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Abstract: Cognition is often defined as a dual process of physical and non-physical mechanisms.
This duality originated from past theory on the constituent parts of the natural world. Even though
material causation is not an explanation for all natural processes, phenomena at the cellular level
of life are modeled by physical causes. These phenomena include explanations for the function of
organ systems, including the nervous system and information processing in the cerebrum. This
review restricts the definition of cognition to a mechanistic process and enlists studies that support
an abstract set of proximate mechanisms. Specifically, this process is approached from a large-scale
perspective, the flow of information in a neural system. Study at this scale further constrains the
possible explanations for cognition since the information flow is amenable to theory, unlike a lower-
level approach where the problem becomes intractable. These possible hypotheses include stochastic
processes for explaining the processes of cognition along with principles that support an abstract
format for the encoded information.
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1. Introduction
1.1. The Many Definitions of Cognition

Common definitions of cognition often include the phrase mental process or acqui-
sition of knowledge. Reference to mental processing descends from an assignment of
non-material substances to the act of thinking. Philosophers, such as the Cartesians and
Platonists, have written on this topic, including the relationship between mind and matter.
This perspective further involves concepts such as consciousness and intentionality. How-
ever, these ideas are based on metaphysical explanations and not on a modern scientific
interpretation [1].

The metaphysical approach is exemplified by the philosopher Plato and his Theory of
Forms, a hypothesis of how knowledge is acquired. The idea is that a person is aware of
an object, such as a kitchen table, by comparison with an internal representation of that
object’s true form. The modern equivalent of this hypothesis is that our recognition of an
object is by the similarity of its measurable properties with its true form. According to this
theory, these true and perfect forms originate in the non-material world.

However, face recognition in primates shows that an object’s measured attributes
are not compared against a true form, but instead that recognition is from a comparison
between stored memory and a set of linear metrics of the object [2]. These findings agree
with studies of artificial neural networks, an analog of cerebral brain structure, where
objects are recognized as belonging to a category without prior knowledge of the true
categories [3].

The theory of true forms originates from a thinking of a perfectly designed world
with deterministic processes, while a theory absent of true forms may instead depend
on probabilistic processes. The rise of probabilistic thinking in natural science has co-
incided with modern statistical methods and explanations of natural phenomena at the
atomic level [4].
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A modern experimental biologist would approach a study of the mind from a material
perspective, such as by the study of the cells and tissue of brain matter. This approach is
dependent on reduction of the complexity of a problem. An example is from economics,
where an individual is generalized as a single type and consequently the broader theories
of population behavior are based on this assumption [5]. There is a similar approach in
Newtonian physics where an object’s spatial extent is simplified as a single point in space.

Since some natural phenomena are not tractable to mechanistic study, concepts exist
that are not solely based on material and physical causes. However, it is necessary to
base science theory of brain function on natural mechanisms while disallowing mental
causation. There are exceptions where the physical world is visually indescribable and
solely dependent on mathematical description, but these occurrences are typically not
applicable to the investigation of life at the cellular level.

1.2. Mechanical Perspective of Cognition

Even though a mechanical perspective of neural systems is not controversial, there
remains a non-mechanical and metaphysical perspective concerning our sensory perception
of the world. An example is the philosophical conjecture about the relationship between
the human mind and any simulation of it [6]. This conjecture is based on assumptions
about intentionality and the act of thinking. However, others have presented scientific
evidence where these assumptions do not hold true [7]. One example is the mechanism
for an intent to move a body limb, such as in the act of walking. Whereas the traditional
perspective expects a mental process of thinking that leads to the generation of these body
movements, instead the mechanistic perspective is that a neuronal cell is the generator of
the intent of a body movement [8].

