks in real-time, supporting
dynamic scheduling in personalized production environments.

This paper is structured as follows: Section 2 presents a brief state of the art on
architectures and applications that use intelligent sensors towards decision-making. The
use case is on automatic identification applied to the scheduling of tasks in analytical
QC laboratories. Section 3 provides detailed information regarding the use case with
component characterization and connections. Section 4 presents the implementation,
workflow, and analyses. Section 5 discusses the sensors used and the architecture adopted.
Finally, Section 6 presents major conclusions and future work.

2. Architectures of Intelligent Sensors for Decision-Making

Today, modern system architectures are increasingly more dependent on data [10,11].
Several frameworks are focusing on the integration of information from intelligent sensors
towards real-time decision-making. Trunzer et al. proposes a middleware-based data col-
lection architecture, focusing on interoperability in a technology-neutral framework [12]. A
middleware platform relying on a multi-workload database model incorporating business
data in real-time has also been proposed [13]. This paper focuses on interoperability and
industrial communication standards, such as OPC UA over TSN and PROFINET, evalu-
ating the network latency while reading and writing between OPC nodes and a decision
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support system in real-time. Decision support systems typically rely on the integration of
information from multiple sources under different local architectures. In the IoT vision
for industry 4.0, equipping sensors with onboard processing capabilities and connectivity
options means faster and more flexible data exchange between the shop floor and the
decision-making. However, connecting intelligent sensors directly to the cloud is often
impractical and expensive. The increasing diversity of architectures and requirements
makes fog computing popular within Industrial IoT (IIoT) system architectures [14]. Fog
computing is an intermediary step between the cloud and the edge [15]. It decreases the
latency of data transmission moving computational resources closer to the edge while
also offloading intelligent sensors [16,17]. It also improves interoperability and security by
creating a data structuring and integration layer for legacy devices. There is a gap between
reference conceptual architectures and use case-specific implementations [12,18]. To im-
prove industry 4.0 reference architectures, such as the OpenFog Reference Architecture, we
examine applications on intelligent sensors integrations towards real-time decision-making
in cloud-fog-edge architectures.

2.1. Applications and Use Case

In the literature, intelligent sensors are often used in applications towards real-time
decision-making such as predictive models, automatic rescheduling, machine learning,
and data mining:

• Predictive maintenance uses temperature, energy consumption (transducers), vibra-
tion (accelerometers), acoustic emissions, and other sensors to predict mechanical
failures with machine learning and artificial intelligence [19–23];

• Dynamic scheduling of resources and inventory management in mass customization
uses automatic identification technologies such as RFID and Barcode [24–29];

• Medical and health care use wearable devices and body sensors e.g. indoor tracking
of elderly and in hospitals [30,31];

• Agriculture and farming measures the air quality, humidity, gas levels, temperature,
soil moisture, geographic information (altitude, gyroscopes, compass, GPS) [32,33];

• Energy, such as smart meters to detect non-technical losses [34];
• Food and packing using identification technologies and intelligent indicators for

real-time monitoring of packages for the perishable food supply chain [35–37];
• Weather forecast by analyzing vector fields using many distributed sensors [38].

Fog computing is helping intelligent sensors in many of these applications. A frame-
work with guidelines for the physical realization of system architectures with automatic
decision-making and their impacts on internal supply chains has been previously proposed
in the literature [39]. It focuses on the automation pyramid disruption and analyses data
requirements, features, or dimensions of the problem to be addressed, such as interop-
erability, responsiveness, traceability, and what data to acquire towards achieving faster
time-to-market, increased flexibility, efficiency, and quality.

2.1.1. Predictive Models

Regarding predictive models, such as towards predictive maintenance, these can be
integrated into existing scheduling systems, adding triggers indicating resource unavail-
ability, whilst contributing to dynamic scheduling algorithms. Additionally, like dynamic
scheduling, predictive models rely on real-time information acquired from sensorized
equipment in the shop floor towards decision-making. O’Donovan et al. [40] use sensors
in a cloud-fog-sensing architecture to deliver real-time embedded machine learning engi-
neering applications for Industry 4.0. It uses PMML-encoded machine learning models
and Raspberry PI (for its portability) as a fog computing gateway. Wu et al. [22] use
Arduino and a ZigBee module for wireless communication as fog computing to detect and
measure vibrations and the temperature on pumps and CNC machines towards real-time
predictive maintenance. Lavassani et al. [16] present a framework that combines fog and
cloud computing with distributed data modeling at the sensor device for wireless sensor
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networks. It also uses a Raspberry PI gateway as fog with wireless communication and
a java program to publish values in the cloud via MQTT for machine learning and data
mining applications. Syafrudin et al. [41] use classification models for fault prediction in
an assembly line process for producing door-trim at automotive manufacturing. Here a
single-board computer gateway (Raspberry Pi) was used to acquire temperature, humidity,
accelerometer, and gyroscope data. Then, a fog computing python application was used to
send data into a historical database in MongoDB, to be used in real-time for fault prediction.
Cakir [23] proposes a low-cost IIoT based architecture of a condition monitoring System
(CMS) to capture the vibration, sound, current, rotational speed, and temperature to classify
the expected durability of bearings and their damage using machine learning methods
towards predictive maintenance. Along with the sensors, their setup relies on a Wi-Fi
module, a Bluetooth module, and a microcontroller platform based on Arduino to send
data to a PC.

