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Abstract: Endocrine-disrupting compounds (EDCs) are exogenous compounds that interfere with
the normal hormone functions and ultimately lead to health disorders. Parabens, phenols, and
phthalates are well-known EDCs, produced globally in large quantities and widely used in a variety
of applications. Several studies have monitored these compounds in a variety of environmental
matrices, including air, water, sediment, fish, human tissues, soil, indoor dust, and biosolids, etc. In
recent years, environmental contamination and human exposure to these chemicals have become
a great concern, due to their residue levels exceeding the permissible/acceptable limits. In this
review, we focus on the origin of these EDCs, aquatic contamination pathways, distribution, human
exposure, health implications, and healthcare costs. Further, this review identifies critical challenges
and future research needs in removing or minimizing environmental contamination and exposure to
these chemicals to protect living resources.

Keywords: endocrine-disrupting compounds; wastewater treatment plant; human exposure; food-
packing materials

1. Introduction

Endocrine-disrupting compounds (EDCs) were defined by the WHO in 2002 as chem-
icals that interfere with the function of natural hormones in the biota. EDCs are exoge-
nous compounds that interfere with the synthesis, secretion, transport, binding, and
action/elimination of natural hormones, which maintain the growth, reproduction, de-
velopment, and/or behavior of the organism [1,2]. Accumulation of EDCs results in
sterility, sexual underdevelopment, unbalanced sexual behavior, disruption in thyroid or
adrenal cortical function, raised risk for certain cancers, birth defects, immunosuppres-
sion, enhanced immune stimulation, and autoimmunity [3,4]. In this review, we focus on
parabens, phenols, and phthalates and their derivatives, which are potent EDCs and cause
environmental and health problems on a global scale.

Parabens are alkyl esters of p-hydroxybenzoic acid and are used as ingredients in cer-
tain cosmetics, pharmaceuticals, and foodstuffs due to their broad-spectrum antimicrobial
properties. Synthetic phenols (phenolic antioxidants) are widely used in foods, pharmaceu-
ticals, cosmetics, plastics, and rubber products to prevent oxidative degradation of these
materials. Phthalates are used as plasticizers in numerous consumer products and building
materials. Phthalates are large-volume production chemicals. Several million tons of
phthalates and their derivatives are produced worldwide every year for the production of
soft polyvinyl chloride (PVC) and other plastics. Due to extensive use of these compounds,
global environmental contamination and harmful effects (particularly as an endocrine
disruptor) on wildlife and humans are eminent. This review deals with: (i) the mechanism
of action of EDCs; (ii) parabens, phenols, and phthalates in environmental matrices (water,
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soil/sediment) and biota (fish); (iii) human exposure; and (iv) health implications and
healthcare costs.

2. Mechanism of Action of EDCs

EDCs may alter the endocrine system via a direct or indirect mechanism. Directly,
EDCs act as an antagonist on nuclear hormone receptors, including estrogen receptors
(ERs), androgen receptors (ARs), progesterone receptors, thyroid receptors (TRs), insulin
receptors (IR) and retinoid receptors, to imbalance the homeostasis of hormones [5]. Bind-
ing of EDCs on hormonal receptors had results of either stimulation or inhibition of the
downstream cellular pathway in target cells [6] (Figure 1). EDCs can elicit an adverse effect
on endogenous hormone regulation by binding or stimulating hormone receptors or alter-
ing hormone concentrations, or by modifying the hormone binding receptor turnover [4,7].
EDCs can affect the endocrine system through nine modes of action (Figure 2).

Figure 1. Human exposure to EDCs and their effects at the molecular level.

Inappropriate activation/binding of hormone receptors by EDCs could lead to neg-
ative effects on human health [8]. Some of the above-mentioned EDCs inappropriately
activate the estrogen receptor during the developmental stage, which results in infertil-
ity in both the sexes. For example, dichloro-diphenyl-tricloroethane (DDT) binds to the
estrogen receptor α (ERα) and estrogen receptor β (ERβ), influencing the stimulation of
ER-dependent transcriptional activation and proliferation. Further, DDT also binds to the
follicle-stimulating hormone receptor and G protein coupled receptors (GPCR), enhancing
cAMP production [9–11]. EDCs act as receptor antagonists, and inhibit or block the endoge-
nous hormone [12]. DDT also inhibits the binding of androgen to the androgen receptor
(AR), further preventing the androgen-dependent transactivation of AR in humans [13].
Concentrations of hormones were determined by the abundance of receptors, as well as
the reaction of hormones in certain situations. Expression, internalization, and degradation
of hormone receptors were modulated by EDCs. Aldosteron receptor expression was
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decreased by di(2-ethylhexyl) phthalate. On the other hand the aldosteron receptor acted
as a positive modulator of testosterone biosynthesis.

Figure 2. Mechanism of action of EDCs.

Intracellular response was triggered by the binding of hormones to a receptor and
tissue-specific properties of the target cell. EDCs could alter the signal transduction
through membrane and intracellular hormone receptors. These two classes of receptors are:
cell surface membrane receptors and nuclear steroid hormone receptors. Hormones are
involved in development and differentiation by modifying the epigenetic process. These
cascade actions were perturbed by EDCs. Important key enzyme expressions were also
increased by pesticides such as methoxychlor [14–16].

Hormones (steroid hormones—estrogen, androgen, progestogen, and adrenal steroids)
are liphophilic in nature, and passively move through membranes. The transport of
these hormones was disturbed by EDCs. A low dose of BPA reduced calcium entry into
pancreatic β-cells. Hormones are typically transported with the transport protein (serum
protein), depending on the chemistry of the hormones. They may bind with or without
the conjugative protein. In such cases, EDCs displace the hormones from their transport
protein, and hence the target tissue receives impaired hormones [17,18].

Further, hormones become inactive when they are broken down by proteases. This
mechanism was also modulated by EDC, by affecting the degradation and/or clearance of
hormones, leading to varying hormone concentrations in the bloodstream. Tissue structure
was maintained by the hormones via cellular proliferation and differentiation. Endocrine
organs having a stable number of cells were altered by the EDCs by disrupting or promoting
cell numbers. Polychlorinated biphenyls (PCBs), a well-known EDC, could interfere with
thyroid hormone signaling and cause abnormal morphology of the endocrine organ [19,20].
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3. Applications/Use of Compounds That Elicit Endocrine-Disrupting Properties

EDCs are substances used in industries as well as in consumer products for various
uses (flame retardants, cosmetics and personal care products, etc.) [21]. Some of the major
EDCs are polychlorinated biphenyls (PCBs), dioxins, alkylphenols (APs), polybrominated
biphenyls (PBBs), plastics (bisphenol A (BPA)), plasticizers (phthalates), pesticides, fungi-
cides, steroids, and pharmaceutical agents. Various sources of EDCs are shown in Figure 3.
Approximately 38,000 chemicals have been suspected as endocrine disruptors [2]. These
compounds enter into the environment by various sources, such as effluents from wastew-
ater treatment plants (WWTPs), seepage from septic tanks and landfill sites, surface water
run-off, etc. Industrialized areas were contaminated with a wide range of these chemicals
as they percolated into the soil and groundwater and ultimately bioaccumulated in fish
and other aquatic animals. Recent studies reported that the above-mentioned EDCs have
thyroid-disrupting characteristics [22,23]. In this review, we focus on parabens, phenols,
and phthalates due to their large-scale production, widespread use, and frequently detected
compounds in almost all the environmental matrices.

Figure 3. Types and sources of EDCs.

Parabens (PBs) are p-hydroxybenzoic acid (pHBA) esters [24], applied as antimicrobial
preservatives in consumer and personal care products (cosmetics, toiletries, pharmaceu-
ticals, food, animal feed, and healthcare products) and industrial products (cigarettes,
varnishes, and glue), and their residues were found in currency bills and paper products,
including sanitary wipes [25] (Figure 3). PBs are classified into two types based on the
length of alkyl chains:

• Short-chain parabens: methyl paraben (MePB) and ethyl paraben (EtPB);
• Long-chain parabens: propyl paraben (PrPB), isopropyl paraben (iPrPB), butyl paraben

(BuPB), isobutyl paraben (iBuPB), and benzyl paraben (BePB) [26].

MePB was used as a plasticizer in pharmaceuticals and medicine production [27].
Methyl and propyl parabens were predominantly used, among others, to increase preser-
vative effects [28]. Antimicrobial properties are directly related to the chain length of the
ester groups in PBs [29]. Due to their recalcitrant properties, PBs were found in almost all
environmental matrices, including surface water (rivers, lakes and coasts), drinking water,
sediments, soils, indoor dust, sludge, marine mammals, and human tissues [30–38].

Byproducts of parabens were more toxic to aquatic organisms than parent compounds.
Chlorinated byproducts can be formed due to the reaction between parabens in cosmetics
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and chlorinated tap waters [39]. Chlorinated paraben residues were reported in wastew-
ater and sludge [40], which is of great concern due to the lack of information regarding
their occurrence in environmental matrices, and the effects of these compounds in aquatic
organisms. [41]. Occurrence of PBs and their byproducts in environmental samples and
harmful effects on aquatic organisms prompted Denmark to ban the usage of parabens
in personal care products, including PrPB and BuPB in children’s cosmetic products [42].
Metabolites of parabens such as 4-hydroxybenzoic acid (4-HB), 3,4-dihydroxybenzoic acid
(3,4-DHB), benzoic acid (BA), methyl protocatechuate (OH-MePB), and ethyl protocate-
chuate (OH-EtPB) were also considered as EDCs [43]. Paraben metabolites including 4-HB
and 3,4-DHB elicit estrogenic activity and contribute to obesity, respectively [44].

Bisphenols are plastic monomers and plasticizers. Bisphenol A (BPA) has been used
in the production of polycarbonates and epoxy resin flame retardants as an intermediate
(Figure 3). Due to the endocrine-disrupting effects of BPA, replacements such as bisphenol S
(BPS) and bisphenol F (BPF) were produced and used. A recent study has shown that these
replacement chemicals also interfere with hormone signaling pathways [45]. Bisphenol
S, bisphenol F and bisphenol AF are widely used in the production of plastics, thermal
paper receipts, and food packaging materials [46]. Exposure to bisphenol via food and food
packaging are probable sources of endocrine hormone system interference [47]. BPA can
interfere with different hormonal systems, through interaction with hormonal receptors
(androgen, estrogen, glucocorticoid, or thyroid receptors) [48]. To prevent the endocrine-
disrupting effect of BPA in babies, the European Union banned the usage of BPA-containing
polycarbonates in baby bottles [49]. Several studies have reported bisphenols in various
environmental matrices, such as surface water, wastewater, tap water, sediment, indoor
dust, and human urine and plasma [50–57].

Nonylphenolethoxylates (NPEOs) and alkyl ethoxylates (AEOs) are nonionic sur-
factants used as detergents, emulsifiers, humidifiers, stabilizers, skimmers, and interme-
diates in the synthesis of various products in industries [58]. Degradation of alkylphe-
nolpolyethoxylates (APEOs) and AEOs results in the formation of alkylphenols, alkylphe-
nolmonoethoxylates, and alkylphenoldiethoxylates, which are considered as EDCs [59].
APEOs are broken down into nonylphenols (NPs) or octylphenols (OPs); metabolites from
NPEOs are found in sediments [60]. These two compounds are persistent in the environ-
ment. Due to the widespread use of NPEOs and APEOs, their degradation products (NPs
and OPs) were detected in rivers, lakes, sediments, and reservoirs. Reports suggest that
aquatic organisms were highly affected by the contamination with these persistent organic
chemicals [61,62].

Phthalates are common plasticizers in rigid and malleable plastics [63] and are used
in various industries including food packaging industries. Phthalate esters (PAEs) easily
migrate from plastic products into food materials, as they are not chemically bound with
the products [64]. Phthalates are categorized into two groups:

• Short-chain phthalates: dimethyl phthalate (DMP) and dibutyl phthalate (DBP);
• Long-chain phthalates: butyl-benzyl phthalate (BBP), di-n-hexyl phthalate (DNHP),

di-2-ethylhexyl phthalate (DEHP), di-n-octyl phthalate (DNOP), di-iso-nonyl phthalate
(DINP), and di-iso-decyl phthalate (DIDP).

