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Abstract: An effective process to remove nitrogen-based compounds from fossil fuels without
harming the process of sulfur removal is an actual gap in refineries. A success combination of
desulfurization and denitrogenation processes capable of completely removing the most environ-
mental contaminates in diesel under sustainable conditions was achieved in this work, applying
polyoxometalates as catalysts, hydrogen peroxide as oxidant, and an immiscible ionic liquid as an
extraction solvent. The developed process based in simultaneous oxidative desulfurization (ODS)
and oxidative denitrogenation (ODN) involved initial extraction of sulfur and nitrogen compounds
followed by catalytic oxidation. Keggin-type polyoxomolybdates revealed much higher reusing
capacity than the related polyoxotungstate. Effectively, the first catalysts practically allowed complete
sulfur and nitrogen removal only in 1 h of reaction and for ten consecutive cycles, maintaining the
original catalyst and ionic liquid samples.

Keywords: desulfurization; denitrogenation; oxidative catalysis; hydrogen peroxide; Polyoxometalate;
ionic liquids

1. Introduction

Long-term energy outlooks agree that fossil fuels will remain the dominant energy
for at least more two decades, since the demand for energy is increasing with the growth
of the world’s population, economy, and increasing living standards. At present, fossil
fuels cover ~88% of the energy requirement in the world [1]. The inevitable drawbacks
of the current fossil fuel consumption are related to the environment degradation and
public health. In the transportation sector, fossil fuels will be the main energy source
for the near future. Motor vehicles powered on fossil fuels are among the major sources
of air pollution in urban areas [2,3]. Fuels such as fuel oil, jet fuel, gasoline, diesel, etc.,
contain various pollutants, with the sulfur- and nitrogen-based organic compounds (SCs
and NCs, respectively) as the majority of the contaminants [4]. The utilization of fossil fuels
without purification poses a devastating effect on the environment and humans, mainly
because of the emission of sulfur oxides (SOx) and nitrogen oxides (NOx) from SCs and
NCs, respectively [5,6]. The global impact of SOx emissions resulting from the burning of
fossil fuels has led to the imposition of environmental restrictions for the sulfur level in
transportation fuels (10 ppm in EU) [7,8].

The standard industrial methods for the removal of sulfur and nitrogen-based com-
pounds from crude oils are hydrodesulfurization (HDS) and hydrodenitrogenation
(HDN) [9,10]. HDS is an effective process that needs high temperature (>350 ◦C) and
pressure (up to 6 MPa), and also requires high amounts of hydrogen consumption [11–13].
SCs and NCs in fuels are converted to hydrogen sulfide and ammonia, respectively, via
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the catalytic reduction with H2 [14] In the HDS process, NCs severely affect the cata-
lyst and cause corrosion of the refinery equipment due to their high reactivity [14–16].
Therefore, it is essential to remove NCs before the desulfurization treatment of fuel, or
preferably, to remove NCs and SCs simultaneously by an alternative process, capable
of depth desulfurization and denitrogenation, reducing the impact of fuels on the envi-
ronment by decreasing NOx and SOx emissions. Oxidative desulfurization (ODS) and
oxidative denitrogenation (ODN) processes have been the focus of promising research in
recent years due to their efficiency for removal of the most refractory S and N-content
present in fuels [10,17,18]. This technology conciliates oxidative catalysis and liquid-liquid
extraction steps [15,16]. Consequently, the efficiency of combined ODS/ODN processes
depends of the catalyst performance and the ability of the extraction solvent. The sustain-
ability and the cost-effectiveness of the process can be assured by the use of recovered
and recyclable catalysts and the application of environmental-friendly solvents, such as
ionic liquids [19,20]. The former are able to behave as an extraction solvent and also as an
immobilization medium for the homogeneous catalyst, containing catalyst and subtract
in the same liquid phase [21,22]. Hydrogen peroxide is generally the preferred oxidant to
use in these processes due to its high active oxygen content and the fact that water is the
sole by-product [23,24]. Our research group has been dedicated to the design of efficient
catalysts for ODS based on polyoxometalates (POMs) [18,25–29] POMs are polyanions in-
corporating various transition metals and are well-known by their structural diversity and
potential in several areas of application [30]. In general, POMs are powerful catalysts for
a great variety of oxidative reactions. In particular, Keggin-type POMs ([Xn+M12O40](8-n)-

(X: block p or d heteroatom) have been successfully used as efficient catalysts in ODS
processes [31–35]. However, the investigation combining ODS and ODN is in a primitive
stage and only one publication could be found in the literature demonstrating the ability of
POMs as catalysts in this mixed systems [36].