2.1.2. Dynamic Scheduling

Scheduling problems are an excellent example of the necessary integration between
intelligent sensors and decision support systems. Sensors for automatic identification can
be used to merge task and resource events with other business information to improve
scheduling operations. Tools such as this rely on real-time and historical data to estimate
the duration of each task/subtask for every personalized production order. Thus, one of
the main objectives is to automatically record timestamps after each resource change of
state, along with all the necessary information to provide context and meaning to existing
records. Several authors explore the potential of automatic identification to improve
resource tracking and scheduling in real-time. Chongwatpol et al. [25] researched the
potential of using automatic identification technologies to track delays in the arrival of
raw materials, or machine downtimes to improve real-time scheduling. According to their
study, performing thousands of analyses enables gathering enormous quantities of data. In
the future, such systems will facilitate high-throughput analysis, increasing the accuracy
of tests, and decreasing labor costs. In Zhong et al. [42] machines were equipped with
RFID readers and operator’s RFID tags. The authors then examine the duration of tasks
considering different factors, such as working shifts, different machines, gender, operator
experience, and technology complexity. This information is then used on future schedules
to improve estimated task durations.

Analytical QC laboratories are an interesting use case of scheduling problems. In
analytical QC labs, every drug must be sampled and tested along the value chain to ensure
it meets all safety and quality requirements. In the last years, several factors contributed
to an increase in the complexity of analytical QC laboratories, such as growing regulatory
complexity, an increase in personalized production, and traceability requirements. This
has also increased the complexity of the scheduling operations. RFID and Barcode ap-
plications include supply chain, inventory management, tracking goods and humans to
healthcare [31]. In industries like drug manufacturing, making mistakes is unacceptable
as QC can have a direct impact on the health of the consumer [43]. IoT and automatic
identification sensors track asset locations and movements, minimizing data errors, in-
creasing timely information, eliminating paperwork, and decreasing inventory-related
problems [44]. Prabhu et al. [45] discuss the adoption of RFID, barcode identification, and
robotic systems to analytical laboratories, to improve drug quality control. In analytical
QC labs, scheduling information usually recurs from the ERP, the Laboratory Information
Management Systems (LIMS), and real-time information from the laboratories [46]. While
most production orders follow a schedule, unexpected samples arrive with top priority,
forcing the schedule to readjust in real-time. Analysts and equipment can also have unique
competencies, making resource allocation difficult.

In QC laboratories the need to track samples and log them into LIMS is not new.
Unlike other supply chain applications, laboratory samples are typically unique. Auto-
matic identification technologies such as RFID improve LIMS by creating a location-based
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tracking, real-time chain-of-custody (COC) [47]. Analytical chemistry, forensics, clinical
trials, and diagnostic laboratories are examples of applications where the integrity of the
sample life cycle is crucial. Current LIMS do not provide granular timestamps of each
operation, nor is information readily available in real-time. In addition, Electronic Lab
Notebooks (ELN) often are more concerned with following recipes and recording results
than enforcing the timely introduction of data. Urso et al. [48] use RFID identification and
automatic Business Process Mapping (BPM) to analyze the pharmaceutical workflow. It
tracks relevant lead times characterizing the main phases of the production cycles.

Although the case presented in this study is for a specific job shop, its workflow
provides details and problem scenarios present in many manufacturing operations. The
implementation, discussion, and conclusions on the QC laboratories are generic for many
decision-making applications affected by mass customization and digitalization challenges.

2.2. Automatic Identification

Automatic identification technologies refer to the methods for automatic identification
of objects and data collection into computer systems. They have an important role regarding
data integrity and reliability, increasing the data quality, and improving data management.
Automatic identification can be hundreds of times faster than manually entry codes and
are less prone to errors [49]. Automatic identification introduces operational savings and
improves efficiency. It allows for more efficient regulatory actions and develops decision-
making tools. Moreover, in heavily regulated industries, traceability is often mandatory as
quality defects are not tolerated. An example is the quality control of the pharmaceutical
industry. Two of the most successful automatic identification technologies are optical
identification systems and radio identification systems. Other automatic identification
technologies will not be discussed in this work, such as smart cards, optical character
recognition, biometrics (retina and finger), voice recognition, ultrasounds, and any method
that obtains unique external data through analysis of images, sounds, or videos [50].

2.2.1. Optical System Identification

Optical system identification can be based on imaging and/or scanning through an
optical sensor. Examples of codes are: 1D Barcodes; 2D Matrix Codes: QR Code, Data
Matrix, Direct Part Marking (DPM); Text Recognition (OCR); object recognition [50]. When
using the image, the optical reader records an image of the barcode and decodes the
information with digital imaging software. It often uses onboard machine learning and
pattern recognition software to identify the type of barcode used and decode its information.
Optical systems can also use laser scanning lines. The light reflects from the barcode into a
light-detecting photoelectric cell, and the information is decoded. For instance, Youssef
et al. [49] propose a smart barcode detection and recognition system for the identification of
people and goods. The author uses an intelligent barcode reader to train a back-propagation
neural network to decode distorted barcodes using laser-optical sensors.

2.2.2. Radio System Identification

Several radio system identification technologies are used in IoT depending on its appli-
cation (e.g., tracking, indoor positioning) with different energy consumptions, ranges, and
precisions. Examples include RFID, ZigBee, Near-Field Communication (NFC), Bluetooth
and Bluetooth Low Energy (BLE), Ultra-Wideband (UWB), Wireless Local Area Network
(WLAN), and Global Position System (GPS).

