
Article

Is the Letter ‘t’ in the Word ‘gourmet’? Disruption in
Task-Evoked Connectivity Networks in Adults with Impaired
Literacy Skills

Kulpreet Cheema 1,* , William E. Hodgetts 2,3 and Jacqueline Cummine 1,2

����������
�������

Citation: Cheema, K.; Hodgetts,

W.E.; Cummine, J. Is the Letter ‘t’ in

the Word ‘gourmet’? Disruption in

Task-Evoked Connectivity Networks

in Adults with Impaired Literacy

Skills. NeuroSci 2021, 2, 75–94.

https://doi.org/10.3390/neurosci

2010005

Received: 30 December 2020

Accepted: 18 February 2021

Published: 27 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Neuroscience and Mental Health, Faculty of Medicine and Dentistry, University of Alberta,
Edmonton, AB T6G 2H7, Canada; jcummine@ualberta.ca

2 Department of Communication Sciences and Disorders, Faculty of Rehabilitation Medicine,
University of Alberta, Edmonton, AB T6G 2G4, Canada; hodgetts@ualberta.ca

3 Institute for Reconstructive Sciences in Medicine, Covenant Health, Edmonton, AB T5R 4H5, Canada
* Correspondence: kulpreet@ualberta.ca

Abstract: Much work has been done to characterize domain-specific brain networks associated with
reading, but very little work has been done with respect to spelling. Our aim was to characterize
domain-specific spelling networks (SpNs) and domain-general resting state networks (RSNs) in
adults with and without literacy impairments. Skilled and impaired adults were recruited from
the University of Alberta. Participants completed three conditions of an in-scanner spelling task
called a letter probe task (LPT). We found highly connected SpNs for both groups of individuals,
albeit comparatively more connections for skilled (50) vs. impaired (43) readers. Notably, the SpNs
did not correlate with spelling behaviour for either group. We also found relationships between
SpNs and RSNs for both groups of individuals, this time with comparatively fewer connections
for skilled (36) vs. impaired (53) readers. Finally, the RSNs did predict spelling performance in a
limited manner for the skilled readers. These results advance our understanding of brain networks
associated with spelling and add to the growing body of literature that describes the important and
intricate connections between domain-specific networks and domain-general networks (i.e., resting
states) in individuals with and without developmental disorders.

Keywords: reading impairment; task connectivity; brain–behaviour relationship; resting-state net-
works; spelling network; inferior frontal gyrus

1. Introduction

The field of neuroscience of literacy (e.g., reading and spelling) has moved beyond
descriptions of differences in mean brain activation to instead consider the dynamic neu-
ral networks that are associated with such complex and high-order task processes [1,2].
This shift in our approach to studying literacy has resulted in new perspectives that shed
light on literacy acquisition [3,4], refinement [5–7], and break down [8,9]. While such ad-
vances have been substantial in the reading domain, the spelling domain remains compara-
tively less well understood. The current paper aimed to address this gap in understanding
of literacy, which requires that we: (1) characterized the domain-specific spelling network
(SpN) of skilled and literacy-impaired individuals, (2) determined the extent to which the
domain-specific network is related to domain-general (e.g., attention-specific) resting state
networks (RSNs), (3) quantified how the domain-specific spelling network is related to
spelling performance, and, finally, (4) assessed the extent to which domain-general brain
networks are related to spelling behavior.

1.1. Domain-Specific Spelling Network

Literacy is the ability to read and write to communicate with, and understand,
the world around us. Spelling is a form of written language production that requires
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the knowledge and coordination of various linguistic functions including phonology
(i.e., units of sound), morphology (i.e., units of meaning), and orthography (i.e., units of
print) [10]. Compared to reading, comparatively little has been done to advance the neu-
roanatomical models of written language production (e.g., spelling and/or writing) [11–14].
With respect to skilled adults, studies on spelling have provided some insight into the brain
regions and corresponding processes that are involved in the generation and retrieval of
spelling representations [14–18]. The identified brain regions include the supramarginal
gyrus (SMG) and superior temporal gyrus (STG) (i.e., sound; [19]), the angular gyrus
(AG) and middle temporal gyrus (MTG) (i.e., meaning; [15,18], and the fusiform gyrus
(FFG) and inferior temporal gyrus (ITG) (i.e., print; [15–17]). Interestingly, while the brain
regions associated with spelling substantially overlap with those identified for reading,
there is evidence that brain function/structure differentially predicts reading vs. spelling
outcomes [20,21]. Therefore, brain–behaviour relationships associated with spelling need
to be examined explicitly.

Behavioural and neuroimaging studies on individuals with spelling impairments
have also provided additional information on spelling processes. In the behaviour domain,
individuals with spelling disorders have been found to commit multiple kinds of spelling
errors, including phonological, orthographic, and morphological spelling errors [22–24],
consistent with the much reported heterogeneous profiles of reading behaviour. Brain imag-
ing studies performed on participants with the combined profile of reading and spelling
deficits (i.e. dyslexia) and isolated spelling impairments have also shed light on the brain
mechanisms involved in spelling [4,25]. For example, in a study comparing children
with combined reading and spelling deficits and isolated spelling disorder, a widespread
decrease of brain activation was observed in children with the combined profile [26].
These brain regions included both the dorsal and ventral areas of the reading network.
In another study, researchers reported an increased activation in the right hemisphere
(e.g., supramarginal gyrus—sound) compared to skilled individuals and under-activation
in left inferior temporal regions (e.g., fusiform gyrus—print; [9,27]. Such findings have
been taken as evidence for compensatory and/or impaired sound and print processing,
respectively. Similarly, in a study that included participants with impaired spelling abil-
ities following stroke, the authors reported that atrophy in the left supramarginal gyrus
(sound) and the inferior frontal gyrus (IFG; production) was associated with non-word
spelling errors, while atrophy of the inferior temporal region was related to real word
spelling errors [19]. Together, these studies provided some preliminary information about
the brain areas involved in skilled and impaired spelling processes. The extent to which
these previous findings also generalize to adults with literacy impairments has yet to be
established, despite the overwhelming evidence of lifelong spelling struggles in adults
with developmental literacy impairments (e.g., dyslexia). Notably, Riddick and colleagues
(1999) stated that “spelling problems constitute the most prominent and persistent difficulty
which they (adults with dyslexia) encounter” (p. 228) [28]. We address this gap in the
current paper by describing the dynamic brain networks related to spelling in adults with
(and without) a history of literacy impairments.