This work reports an innovative combined ODS/ODN system catalyzed by hybrid-
POMs and by applying an ionic liquid that acts as extraction solvent (1-butyl-3-
methylimidazole hexafluorophosphate ([BMIM]PF6)). The reusability and the stability of
the catalyst were further investigated.

2. Materials and Methods
2.1. Reagents and Solvents

Phosphomolybdic acid (H3PMo12O40.xH2O, for microscopy), sodium phosphomolyb-
date (Na3PMo12O40.xH2O, technical), tetradecane (C14H30, >99%), 1-butyl-3-methylimidazole
hexafluorophosphate (C8H15F6N2P, >97%, [BMIM]PF6), hydrogen peroxide (H2O2, aq.
30%), dibenzothiophene (C12H8S, 98%, DBT), 4-methyldibenzothiophene (C13H10S, 96%,
MDBT), quinoline (98 %, QUI), and indole (>99%, IND) were obtained from Sigma-Aldrich.
Benzothiophene (C8H6S, >95%, BT), phosphotungstic acid (H3PW12O40.xH2O, 98%), and
1-butylpyridinium bromide (>99%, BPyBr) were acquired from Fluka. N-octane (C8H18,
>99%) and 4,6-dimethyldibenzothiophene (C14H12S, 95%, DMDBT) were acquired from
Acros Organic. None of these were subject to further treatment or purification.

2.2. Characterization Methods and Instrumentation

Fourier-transformed Infrared (FT-IR) spectra were acquired between 400 and 4000 cm−1

on a Bruker Tensor 27 Spectrometer using KBr pellets, and all the representations are shown
in arbitrary unities of transmittance. Solution 31P nuclear magnetic resonance (NMR) spec-
tra were recorded in CD3CN or D2O at 162 MHz with a Bruker Avance III 400 spectrometer,
and the chemical shifts are given with respect to external 85% H3PO4. Catalytic reactions
were periodically monitored by GC-FID analysis carried out in a Bruker 430-GC-FID chro-
matograph (Germany). Hydrogen was used as carrier gas (55 cm.s−1) and fused silica
Supelco capillary columns SPB-5 (30 m × 0.25 mm i.d.; 25 µm film thickness) were used.
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2.3. [BPy]3 Salts Preparation

[BPy]3PMo12O40 ([BPy]PMo12) and [BPy]3PW12O40 ([BPy]PW12) were prepared fol-
lowing an experimental procedure adapted from previously reported methods [34,35].
Briefly, [BPy]Br (2.5 mmol) was dissolved in 2.5 mL of deionized water, and an aqueous so-
lution of phosphomolybdic or phosphotungstic acid (0.5 mmol) in deionized water (2.5 mL)
was added dropwise under magnetic stirring at room temperature. The mixture was left
stirring for 30 min, after which the precipitate was filtrated, washed thoroughly with
deionized water, and dried in a desiccator overnight. FT-IR (cm−1, KBr): ν([BPy]PMo12)
= 3435 (w), 3126 (w), 3085 (w), 3065 (w), 2964 (w), 2930 (w), 2874 (w), 1632 (m), 1486 (m),
1465 (vw), 1384 (vw), 1314 (vw), 1169 (w), 1063 (s), 956 (s), 878 (m), 796 (s), 683 (m), 596
(vw), 502 (w); ν([BPy]PW12) = 3456 (w), 3127 (w), 3085 (w), 3065 (w), 2964 (w), 2930 (w),
2874 (w), 1632 (m), 1486 (m), 1462 (vw), 1385 (vw), 1319 (vw), 1168 (w), 1080 (s), 978 (s), 896
(m), 804 (s), 683 (m), 596 (vw), 524 (m). 31P NMR (162 MHz, CD3CN, 25 ◦C): δ([BPy]PMo12)
= −2.39 ppm; δ([BPy]PW12) = −13.89 ppm.