RFID is a wireless technology that allows automatic independent identification and
tracking of objects and people in an indoor environment. The technology is based on the
communication between tags and readers through antennas by sending and receiving a
unique identity through radio waves. RFID tags are unique identity labels containing
data and typically have three components: an integrated circuit that stores the data and
decodes/codes radio frequency signals; an antenna to receive and transmit signals and a
mechanism that is activated by a reader signal. Generically, RFID tags can either be passive
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(cheaper) using the radio energy transmitted by the reader or active if it has an onboard
battery. Typical RFID systems are classified in Passive Reader Active Tag (PRAT), Active
Reader Passive Tag (ARPT), or Active Reader Active Tag (ARAT).

RFID adds extra functionality to barcode identification, including automatic remote
bulk reading, and the ability to modify the tag information [51]. Therefore, RFID systems
are more expensive and difficult to set up when compared to a barcode system. RFID
properties depend on their frequency band. While low-frequency RFID tags can have a
limited range to a few centimeters (<30 cm), higher frequency tags (UHF) allow for higher
reading speeds and considerable ranges (~10 m). However, UHF tags are also subjected
to interferences depending on the solid state of the surroundings. Radio waves bounce
off metal and are absorbed by liquids at ultra-high frequencies (longer ranges). However,
RFID technology is still being improved. Recent studies on UHF RFID tags, for instance,
have shown improved performance on liquid bottles [52]. One of the major challenges to
RFID is the price when the number of things to track starts to increase. The presence of
electronic circuits makes the price of these tags non-negligible. An alternative approach
is to use chipless RFID tags that use RF waves to analyze the radar signature of the tag.
In chipless RFID tags, the strategy is to use low-cost conductive inks to print a planar
encoded pattern containing the ID code. The price of the tag can be substantially reduced;
however, it still offers much lower performance in terms of reading range and data capacity
compared to standard RFID tags or even optical barcodes [53].

2.2.3. Real-Time Location Systems

RTLS is another important class of radio-based automation identification systems on
the shop floor. These provide the ability to locate objects and people in three-dimensional
spaces. RFID can use the received Signal Strength Indicator (RSSI) for position estimation.
It can be used individually or, for example, through trilateration using at least three
reader antennas for more accurate object localization and positioning. Omer et al. [54]
proposed an enhanced method to estimate the indoor distance for passive UHF RFID
tag where the distance measurements rely on a relationship between the RSSI and the
differential of the Radar Cross-Section (RCS). Huang et al. [55] propose the combined
use of RFID and UWB to improve the precision of an RTLS. The RFID accesses the room
entrance, exit, and near each of the workstations. UWB remedies the disadvantages of
RFID in positioning accuracy for tools and AGVs within the inspection area over the
remaining blind spots. Unlike RFID that uses signal strength, UWB measures the Time
Difference of Arrival (TdoA) between multiple antennas to triangulate the positioning
of the active transponders. Because UWB uses high bandwidths, it has the advantage of
eliminating material interferences on its lower frequencies, providing precision to a few
centimeters level. UWB also relies on the Line-of-Sight (LoS) signal for calculations, as
reflections caused by material interferences have little impact on the accuracy as these
travel much longer distances. Nevertheless, UWB accuracy deteriorates with the increasing
presence of obstacles. One of the main challenges of adopting UWB was the interference
with coexisting radio frequency technologies such as Wi-Fi; however, new designs and
a low-power emission spectrum prevent them from interfering with other systems [56].
Comparing to RFID, UWB is a more expensive radio identification option and always
requires at least three antennas. BLE, on the other hand, has become a cheaper alternative
technology for indoor positioning. It has a longer battery life and can use the Wi-Fi network
infrastructure, saving on hardware. The drawback is its lower accuracy, up to several
meters. Nevertheless, recent version BLE 5.1 specification enables measuring the direction
of an incoming signal through the Angle of Arrival (AoA), improving accuracy in the
position estimation and improvements in the advertising mode [57].

With the growth of mass customization, data acquisition and integration in real-time
is crucial for the success of Cyber-Physical Systems (CPS) and decision support systems.
From the literature review, fog-based architectures enable efficient data exchange between
the enterprise and shop floor levels to meet each application requirement. This is assisted
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by intelligent sensors with enhanced onboard processing and connectivity options. The
following research aims to tackle and discuss these challenges in an industrial use case
affected by personalized production and complex workflows. In the studied use case, the
processing workflow times are difficult to properly acquire and act as a major bottleneck
affecting productivity through inefficient scheduling. The acquisition of timestamps with
automatic identification sensors is of extreme importance in the development of digital
twins and planning and scheduling activities across many industries.

3. Strategy for Integrating Intelligent Sensors
3.1. Methodology

Intelligent sensors can be used in the industry to empower decision-making in a
cloud-to-thing paradigm. Our methodology is to use current industrial architectures, such
as those based on fog computing, to analyze and discuss the use of intelligent sensors in
industry 4.0 and the smart factory. In our implementation, we are particularly interested
in the acquisition of timestamps to feed a dynamic scheduling tool in the quality control
laboratories of the pharmaceutical industry, affected by mass customization. To deal with
the complex workflows and processing times estimations, our approach integrates simul-
taneously several intelligent sensors with business data to improve resource traceability
in real-time. These sensors typically already include embedded software with image pro-
cessing and communication capabilities. To do this, the acquisition of timestamps and
the integration with enterprise databases towards decision-making was developed in two
different ways: the PLC Platform, and the PC Platform. The first follows a more classical
hierarchical approach and the last a more gateway-like direct one. Nevertheless, both
coexist in the same architecture, summarized in Figure 1.
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Figure 1. Intelligent sensors in a Cloud to Fog to Edge architecture.