While a metaphysical explanation for phenomena is applicable to some areas of
knowledge, such as in the study of ethics, these explanations are not informative of nature
where the physical processes are expected. In the case of neural systems, the neurons,
their connections, and the neural processes are measurable by their properties, so their
phenomena are assignable to material causes instead of mental causes. Further, there is a
hierarchy of cellular organization that describes the brain where each level of this hierarchy
is associated with a particular scientific approach [9]. An example is at the cellular level
where the neurons are studied by the methods of cellular anatomy. This area of study also
includes the mechanisms for neuron formation and communication between neurons.

Neural systems may be studied at a higher-level perspective, such as at the level of
brain tissue or how information is communicated throughout the neural system [10]. The
information processing of the brain is particularly relevant since it has a close analog with
the artificial neural network architectures of computer science [11,12]. However, the lower
levels of biological organization are not as comparable, such as where an artificial neural
system is firmly based on an abstract and simplified concept of a neuronal cell and its
synaptic functions.

1.3. Purpose of This Review

This review is a search for a modern scientific definition of cognition. This mechanistic
perspective is ideally approached at the higher scale of a neural system—the flow of infor-
mation. Since cognition involves knowledge, the informational level is the most relevant.
The purpose here is to provide a solid foundation for building a theory on cognition that is
free of the constraint of metaphysics. This includes rejection of traditional terminology that
is not informative in explaining the cognitive processes. The language from metaphysics
detracts from the scientific questioning process and inhibits the construction of a language
for explaining cognitive mechanisms.

Common biological processes, including evolutionary theory, are also introduced here
as a guide for helping define cognition. This guide restricts the possible explanations for
the traits of cognition since these traits are constrained in their capacity for change. There
is also an emphasis here on a putative process of how information is encoded in a neural
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system. Most of the examples are in the visual system since that is the better studied of the
sensory systems, and is supported by the theories of optics and information flow. Lastly,
there is a section on general cognition that approaches the problem from an evolutionary
perspective.

2. Mechanisms of Visual Cognition
2.1. Stochastic Processes in Biology

Vision is the better studied of the sensory systems in primates [13,14]. It is particularly
relevant since the visual processes occupy one-half of the cerebral cortex [15]. There is
theory from the cognitive sciences that both vision and language are the major drivers for
acquiring knowledge and perception of the world. It may seem daunting to imagine that
our vivid awareness of a scene is built upon levels of basic physical processes. However,
cellular life has generated a high degree of complexity by layering physical processes, such
as mutation and population exponentiality, over an evolutionary time scale.

This problem of causation of complex phenomena has occurred in explanations for the
origin of the camera eye. The formation of a camera eye that has transformed from a simpler
organ, such as an eye spot, requires a model with a very large number of advantageous
modifications over time [16,17]. A casual observer of the different forms of eyes, such
as for this case, would find it difficult to imagine a material process that could design
a functional camera eye from a simpler form. The experienced observer would instead
invoke biological processes, such as random morphological change [17] and selection for
those changes that favor an increase in the rate of offspring production. The result is the
potential for a complex adaptation.

Further evidence that the formation of a camera eye is within the reach of natural
processes is provided by the analogous camera eye in a lineage of invertebrate cephalopods.
This resulted from an adaptation that occurred independent of the origin of the vertebrate
camera eye. Yet, another case of Darwinian evolution is in the optimized refractive index
of the camera eye lens. This adaptation occurred by modifications that led to recruitment
of protein molecules from other uses to the lens of the eye [18].

There is another case of independent evolution as observed in the neural circuity of
animals. The circuit for motion detection in the visual field has converged on a similar
design in two different eye forms, both the invertebrate compound eye and the mammalian
camera eye [19]. These examples show evolutionary convergence on a similar physical
design and evolution’s potential for forming complex biological systems. In addition,
the process of evolutionary convergence is dependent on developmental constraint on
the kinds of modifications, otherwise the chance of convergence on a single design is
expectedly low.

These are all examples of natural engineering of life forms by stochastic processes.
They are not deterministic processes since they are not directed toward a final goal, but in-
stead the adaptations are continually undergoing change by genetic and
phenotypic causes.