2.4. Simultaneous Desulfurization and Denitrogenation Processes (ODS/ODN)

ODS/ODN studies were performed with a multicomponent Model Diesel containing
SCs and NCs prepared with BT, DBT, MDBT, DMDBT, Q, and I in n-octane (500 ppm
of sulfur or 300 ppm of nitrogen from each compound). The reactions were carried
out under air in a closed borosilicate vessel with a magnetic stirrer and were immersed
in a thermostatically controlled liquid paraffin bath at 70 ◦C. ODS/ODN reactions were
performed in a biphasic system composed of the Model Diesel and [BMIM]PF6 as extraction
solvent. In a representative experiment, a certain amount of the catalyst equivalent to
3 µmol of POM was added to 0.75 mL of [BMIM]PF6 and 0.75 mL of Model Diesel, and this
mixture was stirred for 10 min at 70 ◦C. The oxidative catalytic step was then initiated with
the addition of aqueous H2O2 30 % (75 µL) to the reaction mixture. Tetradecane was used
as a standard in the periodical monitorization of the sulfur content by gas chromatography
(GC) analysis. At the end of each reaction, the processed Model Diesel phase was removed
and substituted by a fresh volume. Both catalyst and [BMIM]PF6 solvent were reused in
the subsequent catalytic cycle, under identical reaction conditions and with the addition of
a new portion of H2O2. The experimental error associated with the combined ODS/ODN
efficiency was calculated by performing at least three repeated reactions (see Figure S1
in Supporting Information), and it was found to be approximately 5% to ODS and 4%
to ODN.

3. Results and Discussion
3.1. Catalysts Synthesis and Characterization

The catalysts [BPy]PMo12 and [BPy]PW12 are POM salts previously reported by our
group [34,35]. These were prepared by replacing the protons of phosphomolybdic or phos-
photungstic acid through a simple acid-base reaction with [BPy]Br in water. [Na]3PMo12O40
([Na]PMo12) is a commercially available salt. Characterization results by FT-IR and 31P
NMR spectroscopies obtained for these compounds are displayed in Figure 1. All in-
frared spectra generally display the expected bond vibration absorption band pattern.
For phosphomolybdic salts, strong intensity bond vibration bands around 1064, 960, 880,
and 794 cm−1 are registered for [BPy]PMo12 corresponding to νas(P—Oa), νas(Mo—Od),
νas(Mo—Ob—Mo), and νas(Mo—Oc—Mo), respectively [37–39]. For [Na]PMo12, νas(Mo—
Ob—Mo) seems to be expressed in a pair of bands observed at 904 and 862 cm−1, hinting
at variable oxidation states for Mo. Phosphotungstate in [BPy]PW12 is similarly expressed
by strong intensity νas(P—Oa), νas(W—Od), νas(W—Ob—W), and νas(W—Oc—W) bond
vibration absorption bands at 1080, 976, 892, and 802 cm−1, correspondingly. The infrared
spectra of both [BPy]3 salts contain weak bands at 3126, 3085, and 3065 cm−1 corresponding
to ν(C—H) aromatic bond vibrations, as well as at 2964, 2930, and 2874 cm−1 attributed to
the ν(C—H) of the aliphatic chain, a medium intensity band at 1632 cm−1 corresponding
to ν(C=N) vibrations that is typical of the quaternary nitrogen atom in a heterocyclic ring.
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Several weak/medium bands in the range 1580–1100 cm−1 are observed due to aromatic
ν(C—N), ν(C—C), and δ(C—H) vibrations. A strong band at 1485 cm−1 is attributable to
the conjugation of ν(C=C) and ν(C=N) bonds, typical of pyridinium salts. The strong one at
682 cm−1 corresponds to the aromatic out-of-plane hydrogen deformation [40]. 31P NMR
analysis reveals the typical chemical shifts for each structure [34,35]. The spectrum recorded
for [Na]PMo12 registers two single peaks attributed to a different content of Na cations in
the POM structure.
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Figure 1. (a) FT-IR spectra showed in the wavenumber regions 4000–2500 cm−1 and 1800–400 cm−1, and (b) 31P NMR
spectra showed in the chemical shifts ranging from 1 to −17 ppm, obtained for [Na]PMo12, [BPy]PMo12, and [BPy]PW12.