Sensors 1 to N represent intelligent sensors at the edge of the network. In our imple-
mentation, these are represented by radio sensors and optical readers but can be generalized
to any other type of sensor. The cloud is an abstraction layer that includes the decision-
making along with the enterprise databases. In this approach, we consider fog computing
to be the intermediary steps, such as the SCADA, the PC, the connection modules, and,
to some extent, even the PLC, as its role is mainly to control the reading frequency and
provide connectivity. We note that these two platforms are representative of robust indus-
trial platforms, as there can be many more possible configurations, as presented in the
literature review. Next, we describe the case study with the characterization of components,
connections, communications, and software.

3.2. Connections
3.2.1. PLC Platform

The PLC Platform consists of a fixed Barcode reader, as well as the RFID read/write
device. These are connected to the controlling PLC through an Extension Terminal (ET),
providing real-time data over the samples and the analysts whenever they arrive at the
working bench and start running tests. To manage the information acquisition, we have
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a SCADA computer and a Human Machine Interface (HMI) on the shop floor. The lay-
out includes light signals to inform analysts whether the station is free, occupied, or
requires intervention, also connected to the ET. In Figure 2, we present the connections
and components.
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In Figure 2, the fixed RFID read/write device RF250R with ANT 1 from Siemens
connects to the communication module RF180C. This connection can be achieved by con-
necting the RF250R with the RF180C through the RF plug-in cable RS422, M12 (8 pin male)
to M12 (8 pin female). The RF180C module includes an IP configurable address and to-
gether with the RF180C connection block can connect to the PLC network via Ethernet. The
RF180C is powered with 24 Vdc. The fixed Barcode reader MV420 also from Siemens has
two connection options. It can connect directly to the PROFINET with the cable RJ45+M12,
having the device its own IP in the network or via the communication module RF180C. For
the first option, the MV420 has an integrated web server, allowing access to the images
of the camera via browser, making possible the adjustment of the image settings, such as
brightness, resolution, distance, and distortion over the code used (Code-128). This step
is mandatory prior to camera use, as we need to create, configure, and save, inside the
camera, programs that will later be called in the TIA Portal with each camera reading. This
is a configuration cable. The second option is achieved by linking the port of the camera
M16 (8 pin) to one of the ports M12 (8 pin) of the communication module RF180C: this is
done with the two connection cables. The runtime implementation of the PLC Platform
only uses the second option through the RF180C. While the RFID reader is triggered by the
presence of a transponder, the Barcode reader only reads when manually triggered, thus a
proximity sensor was installed near the MV420.

3.2.2. PC Platform

The PC Platform includes a hand-held Barcode reader and a fixed RFID read/write
device. These are connected to the PC, also providing real-time data over the samples and
the analysts whenever they arrive at the working bench and start the sample preparation.
To manage the information acquisition, a Graphical User Interface (GUI) was developed in
the PC to record the arrival of the work along with the beginning and end of the sample
preparations. In Figure 3, we present the connections and components.
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Figure 3. PC Platform connections.

The hand-held Barcode reader IDM260-100S from SICK connects to the computer
via the connection cable RJ45 to USB as shown in Figure 3. The fixed RFID read/write
device RFH620-1001201 also from SICK includes an IP configurable address and connects
to the computer via Ethernet. This connection can be achieved with its RJ45 to M12 (4 Pin)
connection cable. RFH620 is powered via the connection module CDB620-001 with its M12
(12 Pin) to DB15 connection cable. The CDB620 is powered with 24 Vdc.

3.2.3. Full Architecture

The full system architecture, depicted in Figure 4, includes the decision-making
system, connected to the PC and PLC Platforms, along with the enterprise databases. The
role of the RFID RFU630 is explained in Section 4.
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4. Implementation and Analyses

The main result of the proposed automatic identification architecture is the integration
of intelligent sensors towards assisting with decision-making and task time estimations.
With the increasing variability of production orders, there was no digital information
available regarding the beginning and finishing of tasks and subtasks. Processing times
were manually estimated by experts and/or based on biased time studies, similar to other
applications [58], thus inaccurate, besides their stochastic nature. In comparison, we now
have a solution to have these available in real-time, improving knowledge over actual task
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times. In our implementation, the Barcode is used to identify the samples, while the RFID
is used to identify the analyst. In Figures 5 and 6, we present the prototype design and the
actual implementation of the PLC and PC Platforms, respectively.
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In Figure 5 the numbers stand for:

1. RFID reader (read analyst);
2. Proximity sensor (trigger Barcode reader);
3. Barcode reader (read sample);
4. Sample with barcode (test sample);
5. RFID tag for user identification;
6. Material preparation;
7. Local control (PLC / ET);
8. HMI (user-sample management);
9. Stack light (station status).