Production and usage of phthalates (PAEs) varies with their chain length. Short-chain
phthalates are used in personal care products, while long-chain phthalates are used in
furniture manufacturing industries, clothing, building materials, and the production of
polyvinyl chloride (PVC) plastics (Figure 3) [65,66]. Human exposure to phthalates occurs
through ingestion, inhalation, and dermal adsorption from air, food, water, dust and soil,
etc. [67]. Exposure to PAEs in humans results in the occurrence of phthalate metabolites
in human urine and blood [68]. Phthalate exposure contributes to intellectual disability,
immunological deficiency, and suspected to cause cancer [69]. Phthalates are structurally
similar to fats and have a high binding affinity toward them; hence fatty foods wrapped up
in these plastics are most vulnerable to contamination by phthalates. An study conducted
by Schecter et al. showed percentage detection of phthalates in food purchased in New
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York: DMP (37%), DBP (31%), DIBP (55%), BBP (54%), DNHP (15%), DEHP (74%), and
DNOP (12%) [70]. The report revealed widespread contamination of PAEs in food [71].
Experimental studies provided evidence that the development and reproduction of males
and females have been affected by phthalates. A recent study by Benjamin et al. reported
the effects of phthalates on the endocrine system in men and women [72].

The fate and adverse effects of EDCs on the environment and human health attracted
researchers to monitor these compounds; however, it was challenging to determine various
analytes in different matrices due to different physico-chemical properties [40]. EDCs had
been detected in various environmental matrices and biota at part per billion (ppb) and
part per trillion (ppt) levels [73]. Long-term, low-level exposure to EDCs costs the United
States USD 340 billion in annual healthcare spending and lost wages. The cost of natural
resources lost due to chemical pollution has yet to be determined. This review focuses
on contamination of EDCs in different environmental matrices (water, sediment, soil, and
fish), human exposure, and possible implications.

4. Endocrine-Disrupting Compounds in Environmental Matrices
4.1. Parabens in Water

The distribution of parabens in water from different locations is given in Table 1. MePB
and PrPB are commonly used in cosmetics, which influences the abundance of these two
compounds in water samples [74]. The concentrations of MePB and PrPB in water samples
from Chinese rivers (Pearl River Delta) were 1062 ng/L and 3142 ng/L, respectively [75].
Relatively lower concentrations of MePB and PrPB (400 ng/L and 69 ng/L, respectively)
were reported in European rivers [76]. Ramaswamy et al. [77] reported lower levels of
EtPB (147 ng/L) and BuPB (163 ng/L) in water samples from Indian rivers; these were
less frequently detected than MePB and PrPB. Higher production and use of these two
parabens resulted in frequent detection in water samples from Japanese rivers [78]. Very
few studies reported the presence of BePB in river waters. The Glatt River contained a
very low concentration (4.4 ng/L) of BePB in its surface waters [79]. Distribution and
concentration of contaminants depended on the seasonal variation and dilution factor. For
example, low flow conditions resulted in higher PB concentrations because of pollutants
dissolved in smaller volumes of water [75]. However, higher concentrations of PBs were
recorded during high water flow conditions due to direct discharge of wastewater into
the river. Seasonal variations of PBs should be taken in account while monitoring PBs
contamination in aquatic systems.

Relatively higher levels of contamination of parabens were found in coastal zones or in
rivers close to point-source areas such as factories manufacturing paraben-containing prod-
ucts and wastewater discharges from WWTPs (Table 1). Based on the half-life of parabens
in water, these compounds may have very low persistence in aquatic environments [80].
Insufficient removal of parabens in conventional WWTPs, random discharges, or leakage
of municipal wastewater into water streams results in frequent detection at low concentra-
tions (range: µg/L–ng/L) of PBs in river water samples. Municipal landfill leachates also
resulted in paraben contamination in water systems, and two untreated leachates were
found with three paraben (MePB, PrPB, and BuPB) concentrations of 3480–7930, 900–1820,
and 420–470 ng/L respectively, while EtPB was not detected [81].

Paraben concentrations in WWTP effluents were relatively high when compared to the
river waters, that received the wastewater discharge, due to higher dilution in the water,
biodegradation, and adsorption of parabens in sediments. Jonkers et al. [24] reported MePB
(range: 2.1–51 ng/L) in a shallow estuarine system in northwestern Portugal, and con-
centrations of EtPB (6.7 ng/L), PrPB (7.9 ng/L), and BuPB (7.1 ng/L) were comparatively
lower than MePB. The maximum concentration of BzPB was 0.3 ng/L, and the major source
of paraben contamination in the water was rivers discharging into the lagoon. MePB and
PrPB were reported in seawater samples from China (104 ng/L and 69.9 ng/L) [82,83], Por-
tugal (up to 21 ng/L and 1.6 ng/L) [24], and Antarctica (up to 33.3 ng/L and 3 ng/L) [84].
MePB (median: 2.21 ng/L) was the abundant compound in the Pearl River estuary, fol-
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lowed by PrPB (1.12 ng/L) and EtPB (0.94 ng/L). Similarly, Sun et al. [82] reported MePB
(2.65–29.1 ng/L) and PrPB (1.11–5.22 ng/L) in aqueous samples from the Jiulong River
estuary in China. Florida coastal waters (USA) were contaminated with parent parabens,
including MePB (3.02–31.7 ng/L), EtPB (6.12–7.09 ng/L), and PrPB (<0.5–9.04 ng/L) [85].
Foods, personal care products, and pharmaceuticals containing MePB, PrPb, and EtPB
contribute significant amounts of these compounds to the environmental contamination
(Table 1) [31,86].

4.2. Parabens in Soil and Sediment

Sediments are the ultimate repository of organic contaminants, including parabens [28].
Sediment samples from different countries were found with significant concentrations of
parabens (Table 1). Sediment samples from Spain (Canary Islands, Tenerife) contained
377 ng/g dw BuPB [87]. Viglino et al. [88] reported relatively low level of parabens (MePB:
up to 127 ng/g dw; EtPB, PrPB, and BuPB: up to 15–23 ng/g dw) in sediments and soils
from Canada. Sediment samples that were collected far from anthropogenic activities were
not contaminated with parabens [88]. Carmona et al. analyzed Turia River (east of Spain)
sediments and reported 476 ng/g MePB, followed by EtPB (60 ng/g), PrPB (64.5 ng/g),
and BuPB (34 ng/g) [36]. However, sediment samples from Asan Lake in Korea revealed a
different profile of contamination. Total concentrations of parabens and their metabolites
ranged from 0.19 to 11.2 ng/g dw and 9.65 to 480 ng/g dw, respectively. Concentrations
of 4-HB and MePB in sediments ranged from 9.65 to 446 ng/g dw and 0.13 to 11.2 ng/g
dw, respectively, and 4-HB was the predominant compound among other parabens [89].
The residues of 4-HB were found in environmental (sediment) as well as in biological tis-
sues (bivalves and marine mammals) [32,90]. A few studies have reported contamination
of MePB in sediments from the Florida coast (USA) (3.03 ng/g dw), Tokyo Bay (Japan)
(5.04 ng/g dw), and the Pearl River (2.95 ng/g dw) and Yangtze River (4.95 ng/g dw)
in China [91,92]. Relatively elevated concentrations of MePB were found in sediments
from Spain and China [92,93]. Low WWTP operational rates in the eastern part of the
Korean coastline (Gangwon Province) and comparatively higher WWTP operational rates
in the western part of Korea (Gyeonggi Province and Seoul) might have contributed to the
variations in concentrations of parabens reported [94]. The areas of the Yeongil and Masan
Bays are highly industrialized with slow tidal currents, which might have contributed to a
comparatively greater concentration of parabens and their metabolites in sediments than
other regions in Korea [95,96].

Parabens and their metabolites were reported in soil samples from agricultural and
forestry areas, as well as in sediments from different regions of Spain. The detected concen-
trations of MePb, EtPB, iPrPB, PrPB, BePB, and BuPB were 6.35, 5.10, 0.29, 4.03, 0.45, and
0.71 ng/g dry weight (dw), respectively [28]. Several PBs that were detected in agricultural
soils were attributed to amendments of sewage sludge and industrial soils. These activities
caused the prevalence of PBs in these samples. The PB concentrations reported were: MePB
(up to 8.04 ng/g dw) > EtPB (up to 1.23 ng/g dw) > BuPB (1 ng/g dw) [97]. Garden soil
was found containing PrPB at 1.5 ng/g dw [98]. The occurrence of PBs in sediment will
eventually influence the bioaccumulation in fish.

4.3. Parabens in Biota/Fish

Parabens are known to bioaccumulate in fish and other organisms in the aquatic environ-
ment. Jakimska et al. [33] reported relatively low concentrations of MePB (84.69 ± 6.58 ng/g)
and PrPB (0.19 ± 0.04 ng/g) in fish tissues. However, parabens were not detectable
in fish brain tissues [38]. Slightly elevated levels (7 ng/g dw) of MePB were reported
from the northern coast of Spain, and n-propylparaben (n-PrPB) was barely detectable
(0.56 ng/g dw) and reported only in one mussel sample from this region [99]. Similarly, a
very low concentration (0.37 ng/g dw) of EtPB was found in mussel and cockle samples.
The detected paraben concentrations in fish samples were at the same order of magnitude
in relation to the ambient water and treated wastewater. [99].



Sustain. Chem. 2021, 2 350

Kim et al. [34] reported four parabens in three fish species from the marine wa-
ters of Manila Bay, the Philippines. The order of reported concentrations were: MePB
(505–3450 ng/g lipid weight (lw)) > PrPB (46–1140 ng/g lw) > EtPB (46.6–195 ng/g lw) >
BuPB (6.61–37.3 ng/g lw) in muscle tissues of all species. Large production and usage of
PBs and direct release of untreated wastewater into Manila Bay led to higher concentrations
of MePB and PrBP in different fish species. Another study from the same area (using fish
muscle tissue purchased from local markets in Manila Bay) showed a similar range of con-
centration of PBs. The reported levels were: MePB (<0.05–3600 ng/g lw), followed by EtPB
(<0.011–840 ng/g lw), PrPB (<0.024–1100 ng/glw), and BuPB (<0.003–70 ng/g lw) [35]. The
detected paraben values were two orders of magnitude higher in adult fish (coral grouper)
(4700 ng/g) than in juveniles (220 ng/g), which indicated age-related accumulation of
parabens [35]. The above-mentioned reports provide evidence that parabens are ubiquitous
contaminants in the coastal waters of the Philippines, and that these compounds bioaccu-
mulate in fish. Jakimska et al. [33] found parabens in 12 different species collected from
four Mediterranean rivers. They found PrPB in fish homogenates at 0.19 ± 0.04 ng/g dw,
and MePB at 84.69 ± 6.58 ng/g dw. The Salmo trutta species was found with higher con-
centrations of MePB and PrPB, and the sample collection site was contaminated by effluent
from a wastewater treatment plant. Renz et al. [38] analyzed parabens (MePB, EtPB, PrPB,
and BuPB) in 58 fish (brain tissue) collected from Pennsylvania rivers in Pittsburgh (USA).
PBs were not detectable in any of the samples analyzed.

According to Lu et al. MePB concentration in shellfish ranged from 1.29 × 102

to 2.48 × 104 pg/g, which was similar to the concentration of this compound in clam
tissues (from the Antarctic coastal environment) and bivalve mollusks (from Florida)
(0.4 × 103–1.0 ×103) [85,100]. PrPB concentration in shellfish (<LOQ–406 pg/g) was lower
than in fish samples from Antarctic coastal waters (0.4 × 103–1.9 × 103 pg/g), as well as
from the Florida coast (< 2.01 × 103 pg/g). Median concentrations of MePB (905 pg/g),
EtPB (40.9 pg/g), PrPB (20.6 pg/g), BuPB (<LOD pg/g), and BePB (<LOD pg/g) in
shellfish from Shenzhen (China) were in a similar range with MePB (336 pg/g), EtPB
(9 pg/g), PrPB (42 pg/g); BuPB and BePB were barely detected (5 pg/g each analyte) in
fish and shellfish from the USA [101]. MePB, EtPB, and PrPB concentrations in shellfish
from different countries were reported, such as Portugal (MePB: 4.5 × 103 pg/g; EtPB:
0.3 × 103 pg/g; PrPB: 0.9 × 103 pg/g), Italy (MePB: 11.3 × 103 pg/g; EtPB: 0.3 × 103 pg/g;
PrPB: 2.8 × 103 pg/g), and the northern coast of Spain (MePB: <LOQ–7.0× 103 pg/g; EtPB:
<LOQ–3.7 × 102 pg/g; PrPB: <LOQ–5.6 × 102 pg/g) [99,102]. MePB has a high water
solubility and is more available in ambient water than other parabens, which accounts for
the higher concentration of MePB in fish. Based on the above studies, it can be surmised
that MePB was the predominant compound among other parabens in different species and
in different sampling locations.