The neural system of the brain is a direct analog of the above processes. The organ is
considered highly complex and our perceptions are not easily translated to cellular level
mechanisms. However, by the same probabilistic processes, the neurons and their inter-
connections have evolved into a cognitive system that is capable of complex computation
with large amounts of sensory data. These cognitive processes include the identification
of visual objects, encoding of sensory data to an efficient format, and pattern matching of
visual objects to memory.

2.2. Abstract Encoding of Sensory Input

The biologically plausible proximate mechanism of cognition originates from the
receipt of high dimensional information from the outside world. In the case of vision, the
sensory data consist of reflected light rays that are absorbed across a two-dimensional
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surface, the retinal cells of the eye. These light rays range across the electromagnetic spectra,
but the retinal cells are specific to a small subset of all possible light rays.

From an abstract perspective, the surface that receives the visual input is a two-
dimensional sheet of cells where each cell has an activation value at a point in time
(Figure 1). Over a length of time, the distribution of these activations is undergoing change,
so the neural system is reporting from a dynamic state of activations. This view at the visual
surface is representative of both the spatial and temporal components of the proximate
cause of vision.
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Figure 1. An abstract representation of data that are received by a sensory organ, such as light rays
that are absorbed by cells along the surface of the retina of a camera eye. The drawing shows the
spatial pattern, but there is also a temporal dimension since this sensory input data are changing
over time.

This representation of sensory data is similar to that received by artificial neural
network systems. These artificial systems are capable of identifying objects in a visual
scene and labeling them by their membership to a category of related objects. This also
shows analogous function between the artificial process and natural cognition [20].

The open problem has been generalizing this knowledge (transfer learning) that is
acquired from processing sensory input data. This is the essential problem for artificial
systems in emulating cognition in animals. However, there is recent work that employs
artificial models of transfer learning [21,22].

A related problem is in identifying an object where the viewpoint is variable. It
is addressed by a model [3] that is designed for biological realism, along with a robust
architecture for sampling the parts of an object. This approach includes the sampling
of visual data which are then encoded in an abstract format, a vector of number values.
Specifically, this sampling occurs across blocks of columns in a visual scene. Further, each
column consists of a set of vectors where each vector is assigned to a discrete category
by its level of representation of the input data (Figure 2). These processed data are then
utilized for finding columns of similarity that correspond to the parts of an object, a
consensus-based approach toward establishing a robust identification of an object.
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Figure 2. A model for processing of visual objects. The first panel shows a visual scene. The next
panel shows an open circle which represents a region with a potential object. The third panel is an
enlargement of this region. The final panel contains three open diagonal shapes that are abstract
representations of the information in the image. They are ordered from bottom to top by low to high
level of abstraction.

Previous approaches to artificial systems have often overfit the network model to a
training data set. Overfitting hinders the generalizability of the final model [23]—in this
case, the model is a network of nodes interconnected with weight values. The overfitting
problem leads to loss of transferability of the model to other applications. Nature solves
this problem by a set of processes. One is the visual processing for spatial and temporal
invariance of an object in a scene [24,25]. This leads to a more generalized form of the
object than otherwise.

A second and complementary method is to neurally code the object by metrics that
are abstract and generalizable. This reflects the example where a photograph of a cat is
encoded so that it matches to both another photograph and a pencil sketch of the cat. This
generalizability in identifying objects is now possible in the case of artificial systems [26].
Additionally, this generalizability leads to corrections for the variability in an object’s form,
such as change in its orientation, deobfuscation against the background, or detection based
on a partial view (Figure 3).
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2.3. Perception as a Mechanical Process

There is an extensive amount of visual processing in the brain since it occupies one-
half of the cerebral brain tissue [15]. Further, the number of neurons increases exponentially
from millions in the earlier visual pathways to billions in the higher layers of the cere-
brum [15]. This hierarchy of processes creates our visual perception of the world, but there
is no evidence that a perception of a scene is processed by a single cognitive path. Studies
show that an object is identified independent of the visual scene and its attributes are
modified to disfavor variability in its appearance, so that any transformation of the object
does not lead to misclassification error [27].
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Temporally, the advanced sensory processing occurs over a millisecond time scale [24],
so it not expected that perceptions occur in real time. Instead, cognitive processes cre-
ate an internal representation, a facsimile, of the sensory data and that construction
is the perception.