In Figure 6, the numbers stand for:

1. PC with GUI (sample reception and user-sample management);
2. Barcode reader (read sample);
3. Sample with barcode (test sample);
4. RFID tag for user identification;
5. RFID reader (read analyst).
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The analytical QC laboratories provide a good case study due to their complexity with
highly personalized tests. Efforts in mapping and standardizing the workflow with BPM
towards scheduling resulted in each job (test) typically organized into six main tasks, in the
following order: system preparation, system suitability, sample preparation, analytical run,
data processing, and review. These tasks require the presence of an analyst, equipment, or
both. Moreover, resources are necessary for the entire duration or only for a percentage
of the task duration. The mathematical formulation of the dual resource constrained job
shop scheduling dynamic scheduling problem is presented in [59]. The system preparation,
system suitability, and analytical run follow the PLC Platform for data collection, while the
sample preparation follows the PC Platform. This work does not discuss the remaining
tasks. In terms of workflow, the PC Platform is used initially to register the arrival of new
samples. This operation triggers the data loading operation. The data loading updates
the data model, fetching all the tests associated with the sample and business information
relevant for the scheduler, such as task processing times. The scheduler then evaluates the
data and reschedules if necessary. Finally, the scheduled combination of user and sample
starts and stops tasks in the respective equipment. In Figure 7, we present examples of the
actual dashboards currently used for the beginning and finishing of tasks in the PC and
PLC Platforms: the user registers his/her RFID identifier and reads the sample through the
Barcode reader.
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Recall that most tasks do not require the presence of an analyst for their entire duration.
The analyst can come and go from the workbench multiple times during the operation.
Each analyst can perform several tasks simultaneously, as each task includes smaller
subtasks, often done in parallel with some flexibility in terms of precedence. Therefore,
it is difficult to estimate the analyst availability. In such conditions, mapping business
processes with low granularity can be unfeasible. It can be considered that the analyst is
only required for a smaller amount of time, given in percentage of the total processing
time. The implemented solution was to place UHF RFID single reader antennas near
critical equipment and give to the analyst a UHF bracelet tag. Then, through periodic
readings, it is possible to compute the amount of time each analyst spends near critical
equipment, between the beginning and end of each task, from the number of times the
analyst is considered near the equipment n multiplied by the size of the time interval
between readings tint. The ratio of analyst occupation within each task, rt, is given by:

rt =
Ntint

tt
, (1)

where tt is the total time of the task. These values have been used to improve subtask
processing times and predict real-time problems in the execution of tasks. The additional
hardware used is depicted in Figure 8.
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Figure 8. PC Platform improved with UHF RFID system: (a) Connections; (b) Implementation.

In Figure 8, we use the RFU630 UHF interrogation reader and the CDB620 connection
module. These receive the signal strength of the analyst. We can also see a UHF transponder
bracelet in Figure 8b. In Figure 9, we present the dashboard with a summary view of the
tasks belonging to a test.
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Figure 9. Table view with the task states from a test.

In Figure 9, the test has completed the system preparation, system suitability (test
setup), and sample preparation. Next, we compare the information available before and
after the introduction of the automatic identification systems. Table 1 summarizes the
main differences.

Table 1. Before and after the adoption of the proposed implementation.

Before After

• We only had the sample reception time and the test finish time
and no information in between;

• Task and subtask duration times were manually estimated
from expert knowledge;

• There was no real-time information about jobs or resources;
• The scheduling was manual and very time consuming for the

team leaders;
• We did not have independent processing times for analysts

and equipment in the execution of a task.

• We have the beginning and end date times of each task;
• A more realistic estimation of the task and subtasks

duration times;
• We have more real-time information about jobs and

resources;
• We enable automatic dynamic scheduling and

rescheduling from personalized production.

The manual estimation of processing times can be difficult because analysts do many
small tasks in parallel, often from more than one test, and start new tasks while still



Automation 2021, 2 74

finishing the previous ones. Additionally, many subtasks can group with other tasks, so
there are many overlapping operations. With automatic identification, we can track the
beginning and finishing of tasks, including gathering clues over intermediate steps. After
starting to record the beginning and finishing of tasks and the average processing times,
we improved the estimations of tasks (proposed system) over the manual time estimations
from experts (actual system), according to Table 2.

Table 2. Average task processing times (minutes).

Task Times (min) Actual System Proposed System Improvement Reduction

System Preparation 139 93 46 33%
System Suitability 159 102 57 36%

Sample Preparation 143 117 26 18%
Analytical Run 221 217 4 2%

Total 662 529 133 20%

In Table 2, the system preparation task was reduced from an average processing time
of 139 min to 93 min, translating into an absolute time reduction of 46 min (33%). For
the system suitability, the reduction was 57 min (36%). For the sample preparation and
analytical run, the reductions were 18% and 2%, respectively. This result is remarkable,
showing the advantage of the proposed system. It shows clearly that experts tend to
overestimate the time of the tasks. Overestimation can happen due to two reasons: analysts
do subtasks simultaneously, and some of these subtasks have a failure rate harder to
predict, demanding subtask repetitions. In the analytical run, the values follow recipe
times, therefore more easily estimated by the experts.

On average there was a decrease in the total task time of each test, after the adoption
of automatic identification, of 133 min: from 662 to 529 min (20% reduction). This im-
provement leads to an increase in efficiency. For this analysis, over 2000 distinct tests were
considered on a total of a few tens of thousand tests every year. In terms of job variability,
90% of the tests are within the 458–786 min frame of average total task time after apply-
ing the automatic identification. Variability is primarily from using different analytical
techniques, followed by distinct analytical methods and unique customer specifications,
namely the chemical grade.