Table 1. Concentration of parabens in water, sediment, and fish and human tissues.

Sampling Area MePB EtPB PrPB BuPB BePB n-PrPB Unit Reference

Manzanares River, Spain 13.5 32 ng/L

[103]Jarama River, Spain 4.2 (Sunday)
30 (Thursday) ng/L

Northern Antarctic
Peninsula Region 16.05 ng/L

Rivers in the Iberian Peninsula ND–142 ND–49 ND–26 ND–7.3 ng/L [104]

Ria de Aveiro (Rivers of
Agueda & Vouga) ND–45 ND–2.2 ND–6.2 ng/L [24]

Rivers Caster & Antua 3.3–16 <0.3–6.4 <0.5–64 <0.2–42 <0.2–0.3 ng/L

Lagoon in Ria de Aveiro 2.1–51 <0.3–6.7 <0.5–7.9 <0.2–0.2 <0.2–0.3 ng/L

Sea 5.1–21 <0.3–1.6 <0.5–1.6 <0.2–0.7 <0.2 ng/L

Sea near outfall 5.7–62 <0.3–15 <0.5–6.1 <0.2–7.1 <0.2 ng/L
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Table 1. Cont.

Sampling Area MePB EtPB PrPB BuPB BePB n-PrPB Unit Reference

Japanese rivers ND–525 ND-181 ng/L [78]

Antarctic seawater <0.8–37.4 ng/L [84]

Southern India (29 sites) ND–22.8 2.47–147 ng/L [77]

Urban, streams in Tokushima
and Osaka, Japan (12 sites) 25–676 <1.3–64 <0.8–207 <0.6–163 <0.2–2.3 ng/L [105]

CentralPacific region, Japan
(4 sites) LOQ—-5.4 LOQ—-25 LOQ–12 ng/L [106]

Greater Pittsburgh area, USA
(6 sites) 2.2–17.3 ND–12 ng/L [38]

Drinking water from Turia
River Basin, Spain 12 <0.3 9 28 ng/L [36]

Jiulong River Estuary, China
Winter 2.65–29.1 1.11–5.22 [82]

2.23–53.4 1.91–68.3 ng/L

Spring ng/L

Autumn 1.41–7.27 0.4–1.59 ng/L

Summer 2.98–68.8 1.06–10.1 ng/L

Wet Season 1.68–39.4 3.4–69.9 ng/L

Pearl River Estuary,
China (Seawater) 2.21 0.94 1.12 0.21 0.01 0.04 ng/L [107]

Florida coast, USA 14.7 ± 10.9 6.12 ± 7.09 <0.5–9.04 [85]

Concentrations of Parabens in Sediment

Sampling Area MePB EtPB PrPB BuPB BePB n-PrPB Unit Reference

Turia River Basin, Spain 476 60 ng/g [36]

Korea 0.13–11.2 <LOQ–0.08 <LOQ–0.10 <LOQ–0.07 <LOQ–0.06 ng/g dw [89]

Ebro River, Spain <LOQ–435 <LOQ–2.7 <LOQ–51

ng/g dw [104]
Guadalquivir River, Spain <LOQ–63.0 <LOQ–1.8 <LOQ–3.5

Jucar River, Spain <LOQ–22.6 <LOQ–0.3 <LOQ–5.3

Llobregat River, Spain <LOQ–95 <LOQ–0.91 <LOQ–3.9

Florida coast, USA 0.85–9.00 2.15–12.38 ng/g [91]

Tokyo Bay, Japan 2.59–17.8 <LOQ–0.13 <LOQ–2.84 <LOQ–29.1 <LOQ–0.64 ng/g [31]

Pearl River, china 0.9–8.8 ng/g [92]

Yellow River, China 7.07–27.6 0.61–2.43 2.52–6.91 0.96–3.90 0.13–2.09 ng/g [90]
Huai River, China 6.97–18.8 1.02–2.14 2.72–9.17 1.84–7.6 0.17–0.4 ng/g

Guangzhou River, China 1.03–69.9 <LOQ–1.97 <LOQ–21.3 ng/g [93]

Dongjiang River, China 1.83–26.2 0.28–0.75 0.16–0.86 ng/g [108]

Sha River, China 1.95–42.8 0.26–3.19 ng/g [109]

Yangtze River, China 1.43–15.1 <LOQ-0.63 <LOQ-2.40 ng/g [110]

Pearl River Estuary, China 118 45.4 10.0 2.09 2.75 1.07 ng/g [107]

Concentration of Parabens in Fish

Sampling Area MePB EtPB PrPB BuPB BePB n-PrPB Unit Reference

Northern
coast of
Spain

Mussel 7 ± 2 0.3 ± 0.1 0.56 ±0.01

ng/g dw [99]Manila Clam 1.6 ± 0.3

Cockle 2.0 ± 0.5 0.37 ± 0.08

Manila Bay, Philippines 46.6–195 46–1140 6.61–37.3 ng/g lw [34]

Manila Bay (fish muscle)
(20 species) <0.05–3600 <0.011–840 <0.024–1100 <0.003–70 ng/g lw [35]

Mediterranean Rivers, Spain
(fish homogenate)

84.69 ±
6.58 0.19 ± 0.04 ng/g [33]
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Table 1. Cont.

Concentration of Parabens in Fish

Sampling Area MePB EtPB PrPB BuPB BePB n-PrPB Unit Reference

Pearl River Estuary, China
(shellfish and fish) 5.2 2.35 0.25 0.48 0.01 ng/g [107]

Llobregat
River, Spain

(Barbus graellsii)

Adult 62.85 ±
6.52 3.48 ± 0.58

ng/ g dw

[33]

Juvenile 33.65 ±
3.70 0.19 ± 0.04

Cyprinus carpio

Llobregat
River, Spain 2.53 ± 0.38

ng/ g dw
Ebro River,

Spain 3.41 ± 0.59

Llobregat River, Spain
(Lepomis gibbosus) 9.08 ± 1.06 0.64 ± 0.13 0.35 ± 0.02 ng/ g dw

Jucar River,
Spain

Salmo truta 4.45 ± 0.44 0.82 (Adult)
0.78 (Juvenile) 1.43 ± 0.69

ng/g dw

Micropterus
salmoides 4.45 ± 0.44

Anguilla
anguilla 2.97 ± 0.13 0.50 ± 0.04

Lepomis
gibbosus 0.54

Sampling Area MePB EtPB PrPB BuPB BePB n-PrPB Unit Reference

Urinary concentration of
parabens in U.S population

(≥ 6 years)
5.60–974 ND-57.2 0.30–299 ND-19.6 µg/L [111]

Spain
Pregnant
Women 100 98 88 90 ng/L [112]

Children 100 100 80 83 ng/L

Newborn infants, Korea 79.6 2.4 3.4 µg/L [30]

Serum level in Danish women ND-59.6 ND-20.8 ND-5.50 ND-0.87 ND-0.29 ng/L [113]

Breast milk (28–40-year-old
women) (Valencian

region, Spain)
0.11–7.00 0.49–4.05 0.13–0.76 0.17–0.34 ng/mL [114]

Breast milk, North Carolina 0.5–21 0.1–12 ng/mL [115–117]

Breast milk, Spain 0.6–22 0.81–1.10 ng/mL [118]

The Belgian
ENVIRONAGE cohort

(placenta samples)
0.5–7.1 0.5–4.5 0.5–9.1 ng/g [119]

Hospital Sant Joan de Deu,
Barcelona, Spain (mothers at

first trimester)
11.77

ng/g fw
(fresh

weight)
[120]

Taiwan (urine)
Male ND-56.8 ND-52.0 ND-1.8 ND-19.5

ng/mL [121]
Female ND-174 ND-40.4 ND-61.4 ND-84.7

4.4. Phenols in Water

Widespread use of phenols in industry and agricultural and consumer products has
resulted in environmental contamination. Bisphenol A (BPA) and its analogues (BPF, BPS,
BPAF, and BPB) and alkyl phenols (octyl (OP)- and nonyl-phenols (NP)) are widespread
micropollutants in the global environment and are considered potent endocrine disrup-
tors. [45]. Occurrence of residues of these compounds in environmental media (air, water,
soil, sediment, etc.) and biota (fish and other organisms, including human tissues) were re-
ported widely (Table 2). Literature dealing with contamination profiles of these compounds
in water, soil/sediment, and biota (fish and human tissue) are reviewed and environmen-
tal and health implications are explored in this section. Environmental contamination
levels of these compounds vary in different countries depending on the usage pattern,
treatment, disposal, and recalcitrant properties (chemical characteristics). Indiscriminate
use and disposal of materials containing phenols contaminate rivers, lakes, and coastal
waters. BPA contamination levels in the Jiulong River estuary (China) and Tokyo Bay



Sustain. Chem. 2021, 2 353

(Japan) were 364 ng/L and 431 ng/L, respectively [54,82] (Table 2). Liu et al. [122] and
Basheer et al. [123] reported BPA in Laizhou Bay (China) (11.1–101 ng/L) and in the coastal
waters of Singapore (<1.1 ng/L). Bisphenol analogues were common contaminants in the
Pearl River estuary, South China. Zhao et al. reported 35 ng/L and 24.6 ng/L (median con-
centrations) of BPF and BPA, respectively, and a comparatively low (median) concentration
(0.41 ng/L) of BBP in this estuary [107]. Large-scale (206,000 tons of BPA/year) production
and widespread use/application (by a huge population) resulted in higher contamination
of BPA and BPF around the Pearl River estuary [124]. Contamination with BPA in water
samples from different geographical regions was reported, including the Baltic Sea (Ger-
many), the sea of Ria de Aveiro (Portugal), and Ross Island (Antarctica). BPA and BPF were
the predominant BPA analogues in seawater and other matrices, including surface water,
sewage effluent, sewage sludge, and sediment [82,84]. BPA concentrations in estuarine
water samples from Pulao Kukup, Johor, Malaysia, ranged from 0.19 to 0.47 ng/L [125],
and were lower than in surface river water from the Han River, Seoul, South Korea
(6.90–59 ng/L) [126]. Wee et al. [127] reported the contamination of surface water by BPA
in the Langat River, Malaysia. Industrial and municipal WWTPs were the most important
sources of BPA in drinking water sources of Malaysia (215 ng/L) [128]. An investigation
of BPA and alkylphenols levels in mariculture fish species by Ismail et al. showed a wide
range of contaminations of these compounds in Malaysian mariculture production, and
the concentrations BPA in fish muscle ranged between 0.023 and 0.322 ng/g [129].

A study conducted by Pignotti and Dinelli in northeastern part of Italy [130] found
wide ranges of BPA (<LOQ–244 ng/L) and NP (LOQ–135 ng/L) in the main rivers of the
Romagna area. The Fiumi Uniti River had been mostly contaminated by NP (135 ng/L)
due to presence of a point source for NP in Fiumi Uniti [130]. Octyl and nonylphenols
are not separated in conventional WWTPs, hence these compounds contaminate receiving
water sources and other environmental matrices [131]. Wang et al. [132] found NP in
reclaimed, surface, and ground waters from a southeastern suburb of Beijing, China.
The NP in the ground and surface waters ranged from ND–1047.9 ng/L and 357.6 to
1260.9 ng/L, respectively. Variations in NP concentration among aquifers may be due to
sewage penetration history and water sources of aquifer recharge. The NP concentration in
ground water was decreased with increasing aquifer depth.

