

Biocatalyzed Sulfoxidation in Presence of Deep Eutectic Solvents

1. Experimental Procedures

1.1. Preparation of the Natural Deep Eutectic Solvents

Two components NADES were prepared by adding the ammonium salt (ChCl) and the hydrogen bond donors (Urea, Gly, EG and Xyl) at a molar ratio of 1:2 for Gly and EG, or 1:1 in the case of Urea and Xyl, in a beaker and incubated at 80 °C for 2 hours with intermediate stirring, until a colourless clear liquid was formed. The resulting DES was cooled down to room temperature and use without further purification. When obtaining Glu:Fru:H₂O or ChCl:Glu:H₂O, the same procedure was followed, mixing the three components in 1:1:6 or 5:2:5 molar ratio, respectively.

1.2. Study of the Ethyl Phenyl Sulfide Catalysed Sulfoxidation in Presence of Different NADESs.

Ethyl phenyl sulfide 1a (10 mM) was added to 1.0 mL Tris/HCl 50 mM pH 9.0/NADES mixture containing NADPH (0.2 mM), sodium phosphite (10 mM) and *m*FMO (1.0 μ M). The reactions were stirred at 28 °C and 220 rpm for 24 h. Once finished, the reactions were extracted with EtOAc (3 × 0.5 mL) and dried onto Na₂SO₄. The samples were directly analysed by GC/MS and HPLC in order to determine, respectively, the level of conversion and the enantiomeric excess of chiral sulfoxide (*S*)-1b. Results for some of the NADESs tested are summarized in Table S1.

Table S1. Biocatalyzed oxidation of ethyl phenyl sulphide (1a) in buffer containing different NADESs catalysed by *m*FMO.

Entry	DES	% DES	Conv. (%) ¹	ee (%) ²
1	Glu:Fru:H2O (1:1:6)	10	$>40.5 \pm 2.1$	71.5 ± 2.1
2	Glu:Fru:H2O (1:1:6)	20	35.0 ± 1.4	67.0 ± 1.4
3	Glu:Fru:H2O (1:1:6)	40	10.5 ± 0.7	65.5 ± 0.7
4	ChCl:Glu:H2O (5:2:5)	10	37.5 ± 2.1	66.0 ± 1.4
5	ChCl:Glu:H2O (5:2:5)	20	12.0 ± 1.4	41.0 ± 1.4
6	ChCl:Xyl (1:1)	10	28.0 ± 1.4	61.5 ± 2.1
7	ChCl:Xyl (1:1)	20	5.5 ± 0.7	n.d.
8	ChCl:Urea (1:1)	10	8.5 ± 0.7	50.5 ± 0.7

¹ Conversion was determined by GC/MS. ² Optical purity of (*S*)-**1b** was measured by HPLC. Average values of two or more experiments. n.d. not determined.

1.3. General Procedure for the mFMO-Catalyzed Sulfoxidation of 1a at Different Substrate Concentrations.

Ethyl phenyl sulfide 1a (20-200 mM) was added to 1.0 mL Tris/HCl 50 mM pH 9.0/5 or 10% v/v ChCl:EG (1:1) or ChCl:Gly (1:1) mixture containing NADPH (0.2 mM), sodium phosphite (20-200 mM, 1.0 equiv.) and *m*FMO (1.0 μ M). The reactions were stirred at 28°C and 220 rpm for the times established (24-96 hours). Once finished, the reactions were extracted with EtOAc (3 x 0.5 mL) and dried onto Na₂SO₄. The samples were directly analysed by GC/MS and HPLC in order to determine, respectively, the level of conversion and the enantiomeric excess of chiral sulfoxide (*S*)-1b.

1.4. Sulfoxidations Catalysed by mFMO in Buffer Tris/HCl 50 mM pH 9.0 Containing 10% v/v ChCl:Gly (1:1).

Prochiral sulphides 2-6a (100 mM) were dissolved in 1.0 mL of a mixture Tris/HCl 50 mM pH 9.0/10% v/v ChCl:Gly (1:1) containing NADPH (0.2 mM), sodium phosphite (100 mM) and *m*FMO (1.0 μ M). The reactions were stirred at 28 °C and 220 rpm for 96 h. Once finished, the reactions were extracted with EtOAc (3 × 0.5 mL) and dried onto Na₂SO₄. The samples were directly analysed by GC/MS and HPLC in order to determine, respectively, the level of conversion and the enantiomeric excess of chiral sulfoxide (*S*)-2-6b.

2. GC Analyses

GC Analyses were performed on a HP-5MS cross-linked methyl siloxane column (30 m × 0.25 mm × 0.25 μ m, 1.0 bar N₂) and were used for the determination of the conversions and the amount of sulfoxides 1-6b (Table S2). For all the compounds, the following program was employed: 50 °C (5 min), 10 °C/min, 200 °C (3 min).

Substrate	tr (min) a	<i>t</i> _R (min) b
1	11.0	15.1
2	12.2	16.2
3	14.9	18.6
4	15.7	18.6
5	12.5	17.0
6	18.9	21.8

Table S2. Determination of conversions and amounts of sulfoxides and sulfones by employing GC.

3. HPLC Analyses

For the determination of the enantiomeric excesses of compounds 1-12b (Table S3), the following column was employed: Chiralcel OD (0.46 cm × 25 cm) from Daicel.

|--|

Substrate	T (°C)	Eluent ^a	Retention time [min]
1b	30	<i>n</i> -hexane-IPA 9:1	12.9 (<i>R</i>); 16.5 (<i>S</i>)
2b	30	<i>n</i> -hexane-IPA 95:5	10.2 (<i>R</i>); 12.0 (<i>S</i>)
3b	30	n-hexane-IPA 9:1	14.1 (<i>R</i>); 15.2 (<i>S</i>)
4b	30	n-hexane-IPA 9:1	24.0 (<i>R</i>); 28.5 (<i>S</i>)
5b	30	n-hexane-IPA 9:1	17.0 (<i>R</i>); 18.7 (<i>S</i>)
6b	30	n-hexane-IPA 95:5	26.1 (<i>R</i>); 29.0 (<i>S</i>)

^a All the experiments were performed with isocratic eluent. Flow rate 1.0 mL min⁻¹.