Studies have further divided perception and awareness into multiple types, but in
all cases these cognitive processes are a mechanical construction of the outside world [7].
These internal models that form our representation of the world are material processes,
including the perceived awareness of objects, a scene, and the occurrence of events. The
physical events that occur over time in a scene are also time delayed and the length of
that delay is subject to perception. Therefore, the representation of the time delay is not
calibrated with real time. Artificial neural networks show analogous processes with models
that are capable of predictive coding, such as completing a written sentence or the next
frame of a visual image [28].

Visual perception also includes other processes, such as the transformation of a
scene’s brightness and contrast levels [29]. This may help in identifying objects against a
background. Further, the cerebral processing in vision is more extensive than that of the
early steps along the visual pathway, so it is reasonable to assume that the perceptual image
is weakly correlated with the initial retinal input or the earlier-path internal representations
of the visual data.

Last, the limit on the number of evolutionary and developmental outcomes restricts
the possible hypotheses about cognition. For example, the evolution of the camera eye
expectedly occurred by modifications of small effect, along with the accompanying adapta-
tions in cognition. This predicts that the artificial systems can emulate the visual cognitive
processes by a finite number of steps as represented by an algorithm. This has held true
since deep learning methods are competitive with our cognitive ability to identify objects
and process natural language.

2.4. Cognition as a Pattern Matching Process

To find a class of similar visual objects, a comparison to memory is necessary. The
informative comparisons occur at particular dimensions in the visual input data. This
pattern matching and sampling process is the expected model of cognition.

Animal cognition expectedly handles these pattern matching problems at the lower di-
mensional levels of information. In contrast, artificial systems are often designed to encode
and process at a higher dimensional level, such as for the unmodified two-dimensional
pixel data in the case of vision. Another example is for a grid of values and rules of a
deterministic boardgame, such as chess. It is known that the high dimensional information
is transformed to a lower dimensional form in the layers of the neural network, but a naive
approach to these tasks has not been consistent with the goals of transfer learning.

A chess game among human players is mainly based on recognition of patterns of
chess pieces on the board, along with a limited capacity to predict future possibilities for
the state of the chess board [30]. Instead, the artificial systems are often designed by a
different approach. They typically compute a best move by heuristic searching through all
possible outcomes from all possible game moves, a method that is exhaustive in its search
of possible combinations of board states [31].

A human player searches through a small set of possible outcomes in complex
boardgames. The alternative approach based on a low level representation of the board
state leads to a computational problem with complexity that is likely beyond the capacity
and energetics of the brain. Since a human player is mainly restricted to observing pat-
terns of pieces on the board, it is expected that natural cognition is mainly operating on
the information at a state of lower dimensionality. There is empirical support for these
ideas, too [32].

Similarly, transfer learning is likely occurring at a lower dimensionality than is present
in the unprocessed input source data. Natural cognition receives high dimensional sensory
input, a robust sampling process, and that input data are reformulated for constructing
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a perceptual model. This perception is an internal representation that is a high level
of representation based on the source data. In the case of vision, the sampling occurs
across a scene, across an object, and then it is possible to also sample across the internal
representation of that object. These are statistical processes that are expected in modeling
the variability of sensory objects (Figure 3). Without the robust sampling process, then an
identification of an object is expectedly overfitted to a form not represented in memory,
and therefore impeding any process of transfer learning.

These cognitive processes may also be described as a reduction of complexity in the
sensory input data, along with extraction of relevant information for downstream cognitive
processing. Likewise, it is already known that visual scenes are highly compressible [33]
and consequently both natural and artificially designed systems are capable of extracting
visual objects from a scene. This processing leads to an internal representation of objects and
their properties. This process is complemented by preprocessing pathways for efficiency
in cognition, such as internal correction of overall brightness and contrast levels in a
visual scene.