4.5. Phenols in Soil/Sediment

Sediments serve as the main sink for hydrophobic organic chemicals because of their
hydrophobicity and high logKow values (3.43 and 5.76) [133]. Many researchers have focused
on the emerging contaminants in sediments [46], which are presented in Table 2. BPA was
frequently found in sediment samples from the Turia River, Spain [134]. Zhang et al. reported
nonylphenol (12.9 to 1159.9 ng/g dw) and octylphenol (1.3 to 13.6 ng/g dw) in Xiamen
Bay sediments in China [135]. Pignotti and Dinelli [130] found residues of BPA and
NP in water and sediment samples from several rivers in northern Italy. They found
very low ranges of BPA (<LOQ–1.9 ng/g dw) and NP (< LOQ–7.6 ng/g dw) in core
sediments from the Fiumi Uniti River. The NP concentrations in Savio River sediments
ranged from 8.6 to 32 ng/g dw. Contamination levels of BPA and NP were reported in
various countries, including the Pearl River catchment, China (BPA: 2.54–269 ng/g dw, NP:
10.9–14400 ng/g dw), San Francisco Bay (USA) (NP: 21.5–86.3 ng/g dw), and U.S. rivers
(BPA: <0.25–106 ng/g dw) [92,136]. Gorga et al. [104] found the highest NP concentration
in sediments from the Iberian peninsula (Ebro River) (<1.6–1693 ng/g dw), followed by
Llbregat River (19–470 ng/g dw), Jucar River (<1.6–175 ng/g dw) and Guadalquivir River
(61–190 ng/g dw).

Sludges from different WWTPs are used in agricultural fields to enrich organic matter,
and hence agricultural soils treated with sludge were found with NP, OP, AEOs, and APEOs.
Andreu et al. [137] analyzed WWTP sewage-sludge-amended forest soils (located in the
21 Valencian Community, Mediterranean Rendizic Leptosol), and reported the highest NP
concentration of 500 µg/kg, followed by OPEOs (369 µg/kg) and NPEOs (329 µg/kg).
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The reported OPEOs and NPEOs found in the soils were mainly composed of mono-,
di-, ti-, tetra-, and pentaethoxylates. The highest contamination level of phenols were
found in the soil samples treated with sludge from WWTPs that receive industrial effluents,
whereas sludge from WWTPs from domestic and industrial wastewater (tanneries and
textile industry) showed lower levels of phenols in soil samples [137].

4.6. Phenols in Biota/Fish

Phenol concentrations found in fish are given in Table 2. Alkylphenols (APs) are used
in surfactants, which ultimately end up in the aquatic and terrestrial environments through
discharges from manufacturing facilities and WWTPs [138]. Exposure to 4-nonylphenol
(4NP) led to behavioral changes in salmon fish [139]. Zhao et al. [107] found bisphenols
(41.6 ng/g) and BPP (median concentration: 25.4 ng/g) in fish from the Pearl River estuary,
South China. Gonads were detected with a higher BPA concentration and detection
frequency (ND–138 ng/g) than in liver (ND–61.9 ng/g). Fish samples from the Turia River
were frequently detected with BPA (33 ng/g) [134]. BPA concentration in fish species from
the Xiangjiang River were comparable to other locations, including the Yundang Lagoon,
China (54.2–177 ng/g); the Anzali Wetland, Iran; and the Basque Coast, Spain (20–97 ng/g).
The BPA concentration was higher in the liver than that of gill and muscle [140,141]. The
Pearl River basin has been contaminated with several EDCs (BPA, 4-t-OP, 4-NP, etc.),
which were detected in the surface water and fish tissues [142]. Environmental exposure
concentrations could affect the accumulation of EDCs in fish [143]. 4-n-NP and BPA were
found in tissues (muscle, liver, gill, and other tissues) of three freshwater fish species
(Parabramis pekinensis, Cyprinus carpio and Siniperca chuatsi) from the Xiangjiang River,
Southern China. The 4-n-NP was at the highest average concentration in liver, because
accumulation, biotransformation, and excretion of EDCs in liver have been crucial, although
the presence of 4-n-NP and BPA in all four tissues implied the bioaccumulation ability of
these compounds in fish [144]. EDC exposure levels were attributed to different seasons, as
liver samples were observed with higher 4-t-OP and 4-NP during the wet season compared
to dry season, whereas in plasma lower BPA and higher 4-t-OP were observed in the wet
season. In contrast to liver and plasma, BPA and 4-t-OP concentrations in muscle were
more in the dry season than in the wet season.

Considering the sources of phenolic compounds in biota, the Pulau Kukup (Johor)
has been dominated by industrial and mariculture activities, which mainly release BPA
and APs [129]. The major sources for BPA and APs in mariculture are plastic wastes,
landfill wastes, treatment plant effluents, industrial discharges, and cleaning products from
surrounding industries located near the mariculture cages at Pulau Kukup. These factors
may be attributable to higher BPA and AP accumulations in fish [145]. Three different mar-
iculture fish species (Trachinotus blochii (golden pomfret), Lutjanus campechanus (snapper),
and Lates calcarifer (sea bass)) were analyzed to evaluate BPA, 4OP, and 4NP contamina-
tion. BPA was detected in all fish species, but APs were detected in Trachinotus blochii.
Trachinotus blochii (0.322 ng/g) had the highest BPA concentration, followed by Lutjanus
campechanus (0.084 ng/g) and Lates calcarifer (0.078 ng/g). Likewise, 4OP and 4NP were
found to be lower in Trachinotus sp., at 0.023 ng/g and 0.124 ng/g, respectively [129].

While some of the mechanisms (biliary excretion) in the body eliminate APs, humans
are the final consumers who accumulate the highest level of contaminants [145]. Therefore,
continued biomonitoring of phenolic EDCs is indispensable to prevent human exposure
and health implications.
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Table 2. Phenolic compounds in environmental matrices and human samples.

Concentration of Phenolic Compounds in Water

Sampling Area Compound Concentration Unit Reference

Manzanares River, Spain

BPA 36.5 (Sunday)
37 (Thursday)

ng/L [103]

OP 109.5 (Sunday)
125 (Thursday)

NP 850 (Sunday)
622.5 (Thursday)

Nonylphenolmonocarboxylate 1342.5 (Sunday)
938 (Thursday)

Octylphenoldiethoxylate 46.5 (Sunday)
15.5 (Thursday)

Nonylphenoldiethoxylate 279.5 (Sunday)
168 (Thursday)

Jarama River, Spain

BPA 106 (Sunday)
47.5 (Thursday)

OP 60 (Sunday)
96 (Thursday)

NP 123 (Sunday)
813 (Thursday)

Nonylphenolmonocarboxylate 734 (Sunday)
926 (Thursday)

Octylphenoldiethoxylate 68 (Sunday)
49 (Thursday)

Nonylphenoldiethoxylate 345 (Sunday)
637 (Thursday)

Llobregat River and other rivers of Spain BPA 2970 ng/L [146–148]

Jialu River, China

BPA

2990 ng/L [149]

Liao River and Yellow River, China 755.6 ng/L [150]

Rio das Velhas River, Brazil 168.3 ng/L [151]

Qiantang River and Tiesha River

NP

8540 ng/L [152]

Rio das Velhas River, Brazil 1582 ng/L [151]

Liao River and Yellow River, China 2065.7 ng/L [150]

Liao River and Yellow River, China

OP

577.9 ng/L [150]

Llobregat River and other rivers of Spain 6200 ng/L [146–148]

Jialu River, China 63.2 ng/L [153]

Liao River and Yellow River, China 52.1 ng/L [150]

Rio das Velhas River, Brazil 1435 ng/L [151]

Northern Antarctic Peninsula region
BPA 18.74

ng/L [154]
NP 138.32

Mississippi BPA 57.14 ng/L [155]

Rivers in Portugal BPA 5.4 ng/L [24]

PulauKukup, Johor (estuarine water) BPA 0.19–0.47 ng/L [125]

Seoul,
South Korea

Surface river water
BPA

6.90–59.00 ng/L
[126]

estuarine water 5.00–1918 ng/L
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Table 2. Cont.

Concentration of Phenolic Compounds in Water

Sampling Area Compound Concentration Unit Reference

Xiangjiang River

Alkylphenol

0.79–3079.4 ng/L [156]

Pearl River, China 8–15688 ng/L [157]

Han River, South Korea 6.9–5.9 ng/L [126]

Rio de Janeiro, Brazil 204–13016 ng/L [158]

Iberian River, Spain

BPA ND-649 ng/L

[104]OP ND-85 ng/L

NP ND-391 ng/L

Lamone River, northeastern part of Italy
BPA 16

ng/L

[130]

NP 39

Fiumi Uniti River, Italy
BPA 19

ng/L
NP 94

Bevano River, Italy
BPA 46

ng/L
NP 41

Savio River, Italy
BPA 23

ng/L
NP 79

Marecchia River, Italy
BPA 195

ng/L
NP 9.7

Guangzhou tap water BPA 317 [159]

Langat River, Peninsular, Malaysia BPA 1.18–8.24 ng/L [127]

Malaysia (drinking water sources) BPA ND-215 ng/L [128]

Jiulong River Estuary, China BPA ND-364 ng/L [82]

Tokyo Bay, Japan
BPA ND-431

ng/L [54]
BPF ND-1470

Pearl River Estuary, China BPA 24.6 ng/L [107]

Ria de Aveiro, Portugal BPA <1.1 ng/L [24]

Ross Island, Antarctic BPA <1.3–7.7 ng/L [84]

Laizhou Bay, China BPA 11.1–101 [122]

Pearl River, China

4-NP 61–2996

ng/L [160]4-t-OP ND-198

BPA 66–556

The Pearl River Delta region, China

BPA 5.84–469

ng/L [143]4-NP 52.0–8643

4-t-OP 1539

Gernika
4-t-OP 41 ± 2

ng/L [161]4nOP 22 ± 2

Santurtzi 4-t-OP 17 ± 2
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Table 2. Cont.

Concentration of Phenolic Compounds in Water

Sampling Area Compound Concentration Unit Reference

Cangzhou, Hebei, China (irrigation with
ground water)

4-t-OP 6.8 ± 2.1

ng/L [162]

4nOP 350 ± 37.2

BPA 61.2 ± 5.2

Shijazhuang, Heibei, China (irrigation with
ground water)

4-t-OP 9.0 ± 1.4

4nOP 396 ± 51.2

BPA 51.7 ± 2.9

Baoding, Heibei, China (irrigation with
ground water)

4-t-OP 5.2 ± 0.66

4nOP 202 ± 69.6

BPA 44.8 ± 2.8

Concentration of Phenolic Compounds in Sediments

Sampling Area Compound Concentration Unit Reference

Pearl River estuary, China

BPA 69.4

ng/g [107]
BPS 41.6

BPF 183

BPAF 167

BPB 73.3

Pearl River, China

BPA 7.3–627

ng/g [160]4-NP 53–12042

4-t-OP 8.3–176

Concentration of Phenolic Compounds in Fish

Sampling Area Compound Concentration Unit Reference

Mariculture production, Malaysia
(fish muscle)

BPA 0.023–0.322

ng/g [129]
BPS 10.3

BPF 35.0

BPAF 0.70

BPB 1.51

Pearl River estuary, China (shellfish and fish)

BPP 25.4

ng/mL [107]

BPA 0.81

BPS 1.27

BPF 1.45

BPAF 0.22

BPB 12.3

Llobregat River, Spain
(Barbusgraellsii) BPA 223.91 ± 11.51

ng/g dw [33]
Guadalquivir River, Spain

(luciobarbuss clateri) BPA 59.09 ± 8.12
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Table 2. Cont.