1.2. From Brain Activation to Brain Connectivity

Recently, researchers have gone beyond a description of the mean activation of partic-
ular brain areas associated with specific tasks to testing how multiple brain regions interact
with one another (i.e., connectivity) to support the completion of various tasks. While there
have been no such investigations with spelling tasks to date, several informative reading-
based studies have been conducted. Specifically, there is mounting evidence for reduced
connectivity from occipitotemporal regions involved in print processing (e.g., fusiform
gyrus) to regions associated with sound processing (i.e., inferior parietal lobule) and pro-
duction and/or motor representations (inferior frontal gyrus and precentral gyri; [3,6,9])
in individuals with poor reading abilities. An increased connectivity between the pro-
duction (i.e., left inferior frontal gyrus) and sound (i.e., the caudate) based regions was
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also reported by [3], and it was described as a compensatory strategy of sounding out
words. Together, these studies provided evidence for altered functional connectivity among
reading-specific brain regions in individuals with poor literacy skills. However, we do not
yet know whether similar hyper/hypo connections are also characteristic of spelling tasks.
More importantly, the extent to which the strength of these brain connections relates to
behavioural performance for skilled and impaired individuals has yet to be determined.

1.3. Domain-General Resting State Networks (RSN)

Beyond the domain-specific brain regions known to contribute to spelling, it is also im-
portant to consider how domain-general skills, like attention and working memory, relate
to spelling performance. For example, while spelling to dictation, one not only requires
the integration of sound and letter information but also to store and access these repre-
sentations in our working memory in order to spell out the words. These domain-general
skills are robustly represented in the brain in the form of resting-state networks [2,29,30].
Drawing from the reading literature, there is evidence that domain-specific networks and
domain-general networks are coupled in meaningful ways. For example, reading related
brain regions and networks are related to domain-general resting state networks (RSNs),
including the default mode network (DMN) [6], attentional networks [31], and salience
networks [29,32]. Of particular importance to the current work, Bailey and colleagues
(2018) found that regions in the dorsal attention network (DAN) contributed the most
to the reading-related activation [33], and Vogel and colleagues (2012) reported that the
visual word form area (VWFA) had stronger connections to regions in the dorsal attention
network over and above the reading-related regions [34]. Similarly, the DMN is consistently
reported to be negatively connected to various reading-related regions [3,5,6]. For exam-
ple, the authors of [35] recently argued that the intrinsic connectivity of the precuneus
cortex, a key region in the DMN, relates to an increase in focus during a reading compre-
hension task, thereby contributing positively to the reading process. Beyond the DMN
and attentional networks, the salience network, an executive control network involved in
monitoring behavioural goals in response to salient stimuli (e.g., adjusting attention and
error detection), has been reported to be strongly connected to scholastic performance [31],
including reading (see also [30] for a discussion of task-based connectivity and reduced
salience connectivity for children with reading impairments). Understanding the extent to
which such findings generalize to spelling-related networks was one of the goals of the
current work.

Research into the relationships between resting-state and task-based networks asso-
ciated with spelling performance has been negligible, particularly for adults with poor
literacy skills. There is some evidence from the reading literature that points to an increased
within-network connectivity among DMN regions [3] for impaired readers, possibly sig-
nifying compensatory mechanisms and/or strategies for these individuals. Additionally,
noteworthy are reports of reduced connectivity between DMN regions and the fusiform
gyrus in children and adults with reading impairments when compared to skilled read-
ers [31,36]. While this preliminary body of evidence for intrinsic connections in skilled vs.
impaired readers is important, we cannot assume that such findings generalize to spelling
behaviour and spelling networks or to an adult population. To better understand how the
inherent functional architecture contributes to the dynamic spelling processes, we need to
provide more specificity with respect to the connectivity associated with spelling-related
brain regions and, ultimately, connect such networks to spelling behaviour.

1.4. Goals of the Current Work

Given the body of reviewed work, the overall goal of this paper was to characterize
the brain networks for spelling processes in adults with and without literacy impairments.
To do this, we first described the domain-specific spelling networks of skilled and literacy-
impaired individuals. Next, we examined how the domain-specific network is related to
domain-general (e.g., attention-specific) brain networks in each group. Third, we quantified
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how the domain-specific spelling network is related to spelling performance. Finally,
we assessed the extent to which domain-general brain networks are related to spelling
behaviour.

2. Materials and Methods
2.1. Participants

Participants (N = 34) were recruited via advertisements through email, postings in
online forums, and posters. All individuals took part in both the behavioural and imaging
aspects of the study. Of these, 14 adults were classified as having reading impairment
(referred to as the impaired group) (4 males; mean age = 24.36 years), and 19 were skilled
readers (referred to as the skilled group) (5 males; mean age = 21.58 years). The inclusion
criteria for the skilled group consisted of English as the native or primary language, normal
or corrected to normal vision, no contraindications to go in the MRI, and age-appropriate
scores on reading, spelling, and IQ measures. Inclusion criteria for the impaired group
consisted of English as the native or primary language, normal or corrected to normal
vision, no contraindications to go in the MRI, and age-appropriate score on the nonverbal
IQ test. In addition, participants in the impaired group (1) self-identified as having a
literacy impairment and (2) scored > 1.5 SD below the skilled group on at least one of the
standardized reading tasks (tests described below; [37]). Exclusion criteria for both groups
included a history of any hearing or vision impairment, stroke, and/or any neurological
disorders like ADHD. All participants were paid an honorarium of $30 cash for their
participation. The data reported here were collected as part of a larger study and were
approved by the University of Alberta Research Ethics Board, and all participants provided
informed consent.