3.2. ODS/ODN Catalytic Studies

All ODS/ODN studies were performed at 70 ◦C in a biphasic liquid-liquid system
based on [BMIM]PF6 as extraction solvent and an immiscible multicomponent S/N Model
Diesel containing the most representative refractory sulfur and nitrogen content present in
fuels, namely benzothiophene (BT), dibenzothiophene (DBT), 4-methyldibenzothiophene
(MDBT), and 4,6-dimethyldibenzothiophene (DMDBT) from SCs, and indole (IND) and
quinoline (QUI) from NCs. Catalytic systems based on [Na]3PMo12O40 [Na]PMo12),
[BPy]3PMo12O40 ([BPy]PMo12), and [BPy]3PW12O40 ([BPy]PW12) were composed by equal
volumes of Model Diesel and [BMIM]PF6 (750 µL) and an equivalent of 3 µmol of active
catalyst. The simultaneous desulfurization and denitrogenation processes occurred in
two main steps; at first, an initial extraction of SCs and NCs was transferred from the
Model Diesel to the BMIM]PF6 extraction phase (during 10 min at 70 ◦C under stirring).
A time longer than 10 min did not increase the initial extraction of SCs and NCs. In the
next step, the oxidative catalytic stage was initiated by the addition of aq. H2O2 (30%).
The performance of catalysts [Na]PMo12, [BPy]PMo12, and [BPy]PW12 in simultaneous
ODS/ODN reactions was evaluated and the experimental results are displayed in Figure 2.
All these catalysts behaved as homogenous catalysts presented only in the [BMIM]PF6
phase, since the 31P NMR analysis did not present any phosphorus signal. The combined
desulfurization/denitrogenation profiles demonstrate that [Na]PMo12 and [BPy]PMo12
have similar catalytic performance, achieving near total conversion after 1 h of reaction
(98.7 and 97.9%, respectively). On the other hand, using the [BPy]PW12 catalyst, near
complete ODS/ODN was achieved faster than the analogous [BPy]PMo12 catalyst. These
results indicate that the nature of the cation in the POM catalyst does not seem to have an
important influence in its catalytic performance. On the other hand, a distinct combined
ODS/ODN profile was found using polyoxotungstate and polyoxomolybdate, where the
first showed to be the most effective, guaranteeing total desulfurization and denitrogena-
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tion after just 1 h of reaction. The removal rates of each component of the S/N Model
Diesel are the following: IND > QUI > DBT > MDBT > DMDBT ~ BT. The removal of NCs is
largely achieved during the initial extraction step. The difference in removal rates between
IND and QUI relates to the higher basicity of the proton-donor present in IND [41,42].
During the oxidation catalytic step (after the 10 min), the difference of reactivity between
the SCs can be explained by the decrease in electron density on the sulfur atom, which
hinders oxidation [18]. The nature of the obtained oxidized products was identified by the
analysis of the extraction phase, since, in the model diesel phase, no oxidized products
were found. The oxidized products of sulfur compounds were the corresponding sulfones.
Only vestigial amounts of sulfoxide from BT were found. From the QUI oxidation, the
quinoline N-oxide was identified.
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Figure 2. (a) Combined denitrogenation and desulfuration profiles catalyzed by the various POMs, using a biphasic S/N
Model Diesel/[BMIM]PF6 system, H2O2 as oxidant, at 70 ◦C; (b) denitrogenation and desulfurization profile of each SCs
and NCs present in the Model Diesel, using [Na]PMo12 catalyst.