Concentration of Phenolic Compounds in Fish

Sampling Area Compound Concentration Unit Reference

Pearl River delta
region (the

Dongjang River,
Shima River,

Danshui River,
and

Xizhijiang River)

Wet season Dry season

ng/g ww [143]

Bile
BPA 2.45–1,3610 0–1,3070

4-t-OP 38.6–1938 35.9–2625

4-NP 4695–21160 3216–27420

Liver
BPA 2.17–40920 1.27–16070

4-t-OP 0–261 0–50.8

4-NP 0–5978 0–3535

Plasma
BPA 6.90–141 8.51–1571

4-t-OP 26.7–135 31.2–56.0

4-NP 2743–5530 3136–5901

Muscle
BPA 3.76–65.5 0.70–2053

4-t-OP 0–4.53 0-6.98

4-NP 9.54–307 14.2–329

Xiangjang River,
China

(Parabramis
pekinensis,

Cyprinus carpio,
Siniperca chuatsi)

Muscle
4-n-NP ND-2.07

ng/g [121]

BPA ND-3.51

Liver
4-n-NP ND-148

BPA ND-61.9

Gill
4-n-NP ND-29.7

BPA ND-48.2

Gonad
4-n-NP ND-20.8

BPA ND-1379

Pearl River
estuary, China
(muscle tissue)

Mugilcephalus BPA 0.19–1.27
ng/g dw [163]

Parabramispekinensis BPA 0.43–4.51

Loma Lake,
China (Grass carp
and Lateolabrax

japonicas)

Muscle BPA 7.56 ng/g dw [164]

Northern coast of
Sicily, Italy

(Red mullet)

Muscle BPA 46.7–58.9
ng/g [140]

Liver BPA 35.0–77.6

Panlong River,
Chin (Crucian
carp and carp)

Muscle BPA 1.9–69 ng/g [144]
Gill BPA 23

Basque coast,
Spain

(Grey mullet)

Muscle BPA 20–28

ng/g [141]Liver BPA 47–97

Brain BPA 31–46

Taihu Lake, China Muscle BPA 37.3–475 ng/g [132]

Pearl River delta,
China (Carp) Bile BPA 70–1020 ng/g [165]

Rhone River,
France

Barbel

BPA

3.2

ng/g [166]Common bream 19.8

White bream 9.6

Chub 18.6

(Cyprinus carpio)
Muscle

BPA
1.58 ± 0.26

mg/g [167]
Liver 2.15 ± 0.19
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Table 2. Cont.

Concentration of Phenolic Compounds in Fish

Sampling Area Compound Concentration Unit Reference

Dianchi Lake,
China (Crucian
carp and carp)

Muscle

BPA

38.7

ng/g [168]Liver 107

Gill 37.5

Concentration of Phenolic Compounds in Human Samples

Sampling Area Compound Concentration Unit Reference

Valencian region, Spain (28–40-year-old
women’s breast milk)

BPF 0.13–0.32

ng/mL [114]BPS <LOQ-0.37

BPA <LOQ-1.62

The Belgian ENVIRONAGE cohort
(placenta samples)

BPA 0.5–3.9

ng/g [119]
BPF 0.6–2.1

BPS 0.8–1.3

OP 0.5–3.7

4.7. Phthalates in Water

Phthalate contamination in water samples from different countries is presented in
Table 3. The highest levels of low molecular weight phthalates (DBP) and high molecular
weight phthalates (DEHP) were predominantly detected in drinking water sources in
Northeast China (4498.2 ng/L and 6570.9 ng/L, respectively). The diminished removal rate
of phthalates during drinking water supply purification leads to potential health risks in
Northeast China, as well as in other countries [122]. In China, PAE concentrations in water
ranged from 0.47 µg/L to 118.25 µg/L [169,170]. Gao et al. [171] reported the highest total
PAE concentrations in rivers around Taihu Lake. The authors detected various phthalates,
including BBP (3.58 µg/L), DEP (4.79 µg/L), DBP (1.57 µg/L), DEHP (1.35 µg/L), DMP
(1.13 µg/L), and DnOP (0.590 µg/L) in the river water samples. DBP and DEHP were the
major phthalate derivatives found in the surface water of the Taihu Lake areas. Northern
Taihu Lake was surrounded by manufacturing industries, effluent discharge from WWTPs
or a few chemical companies discharge into the rivers, and domestic waste discharge,
resulting in higher contamination levels compared to southern Taihu Lake [172]. PAE
concentrations from Lake Chaohu during summer, autumn, and winter were reported at
1.54 to 13.2 µg/L, 1.28 to 5.39 µg/L, and 0.370 to 1.48 µg/L, respectively. DIBP and DBP
in Lake Chaohu were found in elevated concentrations during all seasons, followed by
DMP and DEP; whereas BBP and DEHP concentrations were lower [169,173]. The PAEs
were widespread in water and sediment samples at Taihu Lake, although DBP and DEHP
concentration were high in water [174].

Several factors influence PAE concentrations, such as runoff, atmospheric deposition,
suspended particulate matter (SPM) deposition, degradation, and variation in dissolved
organic matter (DOM) [175,176]. Lee et al. [89] analyzed 14 different PAEs in air, water,
sediment, and fish from Asan Lake, Korea. Total PAE concentrations in water from Asan
Lake ranged from ND (nondetectable) to 2.29 µg/L, and DEHP (range: ND–1.34 µg/L)
was the predominant compound, followed by DMP (range: ND–0.18 µg/L). The authors
also reported the highest values of PAEs during summer (mean: 0.449 ± 0.378 µg/L) and
the lowest in autumn (mean: 0.021 ± 0.041 µg/L). DEHP and DBP were frequently found
in water samples in all seasons, possibly due to the large usage of DEHP around Asan
Lake in Korea. In addition, an another study reported three phthalates (DMP, BBP, and
DnOP) in four major rivers in Korea [177] (Table 3). In general, PAE concentrations were
comparatively lower in upstream (Jinwi and Anseong streams) than in downstream (Asan
Lake) sites.
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Zheng et al. studied distribution and seasonal variation of phthalate acid esters in
lakes of Beijing, China [178]. The authors found that low hydrophobic PAEs (DMP (median:
0.044 µg/L) and DEP (median: 0.122 µg/L)) were higher during the summer, and a lower
DMP concentration was found in autumn than during winter. Lower concentrations
of DIBP, DBP, and BBP were reported in winter. Water flow plays a major role in the
concentration variation in different seasons, and water flow was relatively low during the
summer compared to winter and autumn. Elevated concentrations during summer may be
due to a lower volume of water to dilute the contaminant input.

4.8. Phthalates in Soil/Sediment

Table 3 presents contamination levels of phthalates and their derivatives, including
DMP, DEP, DBP, BBP, DEHP, and di-n-octyl phthalate (DnOP), in water and sediment
from several countries. PAE concentrations in sediment from the Jiulong River (Southeast
China) ranged from 0.001 to 56.17 mg/kg, and the frequently detected PAEs were DMP,
DEP, DBP, and DEHP [169]. The highest PAE concentrations were found in Taihu Lake at
20.9 mg/kg, followed by 17.8 mg/kg and 17.4 mg/kg, respectively. He et al. [179] studied
seasonal variations in the PAEs in particulate phase in Lake Chaohu. The authors found
103 µg/g, 101 µg/g, and 356 µg/g during summer, autumn, and winter, respectively. PAE
concentrations were the highest in winter due to lower precipitation and lower water
levels. Bianucci et al. reported the enhanced sediment resuspension during monsoon sea-
son [180]. The PAE concentrations in sediment from Asan Lake in Korea ranged from 3.6 to
8973 µg/kg dw. DEHP (range: 3.6–8326 µg/kg dw) was the principal compound, followed
by DBP (range: ND–535 µg/kg dw) [89]. The PAE concentrations were highest in summer
(mean: 2356 ± 2450 µg/kg dw) and lowest in spring (mean: 1847 ± 2359 µg/kg dw); DBP
and DEHP were reported in all seasons. High amounts of DBP were detected in winter
compared to other seasons, whereas DEHP was the predominant compound in the total
PAE concentration. This demonstrates the wide usage of DEHP in Korea. Specifically,
DEHP concentration was constant in all four seasons, which implies that DEHP concentra-
tion in sediment was independent in all seasons. Furthermore, DEHP tended to partition
to sediments due to its high octanol–water partition coefficient (log Kow = 7.73).

Severe PAE contamination in soil, water, and air of China has been compared to
other countries [82] (Table 3). Higher PAE concentrations (∑16PAEs) in soil from Beijing,
Guangzhou ranged from 0.001 to 1232 mg/kg compared to soils from France and Ser-
bia [181,182]. Many reports illustrated the contamination of soil from cotton fields (South
Xinjiang) (∑6PAEs: 124–1232 mg/kg), and nonindustrialized (range: 2.1–158 mg/kg) and
electronic industrialized areas (range: 8.6–172 mg/kg) in Xiangyang. Higher PAE concen-
trations were observed in the highly industrialized areas compared to nonindustrialized
areas [183,184]. Lu et al. [185] demonstrated the predominance of DBP (ND–31.2 mg/kg)
and DEHP in most of the soil samples. They also quantified the highest DEHP concentra-
tion (6.60 mg/kg) in the soil of Guangdong Province, followed by Shandong and Hubei
Provinces (4.9 mg/kg). DBP was observed at an average concentration (>2.0 mg/kg) in
Shandong, Heilongjiang, and Guangdong Provinces, and average concentrations of DBP
and DEHP (<1.0 and 3.0 mg/kg) were observed in other provinces. These findings exhib-
ited the regional variation of PAE concentrations in soils of China, because of differences
in urbanization, industrialization, use of huge plastic films in agriculture fields, use of
municipal biosolids, wastewater irrigation, etc. Guo and Wu [183] reported the average
concentrations of DBP and DEHP were <10 mg/kg (except soil in South Xinjiang and
Qingdao) and <25 mg/kg (range: ND–264 mg/kg) (except soil in South Xinjiang), respec-
tively [186,187]. Most of the studies reported lower concentrations of DBP than DEHP in
soils at the same site, which was opposite in some cases [109,188].

4.9. Phthalates in Fish

Phthalate concentrations in different fish species are presented in Table 3. Lee et al.
selected four different fish species (Crucian carp, skygager, bluegill, and bass) to study
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the PAE contamination in Asan Lake in Korea [89]. The total PAE concentrations in fish
ranged from ND to 1081 µg/kg dw. Among the various phthalate derivatives, DEHP
(range: ND–568 µg/kg dw) was the predominant compound detected in the fish samples,
followed by dicyclohexyl phthalate (DCHP). Considering the concentration and detection
frequency, DMP had a range of ND to 107 µg/kg dw, with a detection frequency of 56.7%,
whereas the DBP concentration range was ND–10.9 µg/kg dw, and its detection frequency
was 63.3% in all the fish samples. Crucian carp muscle (222 ± 228 µg/kg dw) was detected
with the highest mean concentration of PAEs, followed by skygager (173 ± 192 µg/kg dw)
and bluegill (117 ± 115 µg/kg dw). However, DEHP was predominant in crucian carp
and skygager, and DCHP was higher in bluegill and bass. Some of the factors that influ-
ence PAE concentrations in fish species include feeding behavior, tropic level, metabolic
transformation, and bioavailability of these contaminants [189]. There was a positive
correlation between PAEs in fish, water, and sediment. PAE concentrations in crucian
carp and skygager had a positive correlation with water and sediment, because these
were benthic feeding fish that live in close proximity with sediments. Benthic feeding fish
species and benthic invertebrates contained high level of PAEs, especially DEHP [190].
Higher-solubility PAEs had higher bioavailability in water, whereas sediment had lower
bioavailability for certain PAEs. High molecular weight PAEs were greatly absorbed by
sediments compared to low molecular weight PAEs, hence these factors influenced the
bioaccumulation of PAEs in fish [89].

Table 3. Phthalates in environmental matrices and human samples.

Concentration of Phthalate Compounds in Water

Sampling Area Compound Concentration Unit Reference

Chaohu Lake, China

DMP 0.015–3.670

µg/L [173]

DEP 0.006–0.283

BBP ND-0.107

DnBP 0.070–17.529

DEHP ND-0.576

DnOP ND-0.045

Songhua River, China

DMP 0.98–4.12

ng/mL [191]

DEP 1.33–6.67

BBP ND-4.39

DBP 1.69–11.8

DEHP 2.26–11.6

DOP 0.69–6.14

Jiulong River, China

DMP 0.03–0.24

µg/L [169]
DEP 0.03–0.22

DBP 0.3–2.4

DEHP 0.9–3.6

Rhone River, France

DMP 0.003–0.005

µg/L [192]
DEP 0.016–0.031

DBP 0.022–0.041

DEHP 0.039–0.407

Al-Khobar, Saudi Arabia
DEP 6.98

µg/L [193]
DBP 7.9

Taihu Lake

DMP ND-1.32

µg/L [171]

DEP 0.08–4.79

BBP 0.08–4.72

DBP ND-2.54

DEHP ND-1.41

DnOP 0.07–0.590
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Table 3. Cont.