2.2. Data Collection
2.2.1. Behavioural Data Collection

All Participants were Administered the Following Tasks:
Participants completed the Sight Word Efficiency (SWE) subtest and the Pseudo-Word

Decoding Efficiency (PDE) subtest of the Test of Word Reading Efficiency—1st Edition
(TOWRE) [38]. Participants were also administered the Word Identification (WI) and Word
Attack (WA) subtests of the Woodcock Reading Mastery Test—Revised Normative Update
(WRMT—R NU; [39]) to assess real-word and non-word reading skills. Extracted measures
included fluency (i.e., the number of words that an individual could accurately identify
within 45 seconds) from the TOWRE subtests and accuracy (i.e., the number of points
scored divided by number of points possible) from the WRMT—R NU subtests.

Spelling skills were assessed using the Wide Range Achievement Test—4th Edition
(WRAT4; [40]) spelling subtest. This dictation-based subtest evaluates an individual’s
ability to identify sounds and transfer them into a written form, and it is commonly used
to evaluate spelling in adults (see [23,41,42].

The Matrix Reasoning (MR) subtest from the Wechsler Abbreviated Scale of Intelli-
gence (WASI; [43]) was used to assess participants’ non-verbal intelligence. Participants
were asked to look at pictures of shapes and either name or point to the correct answer
when given five response options. Both participant groups underwent the nonverbal IQ
test in order to have a comparable performance measure from both groups [3,6,8].

2.2.2. fMRI Data Collection
Neuroimaging Tasks:

Participants completed three conditions of the letter probe task. In the letter probe
condition, participants were given the auditory presentation of either a word or a non-word
(duration = 2000 ms), followed by the visual presentation of a single letter on the screen
(duration = 2000 ms). They were asked to indicate if the letter was, or was not, in the
spelling of the word that they just heard. The letter probe task has been previously used
to study the neural activity for spelling [44,45]. Each condition (described below) was
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presented separately, and the stimuli within each condition was randomized (i.e., in an
event-related design) with 25 baseline/fixation trials (i.e., where participants did not make
any response). The interstimulus interval ranged from 500 ms to 18 s. The presentation
of the three conditions were randomized for all participants with specific instructions
preceding each run. The three conditions were as follows:

(1) Orthographic (O) condition: This condition used words that have an irregular spelling-
to-sound correspondence so the retrieval of the spelling of the words was necessary
in order to make the judgment. The letter option that was given was either a) absent
from the pronunciation of the word (e.g., ‘T’ in ‘gourmet’), b) ambiguous with respect
to associated phonemes (e.g., ‘C’ in ‘cello’), or c) highly associated with a specific
phoneme (e.g., ‘G’ associated with /g/, as in ‘get’) but was pronounced differently in
a selected word (e.g., sound of ‘G’ in ‘regime’). In each case, the decision of the letter
probe could not be made by the sound or pronunciation of the words alone.

(2) Orthographic–Phonological (OP) condition: The words in this condition had consis-
tent spelling-to-sound correspondence (e.g., letter ‘A’ in ‘gaze’). Thus, participants
could utilize sound-based information, pronunciation-based information, or print-
based information.

(3) Phonological (P) condition: The stimuli in this condition were pseudowords (e.g., letter
‘N’ in ‘bint’), for which there were no stored whole-word sound, pronunciation-based
representations, or print-based representations to retrieve. Therefore, participants
had to generate the spelling of these stimuli to make the decision of whether the letter
was in the spelling of the word or not.

A total number of 75 words (referred to as stimuli hereafter) were selected for each
condition (See Table S2). Stimuli were matched on the following characteristics across and
within the tasks: written frequency, orthographic and phonological neighborhood size,
number of phonemes, syllables and morphemes, word length, summed bigram frequency,
and summed bigram frequency by position [46].

The audio files were recorded by a male talker of central Canadian English at a
sampling rate of 48 KHz using an M-Audio recording device in a sound-treated room.
Each file was segmented, preprocessed, and calibrated for level using the Audacity software
and stored as a single wav file. The three tasks were programmed using the software EPrime
2.0 Professional (Psychology Software Tools, Inc.).

2.3. Procedure

Once consented, each participant completed the behavioural test battery, which in-
cluded the four reading assessments and the spelling and non-verbal intelligence tasks
noted above. Performance measures included accuracy and/or rate (correct items over
total time) for each behavioural task. Then, participants were provided with an overview of
the experimental tasks in the fMRI and completed a practice trial in the behavioural testing
room prior to going into the MRI scanner. Participants then walked over to Peter S. Allen
Research Centre with the research assistants. They were screened by the MR technician to
ensure that it was safe for them to go into the MRI. Once in the MRI, and prior to each task,
participants were reminded about the nature of the tasks they were to complete. The EPrime
software (Psychology Software Tools, Inc., http://www.pstnet.com) was used to present
the stimuli for each task onto a screen, which was visible to the participants through a
mirror attached to the head coil. The three tasks were counterbalanced, and stimuli in each
task were presented randomly without replacement. Response time was operationalized
as the time from stimulus presentation to the button response provided by the participant.

Images were acquired on a 3T Siemens Sonata scanner and were positioned along
the anterior–posterior-commissure line. Anatomical scans included a high-resolution axial
T1 MPRAGE sequence with the following parameters: repetition time (TR) of 1980 ms,
echo time (TE) of 2.21 ms, number of slices of 176, base resolution of 232 × 256 × 176
with the voxel size of 1 × 1 × 1 mm, and scan time of 4.50 min. For each condition (O,
OP, and P), a separate, single run, event-related design, whereby the 75 task stimuli were

http://www.pstnet.com
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randomly presented throughout a single run, was employed. The auditory presentation
of each stimulus lasted 2000 ms. Participants had 2000 ms to respond to the stimuli.
The interstimulus interval ranged from 500 ms to 18 s. Each run consisted of 230 volumes
of 64 slice, axial spin, echo planar images (EPIs), obtained with the following parameters:
a TR of 1980 ms, a TE of 30 ms, a base resolution of 64 × 64 with a 128 × 128 reconstruction
matrix that improved pixel resolution through zero-filling prior to Fourier transform
reconstruction, and a scan time of approximately 8 minutes. EPI slice thickness was 2.2 mm
with no gap between slices. For the resting state sequence, functional T2* images were
acquired using an echo-planar imaging sequence with the following parameters: a 2.2 mm
isotropic voxel size, 64 interleaved slices, TR = 1980 ms, TE = 30 ms, and 242 measurements.
The functional resting-state condition was 6 minutes long, and participants were instructed
to keep their eyes open and look at the crosshair on the screen.