3. General Cognition in Animals
3.1. Cognition and Essential Animal Behavior

A definition of general cognition includes the communication of abstract representa-
tions and functions related to pattern matching. This definition applies to both a natural
and artificial design. However, animal cognition has the component of general cognition
that is confounded with processes related to essential animal behavior. Insight into these
differences is available from knowledge of the evolution and development of animals.

For example, it is necessary for animal populations to consist of individuals with
a common set of behaviors. Examples of these include an adult form that survives to
reproductive age and that sufficient progeny are produced to maintain the population. If
a population does not maintain a sufficiently high birth rate to counteract the death rate,
then the population will become extinct over a number of generations. This concept is
a mathematical necessity. Since evolutionary time is very long, even slight changes in
animal behavior may lead to population extinction, a process that is highly frequent across
the history of life [34]. Therefore, cognition is not at all likely a standalone process, but
instead heavily influenced by behavior that ensures reproduction and survival at each
relevant life stage.

It is possible to imagine animal cognition without essential animal behavior. This is
the presumed state of an artificial cognitive system that is not specifically programmed with
a set of behavioral characteristics. There are popular conjectures that models of artificial
cognition may lead to a metaphysical property of animal cognition, such as intentionality
or consciousness. However, these are properties that are unsupported from a mechanistic
perspective of brain computation. Instead, any artificial design of cognition is essentially
the same as any tool that is undirected by design [35]. History is a better judge of how
undirected tools are utilized than conjectures that confound a cognitive process with
non-material causes.

3.2. Cognition and Large-Scale Neuroanatomical Changes

In the case of mammals, adaptations may occur that require enhancement or reduction
to one or more of the functions of cognition. This leads to the prediction that there is not
a hierarchy of general intelligence by brain size, but instead that the cognitive capacity,
whether visual, auditory, or somatosensory, is a complex phenotype that is subject to
evolution at the different levels of cellular organization and in specific cerebral regions.

In the case of the human lineage, it is arguable that general cognition has expanded
to meet the requirements of advanced speech, speech perception, and representation of
abstract concepts [36,37]. This is one hypothesis for the proximate cause of the evolution
of cognition in recent hominins. However, the hypothesis for an expansion in cognitive
function is not necessarily a one-to-one relationship with brain size, as exemplified in other
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mammals. It has been shown in the cerebral and cerebellar regions of whales that cognitive
capability is not simply described by a change in neuron count or density [38].

To reiterate, the morphological changes of the brain and its regions are not necessarily
a simple correlation with cognitive function. The addition and subtraction of cognitive
capabilities, such as observed by contrasting species of marine and terrestrial mammals,
are complex phenomena that are molded by evolution and development. Therefore, it is
problematic to oversimplify the relationship between molecular or anatomical characters
and a cognitive function.

3.3. Cognition as a Physiological Process

The brain is an organ with a physiology that is explainable at the different biological
scales. At the molecular level, the neurons are described by a vast number of cellular
processes, along with the electrochemical signaling that interconnects the system. There
is also a higher scale process that codes for the internal neural representations of sensory
data. Both these scales have an analog in other organs, such as the cellular composition of
the heart and its electrical system that controls its pumping action.

However, the brain is commonly separated from the other organs and assigned a
role that is both biological and metaphysical. One example is illustrated by the diverse
set of academic disciplines that study the brain, such as the cognitive sciences, sociology,
and cellular biology. These disciplines often approach the problem at a different scale and
perspective. Not all approaches are amenable to the study of proximate mechanisms, such
as for areas in clinical psychology or the philosophy of mind, and this is one reason for the
current retention of explanations based on mental processes [7].