Figure 3 displays the denitrogenation and the desulfurization profiles of the com-
bined ODS/ODS processes. These results demonstrated that complete denitrogenation
is achieved faster than desulfurization, since higher extraction of NCs occurred during
the first 10 min of the process, which is associated to the higher oxidative facility of NCs
than SCs. Figure 3 also compares the desulfurization profiles that occurred in a combined
ODS/ODN process and a single ODS process, i.e., using a Model Diesel containing only
SCs. These experiments were performed using the same reactional conditions. Without
duties, the desulfurization profiles are similar in combined S/N and single S processes.
These results indicate that the conciliation of extraction and oxidative catalytic steps did
not result in a competitive S and N removal process, and these may occur in parallel,
sharing the oxidant and the catalyst action. This is a remarkable advantage compared to
the combined hydrodesulfuriation/hydrodenitrogenation processes [14].
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Figure 3. Denitrogenation and desulfurization profiles of a combined ODS/ODN process and also a
desulfurization of a single ODS process (using a single Model Diesel containing BT, DMDBT, MDBT,
and DBT), using [Na]PMo12 catalyst, [BMIM]PF6 extraction solvent, H2O2 as oxidant, at 70 ◦C.

The recycling ability of each POM/[BMIM]PF6 catalytic system was accessed by
consecutive reutilization cycles that consisted in the preservation of the POM/[BMIM]PF6
phase for various consecutive cycles. This reusing process is the desired sustainable
procedure of using the same portion of catalyst and ionic liquid extraction solvent for
consecutive combined ODS/ODN cycles. After each cycle, the treated S/N Model Diesel
is removed from the system and replaced by a novel portion of S/N Model Diesel, as
well the H2O2 oxidant. During the reutilization cycles, an interlayer aqueous phase
increased in volume between the S/N Model Diesel and [BMIM]PF6 phase due to the
successive addition of aqueous oxidizing agent (Figure 4a). Figure 4b display the results
obtained from reusing the three different POM/[BMIM]PF6 catalytic systems. These results
were achieved after 1 h. The [BPy]PW12/[BMIM]PF6 system presented a decrease of
catalytic efficiency, mainly after the 3rd cycle, since its combined ODS/ODN efficiency
decreased from 98% from the 3rd cycle to 63% for the 4th cycle. In fact, the efficiency
found for the 4th cycle was only attributed to the initial extraction step, indicating the
absence of the oxidative catalytic performance of [BPy]PW12 catalyst. In the 5th combined
desulfurization/denitrogenation cycle, the catalyst did not promote any oxidative catalysis,
and the initial extraction of the S/N compounds decreased to 46%. This decrease of S/N
extraction is a consequence of absence of S/N oxidation, i.e., without decreasing non-
oxidized SCs and NCs in the [BMIM]PF6 phase, the extraction of more S/N from Diesel
did not occur. Reusing experiments using the [BPy]PW12/[BMIM]PF6 system were not
performed after the 5th cycle. On the other hand, using the polyoxomolybdate catalytic
systems, i.e., [Na]PMo12 and [BPy]PMo12, the loss of the catalytic activity was not verified
for ten consecutive combined ODS/ODN cycles and near complete removal of S/N from
Model Diesel was achieved after 1 h. A small decrease in activity is only observed during
the 10th cycle (93 and 98%, for [Na]PMo12 and [BPy]PMo12, respectively).



Sustain. Chem. 2021, 2 388
Sustain. Chem. 2021, 2, FOR PEER REVIEW 7 
 

 

 

 
(a) (b) 

Figure 4. (a) Representation of the [Na]PMo12/[BMIM]PF6 system after ten consecutive ODS/ODS cycles. (b) Combined 
desulfurization/denitrogenation efficiency obtained after 1 h of reaction, when catalyst/[BMIM]PF6 system is reused for 
ten consecutive cycles, using catalysts [Na]PMo12, [BPy]PMo12, and [BPy]PW12, with H2O2 as oxidant, at 70 °C.  