Concerning subtask estimation, the time fraction the analyst spends near the equip-
ment does not change significantly. These results make scheduling operations more efficient.
To analyze the impacts these results can have in terms of throughput, we need to compare
two equal periods with the same workload, which is hard to set up due to the demand
variability. The value of information is difficult to quantify. However, it is expectable
that the increase in the throughput can be proportional to the 20% decrease in total task
times. Next, we present a summary of the impacts and implications of the adoption of
automatic identification:

• Analyze analyst profiles: helps to analyze the workflow differences between analysts,
depending on their different levels of experience and evaluate if there are problems
with the training or advantages to having dedicated people to specific tasks;

• Include failure rates: determine how many times particular tasks fail until the analyst
moves to the next. This allows the scheduling to include average failure rates;

• Analyze equipment competencies: why in some equipment analysts take more or less
time, and in which products;

• Analyze resource availability: currently there is no way to measure the Overall Equip-
ment Effectiveness (OEE) or other Key Performance Indicators (KPIs). This will
allow providing information on whether new equipment is necessary, improving
resource management;

• Improve Business Process Mapping: the adoption of automatic identification is helping
to map and standardize more granular business operations;



Automation 2021, 2 75

• How to react to delays and save time in the passing of work between shifts.

We started by using the estimated values from the experts to deal with possible outliers
in the first measured values. Once removed, the estimated values are excluded, and only
the real measurements are used. Estimations are inaccurate, but they are hardly outliers.
Additionally, there is nothing else to compare with the first measured values. This is done
by first computing the median between the estimated value and the real measurements
of the same type. We chose the median because it is more robust in dealing with outliers
than the mean. After a few records, we use the estimated value and the median to compute
a temporary mean and standard deviation. Once outliers are removed, we compute the
new average and standard deviation from the measured filtered records, excluding the
manual estimation. Whenever a new measurement is recorded, we evaluate if it is an
outlier through the z-score. We consider an outlier new records with a z-score higher than
3 or lower than −3. A study on outlier detection can be found in [60].

5. Discussion
5.1. Automatic Identification Sensors

In our implementation, the track of a task has six pieces of information recorded: task,
test (job), equipment, user, timestamp, and action, such as start or stop. RFID and Barcode
readers are two automatic identification technologies that essentially make the handling
of codes and physical identification faster and easier, adding an abstraction layer to it.
RFID has the potential to eliminate user interactions and provide timing accuracy when
compared to optical readers, which are typically manually held. Nevertheless, reading
a sample is often not enough. Samples are the entities moving around in the workplace
carrying identification tags. However, a single sample can have multiple scheduled tests or
jobs. Each test has several tasks, and each task can have a different scheduled combination
of user-equipment. This limitation requires that an automatic system with RFID tags
to start and stop tasks must rely on a manual action of the user saying which test and
task are being done from the identified sample. Developing fully automatic identification
solutions in the industry can be challenging and expensive. In our use case, it is hard
to automatically know in which stage a test is, solely based on automatic readings, as
the sample stands still in a workbench, while their tests and tasks do not. A proposed
solution is to create physical representations of tests and tasks to move around in the
lab carried by analysts. However, invasive monitoring methods were faced with strong
employee resistance. Additionally, the environment where the tasks are executed can be
shared, thus is it hard to automatically tell when some tasks end and the next begins. One
considered solution to split automatically the tasks is to merge the information with the
power consumption from sockets to evaluate the beginning and finishing of tasks through
the equipment usage. Moreover, another challenge to fully automatic systems is material
groupings, where an analyst can group similar tasks, doing both simultaneously, increasing
their overall availability. This solution could also be addressed by carrying a physical
representation of jobs. RFID has already been used to determine material groupings in
real-time [61]. Regarding the adoption of other radio system identification technologies,
low-range technologies such as NFC have a similar range when compared to RFID HF. The
biggest difference and advantage of NFC is its bidirectional communication; however, this
feature was unnecessary to our application.

Even though we could use the internal memory of the RFID tags, we opted to only
use the Unique Identifier (UID), leaving the management of the correspondence between
the UID and the user exclusive to the database. This is a more flexible solution not just
because the scheduled correspondence could change in real-time, but also because we were
already fetching data of tests and tasks from the enterprise databases. Nevertheless, we
should note that using the RFID internal memory can reduce reaction times and avoidable
connections to enterprise layers in time-critical applications, such as by including clearance
levels inside the tags.
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One of the toughest challenges of using manual automatic identification is to keep
an accurate track of tasks when operators may delay readings. In heavily regulated
industries such as quality control in drug manufacturing, there is little room for mistakes.
Everything must be properly documented and peer-reviewed, thus it is easier to impose
the manual start and end of tasks when compared to other industries, that typically face
strong employee resistance [26]. In other industries, an extra design effort must be made
while adopting automatic identification to improve the quality of the decision-making. In
our use case, the challenge was the lack of standardization and process mapping towards
scheduling operations with more granular processing times. We ended up having barcode
labels for the samples and small range RFID HF tags for the user identification, with ranges
below 10 cm in both PLC and PC Platforms. The start and end of tasks were incorporated
in the workflow as manual tasks, leading to the improvements mentioned in Table 2.