Concentration of Phthalate Compounds in Water

Sampling Area Compound Concentration Unit Reference

Chaohu Lake,
China

Summer

DMP 0.021–0.193

µg/L [179]

DEP 0.078–0.174

BBP 0.001–0.003

DBP 0.463–11.2

DEHP ND-0.067

DiBP 0.918–11.1

Autumn

DMP ND-0.111

DEP 0.024–0.160

BBP 0.001–0.011

DBP 0.426–3.65

DEHP ND-0.086

DiBP 0.832–2.64

Winter

DMP 0.006–0.099

DEP 0.010–0.102

BBP 0.001–0.004

DBP 0.098–0.465

DEHP 0.002–0.217

DiBP 0.210–1.08

Asan Lake, Korea

DMP ND-0.18

µg/L [89]

DEP ND-0.05

DBP ND-0.34

DEHP ND-1.34

DnOP ND-0.02

DiBP ND-0.07

Gernika
BBP 19 ± 1

ng/L [161]

DEHP 641 ± 195

Ondarroa
BBP 16 ± 3

DEHP 350 ± 26

Deba
BBP 20 ± 1

DEHP 1595 ± 416

Pasaia
BBP 20 ± 3

DEHP 806 ± 380

Concentration of Phthalates in Sediment

Sampling Area Compound Concentration Unit Reference

Pearl River, China

DMP 0.001–0.019

mg/kg [194]

DEP 0.001–0.091

BBP ND-0.113

DBP 0.042–5.03

DEHP 0.415–29.5

DnOP ND-0.181

Qiantang River, China

DMP ND-0.179

mg/kg [170]

DEP ND-0.218

BBP ND-0.021

DnBP 0.034–0.241

DEHP 0.365–6.24

DnOP ND-0.019

Jiulong River, China

DMP ND-0.004

mg/kg [169]
DEP ND-0.002

DBP 0.004–0.23

DEHP 0.053–1.28
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Table 3. Cont.

Concentration of Phthalates in Sediment

Sampling Area Compound Concentration Unit Reference

Songhua River, China

DMP 0.03–0.09

mg/kg [191]

DEP 0.03–0.04

BBP ND-0.10

DBP 0.06–0.88

DEHP 0.23–0.57

DnOP ND-0.38

Ogun River, Nigeria

DMP ND-0.85

mg/kg [189]
DEP 0.08–0.35

DBP 0.19–1.42

DEHP 0.02–0.82

Gomti River, India

DMP ND-0.05

mg/kg [195]

DEP ND-0.035

DBP ND-0.034

DEHP ND-0.324

DnOP ND-0.053

Taihu Lake

DMP 0.950–3.50

mg/kg [171]

DEP 0.590–2.290

BBP 0.420–1.30

DBP 0.5–1.75

DEHP 0.550–4.77

DnOP 0.480–16.2

Lake Chaohu, China

Summer

DMP 0.627–13.4

µg/g [179]

DEP 0.599–12.08

BBP ND-0.688

DBP 3.26–108

DEHP 1.99–48.6

DiBP 7.94–225

Autumn

DMP 0.430–226

DEP 0.475–149

BBP ND-4.69

DBP 4.86–1307

DEHP 1.69–1059

DiBP 9.58–4383

Winter

DMP 12.8–434

DEP 3.22–55.9

BBP ND-28.4

DBP 10.6–285

DEHP 6.08–372

DiBP 25.5–548

Asan lake, Korea

DMP ND-6.4

µg/kg dw [89]

DEP ND-4.1

DBP ND-535

DEHP 3.6–8326

DiBP ND-43
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Table 3. Cont.

Concentration of Phthalates in Fish

Sampling Area Compound Concentration Unit Reference

Asan Lake, Korea
(crucian carp, skygager, bass, bluegill)

DMP ND-10.9

µg/kg dw [89]

DEP ND-13.6

DBP ND-107

DEHP ND-568

DnOP ND-34.2

DiBP ND-29.4

BBP ND-65.0

5. Human Exposure
5.1. Parabens

Contamination of aquatic systems with EDCs contributes to bioaccumulation and
biomagnification in shellfish, fish, and other organisms, which may ultimately enter hu-
mans through the food chain. In vitro and in vivo studies showed parabens and their
metabolites may lead to estrogenic activity in males, which leads to male infertility and
other diseases [31,196]. Paraben exposure in humans leads to various adverse health ef-
fects, hence many researchers analyzed a variety of environmental and biological samples,
including human tissues, to find the sources and pathways of exposure to humans (Table 1
and Figure 4). Dietary exposure to parabens in the Philippines through fish consumption
resulted in human exposure of 2 µg/kg/day [35], which was lower than the acceptable
daily intake (10 mg/kg/day). Continuous usage of MePB-containing topical formulations
resulted in accumulation and increased PB concentration in the stratum corneum of the
skin [197]. A study by Janjua et al. [198] reported the effect of PBs by using whole-body
topical application of cream containing 2% (w/w) of BuPB. They reported fast penetration
into the skin and systemic uptake of BuPB, resulting in 135 µg/L of BuPB in serum 3 h
after application. This concentration decreased to 18 µg/L 24 h after exposure. Exposure to
BuPB through topical application did not alter any reproductive hormone levels. Expo-
sure to PBs did not have any positive relative relationship between PB concentrations in
urine, hormone levels, and semen quality. However, BuPB concentration damaged sperm
DNA [199] (Figure 4). Koeppe et al. [200] found elevated PB concentrations in urinary
samples of women compared to men. According to Ye et al. serum samples contained sev-
eral parabens, including MePB, EtPB, and PrPB, with median concentrations of 10.9 µg/L,
0.2 µg/L, and 1.4 µg/L, respectively [201]. Different PB concentrations in serum samples
may be due to variations in exposure to PB between sexes.

Measurable concentrations of PBs were also found in other matrices. Human breast
milk, placenta, serum, and urine samples from the United States, Korea, Belgium, Spain
and Taiwan contained measurable concentrations of PBs (Table 1). MePB, EtPB, and PrPB
are the most common PBs found in the samples. The concentration of parabens in hu-
man milk and urine samples confirms the widespread usage of parabens. Presence of
parabens in placental tissues is of great concern since these compounds could accumu-
late in amniotic fluid and cause adverse effects to fetus/newborn infants [30,202]. The
endocrine disrupting potential of parabens raises concern among researchers. The toxicity
of parabens (acute and chronic) on human have been found to be in the following order:
MePB < EtPB < PrPB < BuPB < BePB [105].
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Figure 4. Human health effects of EDCs.

Dualde et al. [114] reported parabens concentrations in breast milk samples from the
Valencian region, Spain. MePB and PrPB ranges were 0.11–7ng/mL and 0.13–0.76 ng/mL,
respectively, which were lower (MePB: 0.5–21 ng/mL; PrPB: 0.1–12 ng/mL), than in another
study from North Carolina, USA [115]. Similarly, EtPB concentrations in breast milk from
mothers from the Valencian region of Spain ranged between 0.49 and 4.05 ng/mL, which
was higher than in other studies (0.6–22 ng/mL) [117]. Only a few studies reported BuPB
in human breast milk samples (Table 1) [114,118].

Biomonitoring of EDCs in the placenta provides an exceptional opportunity to un-
derstand the exchanges of exogenous compounds between mother and fetus. Not many
studies are available on the effects of EDCs on the human placenta [202]. The exposure to
EDCs even before birth through transfer between mother and fetus was documented in
marine mammals [203]. Van Overmeier et al. [119] quantified the paraben levels in pla-
centa samples from Belgium (MePB: 0.5–7.1 ng/g; EtPB: 0.5–4.5 ng/g; PrPB: 0.5–9.1 ng/g).
Placenta samples from Spain exhibited a wide range of concentrations of MePB (50 pla-
centa samples: 0.2–10 ng/g; 10 placenta samples: 0.8–16.1 ng/g; 12 placenta samples:
1.2–11.8 ng/g; 10 placenta samples: 1.0–16.8 ng/g) [116,204]. A few other reports showed
maximum concentrations of EtPB, PrPB, and BuPB in placenta samples of 1.0, 0.8, and
1.6 ng/g, respectively [205,206]. MePB and PrPB were the predominant compounds among
other parabens in urine samples from Belgium [207]. Some of the characteristics that
determine the accumulation of parabens in tissues include concentrations and duration of
exposure to EDCs, different biological behavior, and metabolism of EDCs [208]. Ubiquitous
distribution of MePB in humans can be easily explained by the common use of cosmetics
and hygiene products. BePB raises great concerns due to its broad application. BePB was
associated with breast cancer and obesity. Among PBs, BePB is a highly lipophilic and
has low water solubility, and therefore is relatively more persistent, leading to a higher
detection frequency [209,210]. Dermal exposure to parabens via socks resulted in elevated
occurrence of parabens in children. Varying concentrations of PBs were found with differ-
ent durations of exposure: 0.60 pg/kg/day (24–36 months) followed by 0.39 pg/kg/day
(6–12 months), and 0.33 pg/kg/day (1–6 months) [211].
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5.2. Phenols

The main route of human exposure to BPA was via the ingestion of packaged food and
water. Phenols are quickly absorbed by the gastrointestinal tract and metabolized in the
liver and intestine. BPA exposure via polycarbonate water bottles increased as these water
bottles were stored at elevated temperatures (BPA migrated to water at a rate 55-fold higher
at 100 ◦C) [212–214]. Some of the factors that influence the effect of EDCs on humans are:

1. Age;
2. Concentration (exposure magnitude);
3. Duration of exposure both internal and external; and
4. Involvement of a mixture of pollutants (one or more compounds) [215,216].

Infants were highly exposed to BPA through mother’s milk and use of polycar-
bonate feeding bottles [217]. Many reports showed the presence of bisphenols (range:
0.01 to 30 ng/mL) and parabens (range: 0.1 to 1000 ng/mL) in breast milk [218,219]. Bisphe-
nols and parabens can conjugate with glucuronides and sulfate groups, and both the
conjugated and unconjugated forms were found in breast milk, reducing the potential of
toxicity and excreted via urine [220]. Very few studies reported unconjugated BPA (0.2 to
1 ng/mL) [221]. BPF and BPS were detected in human breast milk at concentrations of
0.13 to 0. 32 ng/mL [114]. A few studies reported bisphenol levels in placenta, urine, and
plasma samples (Table 2). Van Overmeier et al. [119] reported BPA (0.5–3.9 ng/g), BPF
(0.6–2.1 ng/g), BPS (0.8–1.3 ng/g), and OP (0.5–3.7 ng/g) in placenta samples. BPA was
found at the highest level in placenta samples, followed by BPS and BPF. Studies from
countries including Spain (49 samples: 1.1–22.2 ng/g; 10 samples: 4.2–14.5 ng/g), Canada
(21 samples: 1.0–7.8 ng/g) and Korea (257 samples: <LOD–53 ng/g)) [153,222] reported
lower concentrations of BPA in placenta samples. BPS and BPF were found in plasma and
urine samples, but no reports are available on BPS and BPF in placenta samples [223].