After the reusing cycles, the stability of the homogeneous POM catalysts was inves-
tigated by 31P NMR. The immiscible aqueous and [BMIM]PF6 phases (Figure 4b) were sep-
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of Na[PMo12] and [BPy]PMo12 was not coincident, and different active POM derivative 
fragments were found in aqueous and [BMIM]PF6 phases. On the other hand, the analysis 
of both phases obtained after the 5th cycle using the [BPy]PW12 catalyst revealed similar 
distribution of POM transformed species. It ends up being implied that the structural 
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desulfurization/denitrogenation efficiency obtained after 1 h of reaction, when catalyst/[BMIM]PF6 system is reused for
ten consecutive cycles, using catalysts [Na]PMo12, [BPy]PMo12, and [BPy]PW12, with H2O2 as oxidant, at 70 ◦C.

After the reusing cycles, the stability of the homogeneous POM catalysts was inves-
tigated by 31P NMR. The immiscible aqueous and [BMIM]PF6 phases (Figure 4b) were
separated, analyzed, and the results are displayed in Figure 5. In general, all studied cata-
lysts suffered structural transformations during the various reusing cycles. Furthermore,
the structural transformations may alter solubility properties, since POM derivative peaks
could be found in both the Ionic Liquid and aqueous phase. The structural modification
of Na[PMo12] and [BPy]PMo12 was not coincident, and different active POM derivative
fragments were found in aqueous and [BMIM]PF6 phases. On the other hand, the analysis
of both phases obtained after the 5th cycle using the [BPy]PW12 catalyst revealed similar
distribution of POM transformed species. It ends up being implied that the structural
transformations associated with [BPy]3PW12O40 catalytic activity ultimately led to its deac-
tivation. In a future work, the stability and the facility of the recovery of these homogeneous
catalysts will be treated by their immobilization in appropriate supporting materials.
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4. Conclusions 
This work reported a novel efficient strategy capable of combining complete desul-

furization and denitrogenation to treat a multicomponent S/N Model Diesel containing 
the most refractory elements present in Diesel. Keggin-type POMs showed to be active 
catalysts to perform parallel oxidative desulfurization (ODS) and oxidative denitrogena-
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pacity was drastically decreased when the polyoxotungstate [BPy]PW12 was used and, in 
this case, only three consecutive ODS/ODN cycles were successfully performed. Lastly, 
the stability analysis of the POM catalysts after reusing cycles indicates that the polyoxo-
molybdate is in fact a precursor for the active catalytic species, since its Keggin structures 
are modified in other active compounds. On the other hand, the polyoxotungstate also 
suffered structural modification but into inactive species. Therefore, future work is al-
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Figure 5. 31P NMR spectra acquired in CD3CN or D2O for each [BMIM]PF6 and aqueous phases present in the catalytic
systems [Na]PMo12 (10th cycle; a), [BPy]PMo12 (10th cycle; b), and [BPy]PW12 (5th cycle; c).

4. Conclusions

This work reported a novel efficient strategy capable of combining complete desul-
furization and denitrogenation to treat a multicomponent S/N Model Diesel containing
the most refractory elements present in Diesel. Keggin-type POMs showed to be active
catalysts to perform parallel oxidative desulfurization (ODS) and oxidative denitrogena-
tion (ODS) under sustainable conditions, i.e., using hydrogen peroxide as oxidant and an
ionic liquid as extraction solvent ([BMIM]PF6). Complete removal of sulfur and nitrogen
compounds was achieved only after 1 h. Furthermore, a reusing test was performed by
using the homogeneous POM catalyst and [BMIM]PF6 for consecutive ODS/ODN cycles.
The polyoxomolybdates [Na]PMo12 and [BPy]PMo12 showed high reusing capacity for ten
consecutive cycles without any appreciable reduction of catalytic performance. The kinetic
similarity obtained between these two polyoxomolybdates-based compounds indicated
that the nature of the cation does not seem to influence its activity. The reusing capacity
was drastically decreased when the polyoxotungstate [BPy]PW12 was used and, in this case,
only three consecutive ODS/ODN cycles were successfully performed. Lastly, the stability
analysis of the POM catalysts after reusing cycles indicates that the polyoxomolybdate is in
fact a precursor for the active catalytic species, since its Keggin structures are modified in
other active compounds. On the other hand, the polyoxotungstate also suffered structural
modification but into inactive species. Therefore, future work is already planned to pre-
pare heterogeneous POM catalysts to avoid their fast structural modification and also to
facilitate catalyst recovery.
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