2.4. Analysis
2.4.1. Behavioural Data Analysis

Accuracy rates were calculated for all behavioural tasks and were compared between
adults with and without reading impairments using independent sample t-tests at an
adjusted p < 0.05 (for the number of tests to minimize type 1 errors). In-scanner behavioural
performance (i.e., accuracy rates and reaction times) was also calculated for all three
conditions and compared between groups using independent sample t-tests at an adjusted
p < 0.05 (for the number of tests to minimize type 1 errors).

2.4.2. Functional Connectivity Analyses

Functional connectivity analysis was performed with the CONN-fMRI toolbox (version
18.b) in SPM 12 [47]. First, the functional and structural data were subjected to the stan-
dard preprocessing analysis in the CONN program. This pipeline included the functional
realignment of functional images to each other; slice-timing correction; the segmentation of
functional and structural images into gray matter, white matter, and cerebrospinal fluid
maps; the normalization of data into standard Montreal Neurological Imaging (MNI) space;
and spatial smoothing using a Gaussian kernel (8 mm) and denoising. Effects of within-
subject variables of realignment and scrubbing and main condition effects (i.e., effect of task
conditions) were regressed out, and band-pass filtering was executed at 0.1 Hz and above.
The realignment variable consisted of 12 estimated subject motion parameters. Scrubbing
identified the number of outlier scans for each subject. These two variables and task effects
were considered to be potential confounding effects, and they were removed separately for
each voxel, each subject, and each functional run/session. Additional preprocessing steps
included band-pass filtering (0.1 Hz and above) and the inclusion of estimated subject
motion and signal of white matter and cerebrospinal fluid as covariates of no interest.

Motion correction was performed using the Artifact Detection Toolbox (ART)
(integrated in CONN), which identified outliers in global signal intensity and motion
in the functional data time series. These outliers were included as first-level covariates of
no interest to regress out their effects. Additional noise correction was performed using
the anatomical component-based noise correction method (aCompCor). Global signal
regression (GSR) was not performed, as GSR has been known to introduce spurious anti-
correlations [48–50]. Because aCompCor allows for the interpretation of anticorrelations,
this component-based noise reduction method was favored instead of the GSR method.
aCompCor models noise from white matter, CSF, and regresses out the signal from these
noise regions of interest (ROIs) in the first-level general linear model [47]. There were no
between-group differences on the mean and maximum motion during the task sessions
or between the global signal change and the number of valid scans used in the analysis
(FDR-corrected; p < 0.05).
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2.4.3. Brain Regions of Interests

We defined a spelling-network (SpN) that included left-hemispheric areas associated
with print (fusiform gyrus (FFG) and inferior temporal gyrus (ITG)), sound (superior
temporal gyrus (STG) and supramarginal gyrus (SMG)), meaning (angular gyrus (AG)
and middle temporal gyrus (MTG)), and articulatory processing (inferior frontal gyrus
(IFG) and supplementary motor area (SMA)) [3,6,9,45,51–53] (See Figure 1a and Table S2
in Supplementary Materials for MNI coordinates). The regions were spherical and 6 mm
in radius, and they were developed using the Mango program. In keeping with previous
literature, we characterized the networks as a function of three seed regions of interest
(i.e., sound (supramarginal gyrus (SMG)), print (fusiform gyrus (FFG)), and articulation
(inferior frontal gyrus (IFG)), from which all connectivity maps were generated.
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ciency; O: orthographic condition; OP: orthographic–phonological condition; P: phonological condition. The asterisks in-
dicate significant between-group differences, * p < 0.05. ** p < 0.001. 

  Skilled Group Mean 
(SD) 

Impaired Group Mean 
(SD) 

t Values p Values 

Age (years) 21.58 (2.04) 24.36 (5.36) −2.08 0.46 
Gender (% female) 73 71 0.14 0.89 

TOWRE-SWE fluency  
(raw scores) 2.10 (0.26) 1.81 (0.27) 3.15 0.004 * 

TOWRE-SWE fluency (standard-
ized scores) 96.63 (11.29) 83.36 (8.78) 3.59 0.001 * 

TOWRE-PDE fluency  
(raw scores) 1.36 (0.16) 0.90 (0.23) 6.73 <0.001 ** 

Figure 1. Regions of interest of the (a) spelling network (SpN) and the (b) resting-state networks (RSNs).

We conducted an ROI-to-ROI analysis where the functional connectivity was analyzed
between a-priori selected pairs of ROIs. By using a defined set of ROIs, we could test
every connection within the SpN between skilled and impaired readers without over
testing the networks and inflating type 1 errors. The time series were computed and
averaged across all voxels within the ROI, and the first-level correlation maps were made
for each participant. These correlation maps were made by computing Pearson correlation
between the residual BOLD time course of the seed region and the time course of all the
other possible pairs of regions. These correlation coefficients were converted to normally
distributed Fisher-transformed correlation coefficients to allow for second-level analyses at
the group level.

For the resting-state networks (RSN), we selected the default mode, dorsal atten-
tion, and salience networks. These RSNs have been reliably and consistently detected in
multiple studies [54–56]. ROIs for the resting-state networks include: the DMN (medial
prefrontal cortex (MPFC), bilateral lateral parietal (LP), and posterior cingulate cortex
(PCC)), the DAN (bilateral frontal eye field (FEF) and bilateral inferior parietal sulcus
(IPS)), and the salience network (bilateral anterior insula (AInsula), bilateral rostral pre-
frontal cortex (RPFC), anterior cingulate cortex (ACC), and bilateral supramarginal gyrus
(SMG)) (see Figure 1b). These network ROIs were a result of the independent component
analysis of 497 individuals from the Human Connectome Project (HCP). All of the ROIs
(for both SpN and RSNs) were delineated on a standardized MNI template to which each
participant’s structural and functional scans were aligned.