Instead, it is more efficient to study cognition and brain computation as a product of
physical forces and communication of information across the system. This scale provides a
better foundation for an experiment by a theoretical or an empirical approach. Theoretical
study is possible by use of models from network science and information theory, both
mature areas of inquiry. The other is from computer science and the use of artificial
neural networks. An example is a recent demonstration that colors in a visual scene are
efficiently expressed by language. This was shown in an artificial neural network [39]. This
shows evidence for efficiency in the neural coding of information and that artificial models
emulate this efficiency.

In summary, at its essence, cognition is a study of the physical processes of the brain.
As with the organs of most animals, the brain has evolved and acquired derived characters,
as documented across the history of life. At the lower biological scales, the brain is an
organ no more complex than the heart. Moreover, the proximate mechanisms of cognition,
the input and coding of sensory data, are not unimaginable in complexity. Instead, it is an
organ with a physiology that is tractable for study at the different scales. As the heart is an
organ with a physiology that includes the pumping of blood, the brain is an organ with a
physiology that includes the communication of information.

4. Suggestions for the Natural and Computer Sciences

The cognitive sciences is broad in scope and methods. It is important to continue to
integrate their findings with both the other natural and computer sciences. Past findings
on perception and awareness have not permeated some of the other areas of knowledge,
but eventually any metaphysical basis will yield to a more material definition of cog-
nition [8]. The definition includes an expectation of probabilistic processes that are an
essential part of cognition, along with an encoding process that efficiently stores infor-
mation from the outside world. For acquisition of knowledge of the world and to form
generalizations, it is expected that sensory information is internally represented at a higher
level of representation, one that is built from the lower levels.

Computer scientists should remain skeptical of assertions about their artificial systems.
The benchmark for these systems, such as the advanced deep learning approaches, is not
some process of thinking. These are metaphysical ideals that are not material in origin. A
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neuron is the proximate cause of cognition and does not possess a special immeasurable
quality. If a deep learning approach is an effort to emulate a pathway on how we acquire
knowledge, then a valid and realistic model should be established beforehand. The problem
is not whether the artificial systems can emulate the metaphysics of human thinking, a
false proposition, but instead that these systems are emulating a specific and measurable
cognitive process.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Vlastos, G. Parmenides’ theory of knowledge. In Transactions and Proceedings of the American Philological Association; The Johns

Hopkins University Press: Baltimore, MD, USA, 1946; pp. 66–77.
2. Chang, L.; Tsao, D.Y. The code for facial identity in the primate brain. Cell 2017, 169, 1013–1028. [CrossRef] [PubMed]
3. Hinton, G. How to represent part-whole hierarchies in a neural network. arXiv 2021, arXiv:2102.12627.
4. Jeans, J.H. Physics and Philosophy; Cambridge University Press: Cambridge, UK, 1942.
5. Smith, A. An Inquiry into the Nature and Causes of the Wealth of Nations, 1st ed.; A. Strahan and T. Cadell: London, UK, 1776.
6. Searle, J.R.; Willis, S. Intentionality: An Essay in the Philosophy of Mind; Cambridge University Press: Cambridge, UK, 1983.
7. Haggard, P. Sense of agency in the human brain. Nat. Rev. Neurosci. 2017, 18, 196–207. [CrossRef] [PubMed]
8. Huxley, T.H. Evidence as to Man’s Place in Nature; Williams and Norgate: London, UK, 1863.
9. Ramon, Y.; Cajal, S. Textura del Sistema Nervioso del Hombre y de los Vertebrados; Nicolas Moya: Madrid, Spain, 1904.
10. Kriegeskorte, N.; Kievit, R.A. Representational geometry: Integrating cognition, computation, and the brain. Trends Cognit. Sci.