We still intended to use RFID towards automatic sample reception, but HF tags proved
troublesome to read near liquid containers and within metal packages. Low-frequency
and UHF tags are better at managing material interferences; however, low-frequency tags
only work on limited ranges, and UHF systems are expensive for the application. We also
identified some additional challenges a fully automatic UHF system would face, such as
deciding in which direction did the tags travel when passing through an interrogation zone.
There are several approaches to address this last issue in the literature, such as by using
the RSSI of the RFID antennas [62], but it would require additional software development.
We also would have to ensure tags would not pass perpendicularly to the antenna field.
In our implementation, the overall investment of using HF/UHF tags on samples did not
provide advantages against cheaper solutions. We ended using an RFID UHF antenna near
critical equipment, with a reading range of several meters, to map the analyst presence and
improve subtask estimation times. Previous studies demonstrated how to use the RSSI
value of UHF tags to have position estimations within a few tens of centimeters [54].

Overall, longer-range radio system identification technologies present promising
opportunities for RTLS in indoor environments. UWB can provide more precise positioning
within centimeter-level. It uses active transponders, which are bigger, more difficult to
mount, and require higher power consumptions with strong penetration power and far
transmission distance [55]. While the UHF RFID can monitor critical equipment, the overall
UWB infrastructure investment to deploy a network of antennas and monitor all resources
in the three-dimensional space is more expensive requiring a different commitment with
a careful Return of Investment (ROI) analysis. For now, such precision was unnecessary.
BLE is a cheaper alternative despite its still lower accuracy. Nevertheless, commercially
available solutions of RTLS using UWB can already be found in the market, with the
promise of supporting many new applications, such as digital twins of the shop floor along
with further support to scheduling operations [63]. RTLS must be further investigated,
not just to improve subtasks time estimations, but also to capture analyst movements and
improve business process mappings.

As for the optical readings, the PLC Platform records the barcode image, while the PC
Platform uses laser technology. In Table 3 we present a summary of some of the captured
advantages and disadvantages of the optical and RFID technologies towards integrated
real-time decision-making identified while conducting our field research.
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Table 3. Optical vs. RFID for real-time decision-making.

Optical System RFID System

A
dv

an
ta

ge

• Cheaper and easier setup;
• Reading is not affected by interferences;
• Any printer can print barcodes;
• Any reader can read barcodes;
• The user has feedback if the code is read.

• Readings can be fully automatic;
• Can read many tags simultaneously;
• Reader does not need to see the tag;
• Tags can be read at longer distances;
• Tags can store information;
• Minimal human intervention after set up;

D
is

ad
va

nt
ag

e

• Individual reading is time-consuming;
• Reading typically requires user action;
• Reader requires a line of a sight to read;
• Reader needs to be close to the barcode;
• Reading timings prone to inaccuracies as operators

may delay readings;
• Do not allow for additional data apart from the label;

• Reads tags through gateways;
• More expensive and complex setup;
• Reading is affected by liquids and metals;
• Readers cannot read all the tags;
• Reader collision problems if a tag is detected by more

than one reader;
• Difficult to know the direction a tag goes through

when passing a gateway.
• Gateway readers can detect tags within their range

that did not pass the gateways;
• Tags can be missed if perpendicular to antenna field.

5.2. Intelligent Sensors Architectures

The embedded processing and communication capabilities of intelligent sensors allow
designing IoT architectures in a new three-layer concept: cloud, fog, and edge. The
fog handles the data transformation and filtering steps without compromising low-level
requirements of the edge, such as deterministic communication. It also avoids dealing
with large volumes of data, typically present in the cloud. In our implementation, two
different approaches are used simultaneously to achieve IT-OT convergence: PLC Platform
and PC Platform. Considering the fog computing architecture, the main differences are
summarized in Table 4.

Table 4. Automatic identification architectures.

Measure PLC Platform PC Platform

Hierarchical + −
Complexity + −

Interoperability − +
Real-Time − +
Security + −

Both approaches are perfectly suited for our implementation and represent the diver-
sity of technologies used in current industrial fog-like architectures. The PLC Platform
follows a more classic method with more automation layers and an explicit system hierar-
chy (ISA-95). It is also more suited to work in industrial and ruggedized environments.
On the other hand, the PC Platform establishes direct links between smart devices and
the cloud, closely resembling an IoT architecture with distributed PCs acting as gateways
(Fog). As the PLC Platform has more layers, it demands a more complex communication
infrastructure, with more software and requiring more engineering configurations. An-
other important aspect is interoperability. The PLC Platform typically requires proprietary
software, making it more expensive. The use of widely adopted standards such as OPC
UA and open-source programming languages such as Python makes the integration with
legacy and future technologies easier. Regarding real-time capabilities, the SCADA in our
implementation introduces a cycle delay of 200 ms in the PLC Platform, while the overall
cycle in the PC Platform is around 6 ms. These values were measured from the moment the
user tag was read by the RFID until the feedback on its scheduled tests was received by the
interface. In terms of security, by adding more layers and ensuring a physical separation,
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classical approaches are usually more secure [64]. However, for more direct architectures
such as cloud-to-thing, the Ethernet security task group is already targeting the data-link
layer, enhancing security checks. The OPC UA roadmap also includes improved security
using elliptic-curve cryptography in future releases [65].

One important feature that characterizes intelligent sensors is their connectivity. The
hand-held Barcode reader IDM260 connects to the PC via USB; however, we could have
connected it through Ethernet using the connection module CDM420 powered with 24 Vdc
and the ethernet kit adapter CMF400 as presented in Figure 10.
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If there is no need for user interactions, a single PC is sufficient to manage all the data
acquisition and connectivity between the network of Barcode readers and the cloud; also
improving scalability.