Functional connectivity at the group level involved performing a one-sample t-test of
the Fisher values against zero. An independent sample t-test, with 1st-level connectivity
maps, was conducted to examine the between-group differences in functional connectivity
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from each of the three seed regions noted above. Analyses were separately run to determine
any significant relationship between functional connectivity and spelling behaviour via
a linear regression of connectivity and reaction time behaviour for each group. For the
SpNs, we used a standardized spelling behaviour (outside of scanner). For the RSNs,
we used the reaction time as acquired from the in-scanner spelling performance and
the standardized spelling behaviour. The dependent variable was connectivity strength
(i.e., Fisher-transformed z-scores) between the ROIs, and the independent variable was
spelling behaviour.

3. Results
3.1. Behavioural Performance

Means and standard deviations for all behavioral tasks and the independent t-test
results are summarized in Table 1. We found significant between-group differences on all
the behavioural tasks except for nonverbal IQ. In general, the impaired group had lower
accuracy rates and took longer to complete the tasks when compared to the skilled group.
Between-group differences for in-scanner reaction times were found for all three conditions,
such that the impaired group took longer to respond than the skilled group.

Table 1. Mean (standard deviation) and p-values (for independent sample t-tests) for all the behavioural measures. TOWRE:
Test of Word Reading Efficiency—1st Edition; SWE: Sight Word Efficiency; PDE: Pseudo-Word Decoding Efficiency; O:
orthographic condition; OP: orthographic–phonological condition; P: phonological condition. The asterisks indicate
significant between-group differences, * p < 0.05. ** p < 0.001.

Skilled Group Mean
(SD)

Impaired Group Mean
(SD) t Values p Values

Age (years) 21.58 (2.04) 24.36 (5.36) −2.08 0.46

Gender (% female) 73 71 0.14 0.89

TOWRE-SWE fluency
(raw scores) 2.10 (0.26) 1.81 (0.27) 3.15 0.004 *

TOWRE-SWE fluency
(standardized scores) 96.63 (11.29) 83.36 (8.78) 3.59 0.001 *

TOWRE-PDE fluency
(raw scores) 1.36 (0.16) 0.90 (0.23) 6.73 <0.001 **

TOWRE-PDE fluency
(standardized scores) 105.53 (8.74) 84.43 (9.42) 6.63 <0.001 **

Word identification 95 (0.05) 79 (0.11) 5.76 <0.001 **

Word Attack 91 (0.07) 72 (0.11) 6.04 <0.001 **

Spelling (raw score out of 42) 35.47 (2.89) 28.29 (6.60) 4.24 <0.001 **

Spelling (standardized score) 84.58 (4.81) 72.71 (10.22) 4.45 0.001 *

Non-verbal IQ 82 (0.07) 81 (0.06) 0.60 0.554

O condition

Reaction time 861.24 (120.81) 980.09 (161.74) −2.42 0.022 *

Accuracy 0.78 (0.09) 0.69 (0.14) 2.33 0.052

OP condition

Reaction time 810.30 (125.17) 927.22 (135.18) −2.56 0.015 *

Accuracy 0.86 (0.07) 0.79 (0.11) 2.40 0.046 *

P condition

Reaction time 846.19 (125.53) 946.85 (125.83) −2.30 0.029 *

Accuracy 0.83 (0.10) 0.80 (0.13) 1.15 0.337
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3.2. Within-Network SpN Functional Connectivity
3.2.1. Characterize the Functional Connectivity of the Spelling Network (SpN) during the
Three In-Task Conditions in People with and without Reading Impairments

To characterize the functional connectivity of the seed regions within the SpN, first-level
ROI-to-ROI connectivity maps for each participant in each group were entered in a one-
sample t-test, separately for each seed. Group-level connectivity maps (and associated
statistics) are discussed for each seed region separately. Each analysis/map was FDR-
corrected at the network level (p < 0.05). For the sake of brevity, and given the descriptive
nature of this first research question, we only provide the visual representations for the
O condition in the text, and a comprehensive list of results for the OP and P conditions is
provided in the Supplementary Materials.

Inferior Frontal Gyrus (Speech)

Across the O (Figure 2i; Table 2), P, and OP conditions, for the skilled and impaired
groups, IFG was connected to areas in frontal (SMA), parietal (SMG and AG), and temporal
areas (STG, MTG, and FFG; See Tables S3 and S6 and Figures S1 and S4 for OP conditions
in Supplementary Materials).

Table 2. Correlation/beta values, t-values and p-values for functional connectivity of the spelling
network (SpN) for the Orthographic condition: (i) Inferior frontal gyrus, (ii) left fusiform gyrus and
(iii) supramarginal gyrus. FDR-correction (p < 0.05).

(i) Inferior Frontal Gyrus

Skilled Group Impaired Group

Targets Beta t(18) p-FDR Targets Beta t(13) p-FDR

SMA 0.27 5.44 0.000255 SMA 0.17 6.11 0.000262

MTG 0.17 3.6 0.007215 MTG 0.14 4.19 0.003689

SMG 0.11 2.94 0.013688 STG 0.14 3.12 0.018907

STG 0.11 2.91 0.013688 AG 0.13 2.48 0.046241

FFG 0.13 2.89 0.013688 FFG 0.09 2.38 0.046241

(ii) Left Fusiform Gyrus

Skilled Group Impaired Group

Targets Beta t(18) p-FDR Targets Beta t(13) p-FDR

ITG 0.42 5.65 0.000164 ITG 0.39 10.91 < 0.0001

SMG 0.15 4.15 0.0021 MTG 0.19 4.54 0.001948

IFG 0.13 2.89 0.019768

MTG 0.21 2.8 0.019768

STG 0.11 2.72 0.019768

SMA 0.21 2.37 0.034309

AG −0.14 −2.05 0.054903

(iii) Supramarginal Gyrus

Skilled Group Impaired Group

Targets Beta t(18) p-FDR Targets Beta t(13) p-FDR

FFG 0.15 4.15 0.0042 ITG 0.14 3.02 0.048354

SMA 0.14 3.73 0.005043 AG 0.16 2.84 0.048354

ITG 0.2 3.58 0.005043

IFG 0.11 2.94 0.015243
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Fusiform Gyrus (Print)

In the O condition, FFG was significantly connected to all the target regions in the
spelling network in the control group (i.e., seven connections), whereas the impaired group
only had wo significant connections (with ITG and MTG) (Figure 2ii and Table 2).