BPA in maternal plasma (0.059 ng/mL) and cord plasma (0.132 ng/mL) were deter-
mined in women at 37 weeks pregnancy (aged 33 ± 4.1 years). Total bisphenol analogues
in maternal and cord plasma were 0.61 and 0.105 ng/mL, respectively. Excessive BPA levels
were observed in the cord blood compared to maternal plasma [224]. BPA accumulation in
the fetal compartment resulted in a higher level in cord plasma, which was reported in other
studies. BPA in blood circulation can be transported across the human placenta and into
the cord blood of the fetus [225]. Takahashi and Oishi [226] reported that a small amount
of BPA was converted into its conjugated form by animal placental UDP-glucuronyl trans-
ferase and sulfo transferase; hence, the remaining BPA was active in the fetal compartment.
In 2008, a study conducted in Korea revealed 84% of maternal serum was detected with
conjugated and unconjugated BPA median concentrations of 2.73 µg/L and 40% in cord
blood serum samples, with a median concentration of <0.625 µg/L, respectively [213]. In
the same region, Wan et al. [227] reported unconjugated BPA in maternal serum (mean
concentration: 0.7 ng/mL) and fetal serum (0.6 ng/mL). Kosarac et al. [228] evaluated
unconjugated BPA at midpregnancy (median concentration: 0.548 ng/mL), at delivery
(median concentration: 1.46 ng/mL), and in cord blood serum (median concentration:
1.82 ng/mL). Many reports showed elevated levels of BPA in both maternal and cord
serum compared to that of plasma. Nonpregnant women were found to have more BPA in
their blood serum than pregnant women, due to a higher accumulation of BPA in the fetal
compartment. Peripheral and peritoneal fluids had been detected to have BPA, as well as
peritoneal fluid found around the female reproductive system, which had a higher BPA
level [229]. Unconjugated BPA was present in maternal serum and cord blood serum in
ranges of LOD–4.46 ng/mL and LOD–4.60 ng/mL, respectively. A child at 48 months of
age was highly impacted by cord blood BPA. BPS, BPB, and BPAF was monitored in human
maternal and cord plasma. Conjugated BPS was detected in 4 out of 27 women’s sera
(<0.03–0.07 ng/mL) and in 7 cord blood sera (<0.03–0.12 ng/mL), revealing the placental
transport of BPS [224]. Teeguarden et al. [230] reported BPA concentration (>100 ppb) in
serum, fetus umbilical-cord serum, amniotic fluid, and fetal blood in pregnant women.
BPA in adult blood was between 0.2 and 20 ppb [63].
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Human urine (age: 3–15 months), breast milk, and saliva contained detectable levels of
BPA [231]. Pregnant women’s serum, follicular and amniotic fluid, fetal serum, cord blood,
placental tissue, and human fetal livers also contained measurable concentrations of BPA
through transport from mother to child [47]. Lower metabolic clearance of BPA in pregnant
women leads to transfer of BPA to amniotic fluid from maternal plasma; it accumulates in
the uterine cavity, which eventually exposes the fetus to high levels of BPA. According to the
literature, BPA can harm various organs, such as the prostate and breast tissue. Further, BPA
exposure may lead to several disorders, including cardiovascular disease, altered immune
system activity, diabetes in adults, infertility, precocious puberty, hormone-dependent
tumors, and different metabolic disorders such as obesity, endometrial hyperplasia, recur-
rent miscarriages, polycystic ovary syndrome (PCOS), behavioral problems, alterations
in puberty timing, asthma, and high blood pressure [232,233] (Figure 4). Women having
polycystic ovary syndrome (PCOS) were found to have higher BPA levels in serum than
in women without PCOS due to higher circulating testosterone levels in PCOS women,
and BPA clearance was decreased in elevated androgen concentration [234]. BPA has been
linked with disorders in female reproductive health and pregnancy, such as reduced oocyte
maturation, miscarriages, increased risk of preterm delivery, preeclampsia, shortened gesta-
tion length, infant anthropometric measures at birth, decreased estradiol levels and oocyte
retrieval numbers, and shorter anogenital distance in male offspring [50,233,235]. Recent
studies have reported that clothes and textiles were manufactured incorporating BPA and
other bisphenol analogues, parabens, benzophenones, benzothiazoles, benzotriazoles, TCC,
phthalates, and flame retardants, for softening, stiffening, wrinkling, shrinking, antifading,
etc. However, some of the chemicals remain in the final product, which ultimately directly
or indirectly exposes children to these compounds [236]. Dermal exposure of BPA via socks
containing BPA and parabens was highest due to direct contact with the skin. Children
in Spain aged 36–48 months were observed with the highest BPA dermal exposure, with
a median concentration of 17.6 pg/kg/day, followed by those aged 24–36 months (dose
of 0.75 pg/kg/day), 6–12 months (dose of 0.46 pg/kg/day), and 12–24 months (dose of
0.22 pg/kg/day) [211]. BPA interfered with steroid hormonal activity through human
estrogen (hER) and human androgen (hAR) receptors. BPA is an active hER agonist and
hAR antagonist [237]. BPA in socks is a major contributor to estrogenic and antiandrogenic
activity. The mean dermal exposure dose of BPA was 19.6 pg/kg/day, whereas the highest
dose was observed in socks for older children in Spain. Xue et al. [85] reported that textile
products and clothing for infants were detected with higher BPA (222 pg/kg/day), and
several-fold higher in clothes for children aged <1 month, with a mean concentration of
248 pg/kg/day. The consequences of exposure to BPA and APs include breast cancer,
altered growth and body development, and reduced fertility by disturbing reproductive
health [238,239].

5.3. Phthalates

Phthalates’ actions are mainly related to reproductive disorders. Women exposed to
phthalates become more vulnerable to several types of cancers, endometriosis, subfertility,
and pregnancy problems [240], whereas phthalate syndrome in males can lead to the
deformity of male organs and manifest cryptorchidism, gynecomastia, abnormal sperm,
and various hormonal problems associated with the reproductive system. Many researchers
reported the health effects of phthalates; for example, reproductive system dysfunction,
endocrine disorders, asthma, allergies, and neurodevelopment problems in children, and
obesity [241–244]. Tan et al. [245] reported that PAEs can bind to human hemoglobin,
which leads to erythrocyte dysfunction. Recent studies have reported the binding of nine
phthalates to sex hormone binding globulin (SHBG), and long-chain phthalates had a
greater potential to disrupt the endocrine system than short-chain length phthalates [65].
Few studies monitored the presence of phthalates and their metabolites in urine. Phthalates
and their metabolites were mainly exposed via dietary intake, especially DEHP and mono-
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2-ethyl-hexyl phthalate (MEHP) [246]. DEHP is hydrolyzed into MEHP by plasma lipase;
its toxic effects are similar to DEHP and disrupt gene transcription in several ways, such as:

5. Increased thyroid transcription factor I (TTF1) and paired-box gene 8 (Pax8) influence
on the thyroid system growth and development;

6. Increased thyroid stimulating hormone beta-subunit (TSHβ) and sodium/iodide
symporter (NIS) and thyroglobulin (TG) results in thyroid hormone synthesis; and

7. Decreased transthyretin (TTR) via thyroid transport [247].

Phthalate exposure starts during fetal development and carries on after birth. PAEs
mainly affect the Leydig cells involved in the synthesis of testosterone and growth factor 3
and restrain their levels. This could lead to testicular dysgenesis syndrome, cryptorchidism,
and impaired spermatogenesis [248]. Hannon and Flaws [249] reported that the effect of
phthalates are more easily understood for male reproduction than female, whereas phtha-
lates can be more toxic to ovaries, affecting folliculogenesis and steroidogenesis (Figure 4).
Male partners were found to have phthalate metabolites (monocarboxyloctyl phthalate
(MCOP) and mono-3-carboxylpropyl phthalate (MCPP)) in urine, which was related to
decreased odds of implantation and live birth [250]. Female partners were found to have
phthalate metabolites in urine, despite negative correlations between urinary metabo-
lites of DEHP and oocyte yield, clinical pregnancy, and live birth [251]. They also found
reduced fertilization rates in women, due to the presence of urinary phthalate metabo-
lites such as di-isononyl phthalate. Phthalate metabolites in the urine of women (hav-
ing a male partner) (median level) were: MEP (333 (290) µg/L), MnBP (116 (96.4) µg/L),
MiBP (51.4(47.9) µg/L), MECPP (24.7 (29.9) µg/L), MEOHP (16 (16.2) µg/L), MEHP
(13 (14.3) µg/L), MEHHP(8.52(11.1) µg/L), and MBzP (1.17 (1.14) µg/L) [252]. MEP and
MEHP levels in the urine of women were correlated with high risks of failed clinical
pregnancy and live birth. The authors also reported that phthalates and their metabolites
in the urine of male and female partners were higher than those in other national sur-
veys [253,254]. The MEOHP and DEHP levels in women were associated with a significant
decline in fertilization [255]. A few studies reported MEP levels in women (52.2 µg/L;
151 µg/L) [251] and men (57.8 µg/L) [250].

DEHP was the highest nondietary ingestion compound, which was one order of
magnitude higher than DMP or DEP. For instance, subjects were highly exposed to DiBP
and DnBP via dermal absorption than other phthalates. Children were more exposed to
phthalates than adults, whereas younger children’s (aged <1 year) daily intake of phthalates
was higher. This poses a greater potential health risk to infants than adults. Bu et al. [256]
showed the exposure level of phthalates for adults ranged from 0.23–1.15 µg/kg/day for
DEP, 0.2–1.7 µg/kg/day for DiBP, 0.34–8.7 µg/kg/day for DnBP, and 0.16–11 µg/kg/day
for DEHP. They found the highest level of DEHP in adults among others, followed by
DnBP, DiBP, and DEP. Fromme (2011) investigated phthalate levels in breast milk from
women over a 6-month postpartum period. DEHP was dominant, with a median value
of 3.9 ng/g, and the median value of DnBP was 1.2 ng/g in breast milk. This study
demonstrated lactational transfer of DEHP from mother to infant through breast milk [257].
Infants from Germany had found DEHP and DnBP ranged from 9.3 to 35.7 ng/g and 1.7 to
5.5 ng/g, respectively; and similarly in Italy: DEHP (5–5088 ng/g) and DnBP (8–1297 ng/g).
A study conducted in Portuguese children indicated a lower intake level of phthalates
among obese children compared to regular diet/weight children [258]. However, Gari
et al. [259] found elevated levels of high molecular weight phthalates in rural children
compared to those in urban children. In contrast, children from urban areas had higher
MBzP, MnBP, and MiBP (low molecular weight phthalates) than in rural areas. Phthalate
levels from rural areas in Poland were correlated with home equipment, as PAEs had been
primarily used in polyvinyl chloride (PVC), building and construction materials, floorings,
and furnishings. Children who underwent longer breastfeeding (>6 months) had higher
phthalate levels [259].

Exposure levels of EDCs begin at the fetus stage and are associated with increasing
health risks in growing children. Urbanization and lack of pollution management will
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lead to higher risks to humans who reside in urban and rural areas. Urban residents
were highly exposed to EDCs, due to the surrounding environment and higher usage of
EDC-containing products.

6. Conclusions

The widespread uses of parabens, phenols, and phthalates in a variety of applications
have resulted in environmental contamination. Due to their unique properties, these com-
pounds enter biological tissues and contribute to health disorders. Studies dealing with
source identification, long-term monitoring, exposure pathways, and mechanisms of action
are essential in order to understand the magnitude of contamination and associated health
issues, and actions are required to reduce the exposure and prevent harmful biological
effects by these compounds. During the past decade, several studies have documented
environmental EDCs as important contributors to overweight/obese conditions in labo-
ratory animals and in humans [256–258]. An excellent review by Darbre [260] reveals the
attention paid by the global scientific community to EDCs and obesity [259]. According to
an estimate by the World Health Organization (WHO), 1.5 billion adults worldwide are
obese or overweight, and the number of people with type 2 diabetes increased from 153
to 347 million between 1980 and 2008 [260]. Further, a recent study found that long-term,
low-level chemical exposure to EDCs costs the United States USD 340 billion in annual
healthcare spending and lost wages [261]. Specifically, phthalate exposure and low testos-
terone leading to increased early mortality (10,700 attributable deaths) had an estimated
annual cost of USD 8.8 billion, and multiple exposure to autism and ADHD (attention
deficit hyperactivity disorder) in children (~5900 cases) had an estimated annual cost of
USD 2.7 billion [261]. Considering the contamination levels reported in the literature
and the environmental and human costs of chemical exposure, it is important to take
necessary steps to minimize EDC contamination in a timely manner to protect the global
environment, living resources, and human health. Future research is warranted to better
understand the environmental distribution, behavior, fate, and health effects of EDCs at
the molecular level.
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138. Grześkowiak, T.; Czarczyńska-Goślińska, B.; Zgoła-Grześkowiak, A. Current approaches in sample preparation for trace analysis
of selected endocrine-disrupting compounds: Focus on polychlorinated biphenyls, alkylphenols, and parabens. Trac Trends Anal.
Chem. 2016, 75, 209–226. [CrossRef]