Concerning the proposed structure, the solution can be scaled at the operational level
either through distributed PLCs or PCs. Using the PLCs as an example, the communication
flow between the SCADA system and the distributed PLCs runs on an Ethernet bus. The
Ethernet bus also assures all communications below the PLC layer (field equipment). The
proposed system is organized in PLC groups, corresponding to departments or sections
(see Figure 11). Each group connects to several ETs, where each ET can connect to several
workstations. This architecture provides flexibility to the system, allowing the future
growth of the communication nodes. For the PC Platform, the scalability is identical, but
instead of HMIs we use PCs, and these connect directly to the cloud.
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Decision-making relies on data and mathematical models to convey an output. The
real-time integration of information between sensors and the cloud is crucial for the
relevance and the performance of a decision system. In production, real-time decision-
making typically follows two approaches: cyclic or event-based. In the event-based
approach, the rescheduling is triggered by automatic identification events. The sensed
information evaluates, fetches data, and updates the data model before it is used. In
applications such as predictive maintenance, sensed information is fed cyclically to a
model, and the output is computed in every cycle. There are several literature reviews of
machine learning methods applied to predictive maintenance [66,67]. Here, models can be
trained offline, in batches, or in real-time. The deployment and lifecycle management of
online machine learning models can be complex and are addressed case by case [21]. The
decision-making can also provide feedback for the model after being used. Supervised
classification models, for instance, require the transformation of raw data into a suitable
format before being used for training. In our application, data preparation focus on
cleansing past and historic data, updating records and constraints, while ensuring the data
model have all the business data required for the new scheduling.

Regarding the adopted architectures, many intelligent sensors cannot be connected
directly to the cloud. Their connectivity is limited to gateways and other field devices to
reduce price, improve latency, and create security barriers. In the PLC Platform, devices
such as the RF180C connection module (Figure 5) already support OPC UA connectivity
as an IoT interface. However, it still requires an IoT gateway such as Ruggedcom RX1400
with CloudConnect to connect to IoT platforms such as MindSphere. The PC Platform is
identical: while the RFID RF620 (Figure 6) can be connected via OPC with the SOPAS OPC
configurator, the OPC server would still be hosted on the PC. There are many possible
architectures between the cloud and the intelligent sensors, hence the name fog. Fog
computing helps to solve many challenges of the cloud-to-thing continuum, such as
interoperability to connect with legacy devices, sensor costs, connectivity, determinism,
and security. Security is currently one of the major concerns in the field layer. New
gateways and middleware technologies are addressing these issues. In the future, with
the decreasing of sensor costs, intelligent sensors will become more easily connected
to the cloud, such as having onboard wireless connectivity, standard communication
protocols, and security features. Protocols such as OPC UA PubSub over TSN will make
these integrations possible. Nevertheless, having middleware to handle both real-time
deterministic operations while also exchanging information with the transaction world has
proven advantageous to real-time decision-making and intelligent automation applications.

6. Conclusions and Future Work

In this paper, we discuss the adoption of intelligent sensors for real-time decision-
making. The contributions can be both to the managerial body and the academia. For
managers looking to improve their operations, we present a practical and detailed in-
dustrial implementation of intelligent sensors towards real-time decision-making. We
also introduce the true workflow complexity of current shopfloors and the limitations of
existing designs and technologies. This work may provide valuable insight into business
cases and ROI analyses. For academia, we present the present-day challenges faced by
modern industry operations so new solutions may be researched and proposed.

Unlike sensors, intelligent sensors include onboard processing and communications
capabilities. This is advantageous for IoT architectures looking to connect the edge to the
cloud in a cloud-to-thing continuum. However, challenges with current architectures show
that there are advantages in having an intermediary layer. Fog computing is applied to
reduce implementation costs, interoperability, and latency. To support real-time decen-
tralized decision-making, we analyzed an industrial use case of a dynamic scheduling
algorithm to the analytical QC laboratories of the pharmaceutical industry. Analytical QC
laboratories are being affected by the growing data-based mass personalized production
with high demands on data integration and traceability. We used automatic identification
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technologies for the acquisition. RFID and Barcode readers are two examples of intelligent
sensors with onboard intelligent capabilities to decode information and easily track re-
source states. While RFID can decrease user interactions to a minimum, it is more expensive
and not very robust under certain conditions, such as depending on the solid state of the
surrounding materials and the tag angle relative to the antenna.

There are two relevant practical notes on the implemented system for future research.
The first is that, unlike resources, we do not always have physical representations of the
jobs and tasks to be executed. One single sample can encode many jobs and tasks. In
this scenario, it is not clear if it is possible to design fully automated systems to start
and stop individual tasks, as these run in a shared environment. We propose further
studying the creation of physical representations of tasks. In the current implementation,
these are delivered together with manual inputs. The other note is that tasks often do
not require an operator to be present for its entire duration, but only a percentage of
the total processing time. Automatic identification tracks analyst position in real-time,
computing the amount of time that she or he spends near each workstation. However,
tracking operators in real-time brings ethical concerns. Future research will focus on
RTLS technologies for indoor positioning. These complement other identification systems,
providing more granular and detailed information, improving business process mappings.
Future research includes relying on intelligent sensors for other decision-making systems,
such as analyzing the energy consumption in machinery to monitor the execution of tasks,
or predictive maintenance, including industrial use cases with implementation details and
their challenges. Future decision-making solutions will merge information acquired from
multiple sources towards each desired end.
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