For the OP and P conditions, the connectivity profiles between the two groups
were comparable, with connections to frontal, parieto-temporal, and temporal regions
(see Tables S4 and S7 and Figures S2 and S5 in Supplementary Materials).

Supramarginal Gyrus (Sound)

In the O, OP, and P conditions, SMG was significantly connected to multiple areas in
the frontal (IFG and SMA) parieto-temporal (STG), and temporal regions (FFG and ITG)
in both the control and impaired groups (see Tables S5 and S8 and Figures S3 and S6 in
Supplementary Materials). The only deviation from this pattern was in the O condition
for the impaired group, where there were no significant frontal connections with the SMG
(see Figure 2iii and Table 2).

Independent Sample t-Tests:

Next, we investigated whether there were significant between-group differences in
connectivity from the three seed regions within the SpN. If we took an average of the
standard deviations of the r-values from each group (approximately 0.14), an alpha at 0.05,
and power = 0.80, we would need a minimum difference of 0.15 between the groups to
detect a significant effect. For each of the seed regions (i.e., IFG, FFG, and SMG), first-level
ROI-to-ROI connectivity maps for each participant were entered into an independent
sample t-test. No significant effects survived the stringent FDR corrections. Thus, in an
attempt to mitigate type 2 errors, we investigated a more liberal corrected threshold
(p < 0.01). Again, there were no surviving significant connections.

3.2.2. Examine the Relationships between Domain-Specific Networks (i.e., SpN) and
Domain-General RSNs in People with and without Literacy Impairments

To characterize the functional connectivity between the SpN seed regions and RSNs,
level ROI-to-ROI connectivity maps for each participant in each group were first entered
into a one-sample t-test, separately for each seed. Group-level connectivity maps (and as-
sociated statistics) are discussed for each seed region separately. Each analysis/map was
FDR-corrected at the network level (p < 0.05). For the sake of brevity, we only provide the
visual representations for the O condition in the text; however, the results of the OP and P
conditions are fully presented in the Supplementary Materials.

Inferior Frontal Gyrus (Speech)

For the skilled group, in each of the O, OP, and P conditions, the IFG was significantly
connected with ACC and bilateral AInsula (Figure 3i and Table 3 for connectivity for
O condition).

In contrast, for the impaired group, in each of the O, OP, and P conditions, the IFG
was connected to multiple salience (bilateral AInsula, ACC, SMG, and RPFC) and dorsal
attention network areas (bilateral IPS) across the three conditions (See Tables S9 and S12
and Figures S7 and S10 in Supplementary Materials).

Fusiform Gyrus (Print)

Across the three conditions, FFG had significant connections to multiple RSNs, includ-
ing the DAN (bilateral FEF), the DMN (MPFC), and the salience network (bilateral AInsula,
ACC, and IPS) in the skilled group (see Figure 3ii for connectivity for the O condition).
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Table 3. Correlation/beta values, t-values and p-values for functional connectivity between the resting-state networks
(RSN) and spelling-networks (SpNs) of (i) IFG, (ii) FFG, and (iii) SMG for the O condition for skilled and impaired groups.
FDR-correction (p < 0.05). ACC: anterior cingulate cortex; AInsula: Anterior Insula; RPFC: rostral prefrontal cortex; IPS:
inferior parietal sulcus; FEF: frontal eye field; MPFC: medial prefrontal cortex.

(i) Inferior Frontal Gyrus

Skilled Group Impaired Group

Targets Beta t(18) p-FDR Targets Beta t(13) p-FDR

ACC 0.22 3.82 0.017542 Right AInsula 0.27 6.02 0.000601

ACC 0.22 5.53 0.000682

Left SMG 0.21 4.96 0.001218

Left RPFC 0.17 4.58 0.001806

Left IPS 0.15 2.72 0.049002

(ii) Fusiform Gyrus

Skilled Group Impaired Group

Targets Beta t(18) p-FDR Targets Beta t(13) p-FDR

Left IPS 0.26 5.82 0.000225 Right IPS 0.20 6.62 0.000248

Left AInsula 0.15 5.53 0.000225 Left IPS 0.23 5.54 0.000719

MPFC −0.13 3.52 0.009241

ACC 0.16 3.52 0.009241

Left FEF 0.15 3.13 0.017402

Right AInsula 0.09 2.83 0.022545

Right IPS 0.14 2.81 0.022545

Right FEF 0.14 2.79 0.022545

(iii) Supramarginal Gyrus

Skilled Group Impaired Group

Targets Beta t(18) p-FDR Targets Beta t(13) p-FDR

Left IPS 0.26 6.04 0.000146 Left IPS 0.31 6.92 0.000147

Right IPS 0.21 4.52 0.003995

Right SMG 0.18 3.87 0.009018

ACC 0.15 3.29 0.020636

Right AInsula 0.15 3.07 0.023493

Left AInsula 0.21 3.01 0.023493

Left RPFC 0.14 2.52 0.050879

For the impaired group, the highest number of surviving connections were present
in the OP condition, with areas like the bilateral IPS, bilateral FEF, ACC, AInsula, and
PCC being connected. However, FFG was connected to fewer areas in the O (Figure 3iii
and Table 3) and P conditions, with surviving connections to bilateral IPS and AInsula
(See Tables S10 and S13 and Figures S8 and S11 in Supplementary Materials).