2013, 17, 401–412. [CrossRef]
11. Hinton, G.E. Connectionist learning procedures. Artif. Intell. 1989, 40, 185–234. [CrossRef]
12. Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [CrossRef]
13. Yang, Z.; Purves, D. The statistical structure of natural light patterns determines perceived light intensity. Proc. Natl. Acad. Sci. USA

2004, 101, 8745–8750. [CrossRef]
14. Cichy, R.M.; Pantazis, D.; Oliva, A. Resolving human object recognition in space and time. Nat. Neurosci. 2014, 17,

455–462. [CrossRef]
15. Prasad, S.; Galetta, S.L. Anatomy and physiology of the afferent visual system. In Handbook of Clinical Neurology; Kennard, C.,

Leigh, R.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 3–19.
16. Paley, W. Natural Theology: Or, Evidences of the Existence and Attributes of the Deity, 1st ed.; R. Faulder: London, UK, 1802.
17. Darwin, C. On the Origin of Species; John Murray: London, UK, 1859.
18. Tardieu, A.; Delaye, M. Eye lens proteins and transparency: From light transmission theory to solution X-ray structural analysis.

Annu. Rev. Biophys. Biophys. Chem. 1988, 17, 47–70. [CrossRef] [PubMed]
19. Borst, A.; Helmstaedter, M. Common circuit design in fly and mammalian motion vision. Nat. Neurosci. 2015, 18, 1067–1076.

[CrossRef] [PubMed]
20. DiCarlo, J.J.; Zoccolan, D.; Rust, N.C. How does the brain solve visual object recognition? Neuron 2012, 73, 415–434. [CrossRef]
21. Goyal, A.; Didolkar, A.; Ke, N.R.; Blundell, C.; Beaudoin, P.; Heess, N.; Mozer, M.; Bengio, Y. Neural Production Systems. arXiv

2021, arXiv:2103.01937.
22. Scholkopf, B.; Locatello, F.; Bauer, S.; Ke, N.R.; Kalchbrenner, N.; Goyal, A.; Bengio, Y. Toward Causal Representation Learning.

Proc. IEEE 2021, 1–22. [CrossRef]
23. Hawkins, D.M. The problem of overfitting. J. Chem. Inf. Comput. Sci. 2004, 44, 1–12. [CrossRef] [PubMed]
24. Yates, A.J. Delayed auditory feedback. Psychol. Bull. 1963, 60, 213–232. [CrossRef]
25. Wallis, G.; Rolls, E.T. Invariant face and object recognition in the visual system. Prog. Neurobiol. 1997, 51, 167–194. [CrossRef]
26. Goh, G.; Cammarata, N.; Voss, C.; Carter, S.; Petrov, M.; Schubert, L.; Radford, A.; Olah, C. Multimodal Neurons in Artificial

Neural Networks. Distill 2021. [CrossRef]
27. Garrigan, P.; Kellman, P.J. Perceptual learning depends on perceptual constancy. Proc. Natl. Acad. Sci. USA 2008, 105,

2248–2253. [CrossRef]
28. Liu, A.; Tucker, R.; Jampani, V.; Makadia, A.; Snavely, N.; Kanazawa, A. Infinite Nature: Perpetual View Generation of Natural

Scenes from a Single Image. arXiv 2020, arXiv:2012.09855.
29. Adelson, E.H. Lightness Perception and Lightness Illusions. In The New Cognitive Neurosciences, 2nd ed.; Gazzaniga, M., Ed.; The

MIT Press: Cambridge, MA, USA, 2000; pp. 339–351.
30. Chase, W.G.; Simon, H.A. Perception in chess. Cogn. Psychol. 1973, 4, 55–81. [CrossRef]
31. Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai, M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel, T.; et al.

A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 2018, 362, 1140–1144.
[CrossRef] [PubMed]