139. Oberdörster, E.; Cheek, A.O. Gender benders at the beach: Endocrine disruption in marine and estuarine organisms. Environ.
Toxicol. Chem. Int. J. 2001, 20, 23–36. [CrossRef]

140. Errico, S.; Nicolucci, C.; Migliaccio, M.; Micale, V.; Mita, D.G.; Diano, N. Analysis and occurrence of some phenol endocrine
disruptors in two marine sites of the northern coast of Sicily (Italy). Mar. Pollut. Bull. 2017, 120, 68–74. [CrossRef]

141. Ros, O.; Vallejo, A.; Olivares, M.; Etxebarria, N.; Prieto, A. Determination of endocrine disrupting compounds in fish liver, brain,
and muscle using focused ultrasound solid–liquid extraction and dispersive solid phase extraction as clean-up strategy. Anal.
Bioanal. Chem. 2016, 408, 5689–5700. [CrossRef]

142. Peng, X.; Zheng, K.; Liu, J.; Fan, Y.; Tang, C.; Xiong, S. Body size–dependent bioaccumulation, tissue distribution, and trophic and
maternal transfer of phenolic endocrine-disrupting contaminants in a freshwater ecosystem. Environ. Toxicol. Chem. 2018, 37,
1811–1823. [CrossRef] [PubMed]

143. Lv, Y.-Z.; Yao, L.; Wang, L.; Liu, W.-R.; Zhao, J.-L.; He, L.-Y.; Ying, G.-G. Bioaccumulation, metabolism, and risk assessment of
phenolic endocrine disrupting chemicals in specific tissues of wild fish. Chemosphere 2019, 226, 607–615. [CrossRef]

144. Wang, B.; Dong, F.; Chen, S.; Chen, M.; Bai, Y.; Tan, J.; Li, F.; Wang, Q. Phenolic endocrine disrupting chemicals in an urban
receiving river (Panlong river) of Yunnan–Guizhou plateau: Occurrence, bioaccumulation and sources. Ecotoxicol. Environ. Saf.
2016, 128, 133–142. [CrossRef] [PubMed]

145. Salgueiro-González, N.; Turnes-Carou, I.; Viñas, L.; Besada, V.; Muniategui-Lorenzo, S.; López-Mahía, P.; Prada-Rodríguez, D.
Occurrence of alkylphenols and bisphenol A in wild mussel samples from the Spanish Atlantic coast and Bay of Biscay. Mar.
Pollut. Bull. 2016, 106, 360–365. [CrossRef] [PubMed]

146. López-Roldán, R.; de Alda, M.L.; Gros, M.; Petrovic, M.; Martín-Alonso, J.; Barceló, D. Advanced monitoring of pharmaceuticals
and estrogens in the Llobregat River basin (Spain) by liquid chromatography–triple quadrupole-tandem mass spectrometry in
combination with ultra performance liquid chromatography–time of flight-mass spectrometry. Chemosphere 2010, 80, 1337–1344.
[CrossRef] [PubMed]

147. Brix, R.; Postigo, C.; González, S.; Villagrasa, M.; Navarro, A.; Kuster, M.; de Alda, M.J.L.; Barceló, D. Analysis and occurrence of
alkylphenolic compounds and estrogens in a European river basin and an evaluation of their importance as priority pollutants.
Anal. Bioanal. Chem. 2010, 396, 1301–1309. [CrossRef] [PubMed]

148. Pelayo, S.; López-Roldán, R.; González, S.; Casado, M.; Raldúa, D.; Cortina, J.L.; Piña, B. A zebrafish scale assay to monitor
dioxin-like activity in surface water samples. Anal. Bioanal. Chem. 2011, 401, 1861. [CrossRef] [PubMed]

149. Zhang, Y.-Z.; Song, X.-F.; Kondoh, A.; Xia, J.; Tang, C.-Y. Behavior, mass inventories and modeling evaluation of xenobiotic
endocrine-disrupting chemicals along an urban receiving wastewater river in Henan Province, China. Water Res. 2011, 45,
292–302. [CrossRef] [PubMed]

150. Wang, Q.; Wang, L.; Chen, X.; Rao, K.M.; Lu, S.Y.; Ma, S.T.; Jiang, P.; Zheng, D.; Xu, S.Q.; Zheng, H.Y. Increased urinary
8-hydroxy-2′-deoxyguanosine levels in workers exposed to di-(2-ethylhexyl) phthalate in a waste plastic recycling site in China.
Environ. Sci. Pollut. Res. 2011, 18, 987–996. [CrossRef] [PubMed]

http://doi.org/10.1016/j.scitotenv.2012.04.041
http://www.ncbi.nlm.nih.gov/pubmed/22578698
http://doi.org/10.1016/j.marpolbul.2017.12.043
http://doi.org/10.1016/j.gexplo.2018.02.008
http://doi.org/10.1016/j.scitotenv.2009.06.002
http://doi.org/10.1016/j.jconhyd.2015.03.013
http://www.ncbi.nlm.nih.gov/pubmed/25886245
http://doi.org/10.1002/etc.1961
http://www.ncbi.nlm.nih.gov/pubmed/22847724
http://doi.org/10.1016/j.jpba.2017.08.014
http://www.ncbi.nlm.nih.gov/pubmed/28869814
http://doi.org/10.1016/j.marpolbul.2009.03.011
http://www.ncbi.nlm.nih.gov/pubmed/19362723
http://doi.org/10.1016/j.envint.2013.01.009
http://doi.org/10.1016/j.scitotenv.2007.01.024
http://doi.org/10.1016/j.trac.2015.07.005
http://doi.org/10.1002/etc.5620200103
http://doi.org/10.1016/j.marpolbul.2017.04.061
http://doi.org/10.1007/s00216-016-9697-3
http://doi.org/10.1002/etc.4150
http://www.ncbi.nlm.nih.gov/pubmed/29663490
http://doi.org/10.1016/j.chemosphere.2019.03.187
http://doi.org/10.1016/j.ecoenv.2016.02.018
http://www.ncbi.nlm.nih.gov/pubmed/26921547
http://doi.org/10.1016/j.marpolbul.2016.03.003
http://www.ncbi.nlm.nih.gov/pubmed/27001713
http://doi.org/10.1016/j.chemosphere.2010.06.042
http://www.ncbi.nlm.nih.gov/pubmed/20638708
http://doi.org/10.1007/s00216-009-3358-8
http://www.ncbi.nlm.nih.gov/pubmed/20024683
http://doi.org/10.1007/s00216-011-5288-5
http://www.ncbi.nlm.nih.gov/pubmed/21822775
http://doi.org/10.1016/j.watres.2010.07.057
http://www.ncbi.nlm.nih.gov/pubmed/20797757
http://doi.org/10.1007/s11356-010-0420-1
http://www.ncbi.nlm.nih.gov/pubmed/21298484


Sustain. Chem. 2021, 2 376

151. Moreira, M.; Aquino, S.; Coutrim, M.; Silva, J.; Afonso, R. Determination of endocrine-disrupting compounds in waters from Rio
das Velhas, Brazil, by liquid chromatography/high resolution mass spectrometry (ESI-LC-IT-TOF/MS). Environ. Technol. 2011, 32,
1409–1417. [CrossRef]

152. Lou, L.; Cheng, G.; Yang, Q.; Xu, X.; Hu, B.; Chen, Y. Development of a novel solid-phase extraction element for the detection of
nonylphenol in the surface water of Hangzhou. J. Environ. Monit. 2012, 14, 517–523. [CrossRef]

153. Zhang, X.; Gao, Y.; Li, Q.; Li, G.; Guo, Q.; Yan, C. Estrogenic compounds and estrogenicity in surface water, sediments, and
organisms from Yundang Lagoon in Xiamen, China. Arch. Environ. Contam. Toxicol. 2011, 61, 93–100. [CrossRef] [PubMed]

154. Esteban, S.; Moreno-Merino, L.; Matellanes, R.; Catalá, M.; Gorga, M.; Petrovic, M.; de Alda, M.L.; Barceló, D.; Silva, A.; Durán,
J. Presence of endocrine disruptors in freshwater in the northern Antarctic Peninsula region. Environ. Res. 2016, 147, 179–192.
[CrossRef]

155. Wang, L.; Ying, G.-G.; Chen, F.; Zhang, L.-J.; Zhao, J.-L.; Lai, H.-J.; Chen, Z.-F.; Tao, R. Monitoring of selected estrogenic
compounds and estrogenic activity in surface water and sediment of the Yellow River in China using combined chemical and
biological tools. Environ. Pollut. 2012, 165, 241–249. [CrossRef] [PubMed]

156. Luo, Z.; Tu, Y.; Li, H.; Qiu, B.; Liu, Y.; Yang, Z. Endocrine-disrupting compounds in the Xiangjiang River of China: Spatio-temporal
distribution, source apportionment, and risk assessment. Ecotoxicol. Environ. Saf. 2019, 167, 476–484. [CrossRef] [PubMed]

157. Gong, J.; Xu, L.; Yang, Y.; Chen, D.-Y.; Ran, Y. Sequential ASE extraction of alkylphenols from sediments: Occurrence and
environmental implications. J. Hazard. Mater. 2011, 192, 643–650. [CrossRef]

158. Montagner, C.C.; Jardim, W.F. Spatial and seasonal variations of pharmaceuticals and endocrine disruptors in the Atibaia River,
São Paulo State (Brazil). J. Braz. Chem. Soc. 2011, 22, 1452–1462. [CrossRef]

159. Li, X.; Ying, G.-G.; Su, H.-C.; Yang, X.-B.; Wang, L. Simultaneous determination and assessment of 4-nonylphenol, bisphenol A
and triclosan in tap water, bottled water and baby bottles. Environ. Int. 2010, 36, 557–562. [CrossRef]

160. Fan, J.-J.; Wang, S.; Tang, J.-P.; Zhao, J.-L.; Wang, L.; Wang, J.-X.; Liu, S.-L.; Li, F.; Long, S.-X.; Yang, Y. Bioaccumulation of
endocrine disrupting compounds in fish with different feeding habits along the largest subtropical river, China. Environ. Pollut.
2019, 247, 999–1008. [CrossRef]

161. Ros, O.; Izaguirre, J.K.; Olivares, M.; Bizarro, C.; Ortiz-Zarragoitia, M.; Cajaraville, M.P.; Etxebarria, N.; Prieto, A.; Vallejo, A.
Determination of endocrine disrupting compounds and their metabolites in fish bile. Sci. Total Environ. 2015, 536, 261–267.
[CrossRef]

162. Chen, F.; Ying, G.-G.; Kong, L.-X.; Wang, L.; Zhao, J.-L.; Zhou, L.-J.; Zhang, L.-J. Distribution and accumulation of endocrine-
disrupting chemicals and pharmaceuticals in wastewater irrigated soils in Hebei, China. Environ. Pollut. 2011, 159, 1490–1498.
[CrossRef] [PubMed]

163. Diao, P.; Chen, Q.; Wang, R.; Sun, D.; Cai, Z.; Wu, H.; Duan, S. Phenolic endocrine-disrupting compounds in the Pearl River
Estuary: Occurrence, bioaccumulation and risk assessment. Sci. Total Environ. 2017, 584, 1100–1107. [CrossRef] [PubMed]

164. Liu, D.; Wu, S.; Xu, H.; Zhang, Q.; Zhang, S.; Shi, L.; Yao, C.; Liu, Y.; Cheng, J. Distribution and bioaccumulation of endocrine
disrupting chemicals in water, sediment and fishes in a shallow Chinese freshwater lake: Implications for ecological and human
health risks. Ecotoxicol. Environ. Saf. 2017, 140, 222–229.

165. Yang, J.; Li, H.; Ran, Y.; Chan, K. Distribution and bioconcentration of endocrine disrupting chemicals in surface water and fish
bile of the Pearl River Delta, South China. Chemosphere 2014, 107, 439–446. [CrossRef] [PubMed]

166. Miege, C.; Peretti, A.; Labadie, P.; Budzinski, H.; Le Bizec, B.; Vorkamp, K.; Tronczyński, J.; Persat, H.; Coquery, M.; Babut, M.
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