Supramarginal Gyrus (Sound)

In the skilled group, SMG was connected to bilateral IPS and AInsula in the O and OP
conditions, with additional connections to MPFC and RPFC in the P condition.

On the other hand, SMG had significant connections with multiple areas in the
RSNs of the salience (AInsula, ACC, bilateral RPFC, and SMG) and DAN (bilateral
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IPS) networks in the impaired group (See Tables S11 and S14 and Figures S9 and S12
in Supplementary Materials).

Independent Sample t-Tests

No significant (FDR-corrected at the network level) between-group differences of
the SpN–RSN connections, from any of the seed regions, emerged. We followed-up with
the looking at the pairwise connectivity levels at a liberal corrected p < 0.01 threshold to
provide a preliminary characterization of the nature of connectivity in the control and
impaired groups.

Significant findings are described next.

Inferior Frontal Gyrus (Speech)

There were between-group differences in how the IFG was connected with the DAN
IPS (t = −2.70, p = 0.01, and Cohen’s d = 0.13) in the P condition, such that the impaired
group was more positively connected (mean = 0.13 and SD = 0.14) than the control group
(mean = 0.01 and SD = 0.12).

Fusiform Gyrus (Print)

In the OP condition, there was a between-group difference in how the FFG was
connected with the DMN lateral parietal (t = −3.09, p = 0.004, and Cohen’s d = 0.16), with the
FFG being negatively connected to lateral parietal in the control group (mean = −0.02 and
SD = 0.13) while being positively connected in the impaired group (mean = 0.14 and SD
= 0.19). Additionally, FFG was also differently connected to the DMN PCC (t = −2.68,
p = 0.012, and Cohen’s d = 0.12). The mean connectivity strength of the FFG–PCC was
significantly lower in the control group (mean = 4.1 × 10−4 and SD = 0.11) than the impaired
group (mean = 0.11 and SD = 0.13).

3.2.3. Examine the Relationships between SpN Connectivity and Spelling Behaviour in
People with and without Reading Impairments

To investigate connectivity–behaviour relationships for each group, a linear regression
of connectivity strength was run. The dependent variable was connectivity strength
between the ROIs, and the independent variable was the standardized outside of scanner
spelling behaviour.

There were no significant (FDR-corrected or liberal-corrected p < 0.01) correlations
between SpN connectivity and spelling behaviour in either group.

3.2.4. Examine the Relationships between RSN Connectivity and Spelling Behaviour in
People with and without Literacy Impairments

We investigated the connectivity–behaviour relationship between the RSNs and
outside-of-scanner spelling score (standardized) for both groups. Each analysis was FDR-
corrected at the analysis level (p < 0.05).

There were no significant (FDR-corrected or liberal-corrected p < 0.01) correlations
between SpN connectivity and spelling behaviour in either group.

We also followed-up with a less stringent corrected p < 0.01 thresholds to assess how
connectivity related to spelling behaviour in the skilled and impaired group.

Fusiform Gyrus (Print)

The left FFG–left SMG (salience network) was negatively related to spelling accuracy
score (from the OP condition) in the control group (r = −0.62 and p = 0.05), but the impaired
group did not show any significant relationship (r = −0.141 and p = 0.631) (Figure S13 in
Supplementary Materials).
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Inferior Frontal Gyrus (Speech)

The IFG–MPFC (DMN) connectivity was positively related to the OP reaction time
in the control group (r = 0.57 and p = 0.01), while the impaired group did not show any
significant relationship (r = −0.42 and p = 0.13) (see Figure S14 in Supplementary Materials).

4. Discussion

The current paper aimed to address the current gaps in our understanding of the
spelling network by (1) characterizing the domain-specific spelling networks of skilled
and literacy-impaired individuals during a spelling task, (2) determining the extent to
which the domain-specific network is related to domain-general (e.g., attention-specific)
brain networks, (3) quantifying how the domain-specific spelling network is related to
spelling performance, and, finally, (4) assessing the extent to which domain-general brain
networks are related to spelling behaviour. Two main findings emerged. First, the SpNs
for individuals with literacy impairments were tightly coupled to their RSNs. The same
was not true for individuals without literacy impairments. In contrast, the RSNs for skilled
reading individuals predicted their spelling behaviour. However, such relationships were
not evident for individuals with literacy impairments. We address the implications of these
findings to understand the role of sound, print, and articulation in written communication
and discuss how these findings inform our understanding of spelling performance in
individuals with and without literacy impairments.

4.1. Characterization of the Spelling Network (SpN)
Connectivity during Retrieval of Whole-Word Representations in the Impaired Group

Overall, we did not find any statistically significant differences in the strength of
connections between groups with respect to the SpN networks. However, it is worthwhile
discussing the SpNs from a descriptive perspective because there is little information in the
literature on spelling networks in general. First, skilled individuals had highly connected
networks in each of the spelling conditions (O, OP, and P), with 16, 17, and 17 connections
surviving the threshold, respectively. Such high connectivity speaks to the relatively com-
plex nature of the spelling process, namely the integration of print, sound, and articulatory
representations for successful decoding [57]. The individuals with literacy impairments
had comparatively fewer connections that survived the statistical threshold specific to the
O condition (a total of nine significant connections) vs. the P and OP conditions (20 and 14,
respectively). Furthermore, it was the FFG (print processing; two significant connections)
and SMG (sound-to-letter mapping; two significant connections) seed regions that had
minimal significant connections. These results were in line with previous studies that have
found reduced structural [8,58–60] and functional connectivity in individuals with reading
impairments [3,6,9]. When we spell, we need to access and integrate the phonological
(sound of words), semantic (the meaning of the word), orthographic (print), and articu-
latory (sounding out the word) units of information in an efficient manner to correctly
recover and generate accurate spelling representations [57]. That this pattern of findings
was notable in the FFG, a key region involved in the fast identification and mapping
of orthographic representations, and during the orthographic condition, provides some
evidence for the aberrant functioning of this portion of the network [3,15,16]. Similarly,
the SMG, also had only two connections in the O condition, which may be indicative of a
disrupted multimodal integration between sound (of the word) and print (of the letter).
While the connection strengths within the SpN were not significantly different between the
skilled and impaired readers, the more global reduction in connections could potentially
contribute to slower processing speed during spelling tasks, less compensatory mecha-
nisms available to counteract aberrant or deficient connections, and/or fewer places where
information can be double-checked for accuracy. The extent to which the inherent ‘sub-
threshold’ pattern of SpN connectivity contributes to any one of (or all of) these outcomes
is necessary to establish in future work.
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4.2. Connections between SpN and Domain-General RSNs
4.2.1. Increased SpN–DMN Connections in Impaired Readers