http://doi.org/10.1016/j.cell.2017.05.011
http://www.ncbi.nlm.nih.gov/pubmed/28575666
http://doi.org/10.1038/nrn.2017.14
http://www.ncbi.nlm.nih.gov/pubmed/28251993
http://doi.org/10.1016/j.tics.2013.06.007
http://doi.org/10.1016/0004-3702(89)90049-0
http://doi.org/10.1016/j.neunet.2014.09.003
http://doi.org/10.1073/pnas.0402192101
http://doi.org/10.1038/nn.3635
http://doi.org/10.1146/annurev.bb.17.060188.000403
http://www.ncbi.nlm.nih.gov/pubmed/3293596
http://doi.org/10.1038/nn.4050
http://www.ncbi.nlm.nih.gov/pubmed/26120965
http://doi.org/10.1016/j.neuron.2012.01.010
http://doi.org/10.1109/JPROC.2021.3058954
http://doi.org/10.1021/ci0342472
http://www.ncbi.nlm.nih.gov/pubmed/14741005
http://doi.org/10.1037/h0044155
http://doi.org/10.1016/S0301-0082(96)00054-8
http://doi.org/10.23915/distill.00030
http://doi.org/10.1073/pnas.0711878105
http://doi.org/10.1016/0010-0285(73)90004-2
http://doi.org/10.1126/science.aar6404
http://www.ncbi.nlm.nih.gov/pubmed/30523106


NeuroSci 2021, 2 150

32. Kiani, R.; Esteky, H.; Mirpour, K.; Tanaka, K. Object category structure in response patterns of neuronal population in monkey
inferior temporal cortex. J. Neurophysiol. 2007, 97, 4296–4309. [CrossRef]

33. Pang, R.; Lansdell, B.J.; Fairhall, A.L. Dimensionality reduction in neuroscience. Curr. Biol. 2016, 26, R656–R660. [CrossRef]
34. Grant, P.R.; Grant, B.R. Adaptive radiation of Darwin’s finches: Recent data help explain how this famous group of Galapagos

birds evolved, although gaps in our understanding remain. Am. Sci. 2002, 90, 130–139. [CrossRef]
35. Bostrom, N. The superintelligent will: Motivation and instrumental rationality in advanced artificial agents. Minds Mach. 2012,

22, 71–85. [CrossRef]
36. Fitch, W.T. The Biology and Evolution of Speech: A Comparative Analysis. Annu. Rev. Linguist. 2018, 4, 255–279. [CrossRef]
37. Wang, X.; Wu, W.; Ling, Z.; Xu, Y.; Fang, Y.; Wang, X.; Binder, J.R.; Men, W.; Gao, J.H.; Bi, Y. Organizational principles of abstract

words in the human brain. Cereb. Cortex 2018, 28, 4305–4318. [CrossRef] [PubMed]
38. Muller, A.S.; Montgomery, S.H. Co-evolution of cerebral and cerebellar expansion in cetaceans. J. Evol. Biol. 2019, 32, 1418–1431.

[CrossRef] [PubMed]
39. Chaabouni, R.; Kharitonov, E.; Dupoux, E.; Baroni, M. Communicating artificial neural networks develop efficient color-naming

systems. Proc. Natl. Acad. Sci. USA 2021, 118, e2016569118. [CrossRef] [PubMed]

http://doi.org/10.1152/jn.00024.2007
http://doi.org/10.1016/j.cub.2016.05.029
http://doi.org/10.1511/2002.2.130
http://doi.org/10.1007/s11023-012-9281-3
http://doi.org/10.1146/annurev-linguistics-011817-045748
http://doi.org/10.1093/cercor/bhx283
http://www.ncbi.nlm.nih.gov/pubmed/29186345
http://doi.org/10.1111/jeb.13539
http://www.ncbi.nlm.nih.gov/pubmed/31507000
http://doi.org/10.1073/pnas.2016569118
http://www.ncbi.nlm.nih.gov/pubmed/33723064

	Introduction 
	The Many Definitions of Cognition 
	Mechanical Perspective of Cognition 
	Purpose of This Review 

	Mechanisms of Visual Cognition 
	Stochastic Processes in Biology 
	Abstract Encoding of Sensory Input 
	Perception as a Mechanical Process 
	Cognition as a Pattern Matching Process 

	General Cognition in Animals 
	Cognition and Essential Animal Behavior 
	Cognition and Large-Scale Neuroanatomical Changes 
	Cognition as a Physiological Process 

	Suggestions for the Natural and Computer Sciences 
	References