Areas of the DMN were found to be differently connected with the SpN seed regions
in the impaired group compared with the skilled group. Notably, the impaired group
showed positive connections between the SpN nodes (FFG) and DMN regions (LP and
PCC), which were stronger than any connections in the skilled networks. This was contrary
to previous work on typical readers that has reported a negative relationship between
task-negative DMN regions and task-positive regions [29,61]. It has been argued that
the DMNs play a role in mind wandering, internal mentation, autobiographical memory,
remembering past events, and planning future events that needs to be suppressed to
reallocate resources to the task at hand. For example, the authors of [62] found that the
stronger the negative relationship between the DMN and the attention-positive network,
the less attentional lapses happened. Resting-state studies in the reading literature have
also supported the presence of such an anti-correlated relationship, with the authors of [31]
presenting evidence for negative connections between FFG/VWFA and DMN regions in
skilled adult readers. However, we found that the typical competing relationship between
task-positive and task-negative regions (as one goes up the other goes down) was not
present for impaired reading individuals. In fact, individuals with reading impairments
had comparatively more SpN–RSN connections (a total of 53 significant connections) than
the skilled readers (36 significant connections). This descriptive finding, in conjunction
with the statistically significant differences between the groups, leads us to speculate
that, in people with a history of literacy impairments, the brain is not able to disengage
from internal thinking to focus on the task at-hand, namely spelling. To our knowledge,
there have been no studies that have found this kind of positive connection between DMN
areas and task-positive regions in atypical reading individuals. Ultimately, much more
work is needed to determine how the SpN–DMN relationships reported here and in
previous work actually contribute to behavioural performance. That is, is it the general
strength of the DMN connections (IFG–MPFC, FFG–MPFC, and LP regions) that contribute
to improved literacy performance, or it is the efficiency at switching between the DMN
and SpN networks that results in greater performance? Understanding these dynamic
relationships is important for the advancement of remediation approaches for individuals
with literacy challenges.

4.2.2. Altered SpN–Attention Connections

The inferior parietal sulcus (i.e., the DAN) was more positively connected with inferior
frontal gyrus in the impaired group compared to the skilled group during the spelling
generation condition (i.e., P task). As the DAN is involved in goal-directed top-down
processing and selective attention, this points towards the increased need for attention
in people with limited literacy in demanding conditions (generating nonwords in this
example). Unfortunately, we did not obtain direct measures of attentional control in the
current study (although we screened for ADHD) and thus cannot fully disentangle the
extent to which these differences are a by-product of attention; however, the behavioural
accuracy for the P condition was comparable between the groups, so we hypothesize that
the increased connection may reflect a successful strategy employing selective attention.
Nonetheless, this increased connectivity does help us in further characterizing the neu-
robiology of dyslexia in adulthood. It would be interesting to study the developmental
trajectory of this connectivity with attention from pre-reading stages to skilled reading
and remediation work that target attention and attention switching may be one avenue
of support.

4.3. SpN– and RSN–Behaviour Correlations.

We did not find any relationships between SpNs and spelling behaviour for either
group. While this is consistent with some work (see [20,21] papers for similar null findings),
other studies have reported significant brain–behaviour relationships [63,64]. These in-
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consistent null/positive effects in the brain-spelling domain are perplexing. The extent to
which such reports are driven by under-powered studies, insensitive spelling measures,
and/or a heterogeneous sample could not be determined with the current study. It is
interesting that the reading domain does not suffer the same fate, which indicates that these
null findings are somewhat specific to the spelling process itself. Is this because spelling
is a more cognitively demanding task than reading? Perhaps the spelling network is not
differentially engaged (i.e., whereby we might see differences in task demands); instead all
the regions are globally involved. That is, in trying to disentangle unique contributions
of specific regions, the inclusion of additional regions in the statistical model served to
remove too much shared variance. While definitive conclusions about differential connec-
tions are premature, our findings do underscore the need for future work that examines
SpN–behaviour connections. Perhaps SpN–behaviour subsequent to remediation would
provide clarity, whereby malleable connections may provide additional insight, and then
remediation approaches that target processes that influence such connections may be an
ideal avenue to support adults with literacy impairments.

4.4. Limitations

While the results obtained in the present study were in line with the previous results,
we do recognize our small sample size and the possibility that some of the null findings
were a result of low power. In turn, the significant reported findings that are associated
with liberally corrected p-values should also be interpreted with caution (i.e., may represent
type 1 errors) and must be replicated before much can be said about the contribution of
connectivity networks to spelling behaviour.

5. Conclusions

Here, we provide a neuropsychological profile of spelling in skilled and impaired
readers. Using functional connectivity, we characterized the spelling networks across
multiple tasks, across left and right hemisphere brain regions, and across varying levels
of literacy performance. Overall, we found a highly connected network of regions during
multiple spelling tasks for skilled readers, with a particular emphasis on the role of the IFG.
In contrast, we report under connected profiles for individuals with literacy impairments,
primarily in regions associated with print (e.g., FFG and ITG) and sound (e.g., SMG).
These results provide evidence for the underlying connectivity patterns associated with
spelling performance and also provide much-needed information for the advancement of
theoretical models and remediation approaches. As individuals with reading impairments
face lifelong issues with spelling performance, our hope is that the current work will
stimulate further investigations into better understanding written language.
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