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Abstract: Tissue engineering refers to the attempt to create functional human tissue from cells in a
laboratory. This is a field that uses living cells, biocompatible materials, suitable biochemical and
physical factors, and their combinations to create tissue-like structures. To date, no tissue engineered
skeletal muscle implants have been developed for clinical use, but they may represent a valid
alternative for the treatment of volumetric muscle loss in the near future. Herein, we reviewed the
literature and showed different techniques to produce synthetic tissues with the same architectural,
structural and functional properties as native tissues.
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1. Introduction

The musculoskeletal system contains a variety of supporting tissues, including muscle,
bone, ligament, cartilage, tendon and meniscus, which support the shape and structure of
the body. After severe injuries due to various causes, such as severe diseases or trauma,
the lost tissue needs repair or replacement with healthy tissue [1].

Severe muskoloskeletal injuries can lead to volumetric muscle loss, a condition in
which massive damage and tissue loss cause a permanent loss of function [2]. Volumetric
muscle loss injuries result in permanent disability [3].

In small injuries, muscle is capable of endogenous regeneration and functional recov-
ery. In volumetric muscle loss, self-restoration is impossible due to denervation and the
loss of native vasculature, physical and biochemical signaling [4]. In this case, physical
therapy alone does not ensure the recovery of muscle strength [5–7]. The standard opera-
tive technique consists in replacing the damaged tissue with muscle flaps [8–11]. Muscle
flaps are healthy, vascularized, innervated autogenous skeletal muscle tissue from outside
of the zone of the injury, which are moved with their neurovascular supply intact [12,13].
Traditional flaps have to be placed in an area depending on the length of their artery and
nerve. Free functional muscle transfer (FFMT) differs from a traditional muscle flap because
it involves the transplantation of a donor muscle with its artery, vein and nerve transected
and sewn in a new location. In this way, skeletal muscle can be moved anywhere on the
body, and the surgeon can modify its size and orientation in order to optimize functional
outcomes [8].

The limitations of the procedure include the damage of the donor site; extended reha-
bilitation, which is limited by the reinnervation to the motor endplates in the donor muscle;
and long operative times requiring high technical skills, which can limit its widespread
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use [14]. Both free functional muscle transfer and traditional muscle flap techniques often
lead to infection, graft failure, and donor site morbidity due to tissue necrosis. These
complications necessitate surgery or the amputation of the affected limb [15,16].

Vascularized composite allotrasplants (VCAs) are grafts that are composed of mul-
tiple different allogenic tissues transplanted together as a single unit. To date, upper
extremity, face, abdominal wall, larynx, and genito–uterine tract transplants have been
performed [17,18]. This method requires chronic immunosuppression in order to avoid
rejection [19,20], which can cause visceral organ toxicity, skin-based malignancies and
lymphoproliferative disorders; a suitable donor; and the optimization of the patient’s
immunosuppressive drug regimen [21].

There is a clinical need for the development of a tissue replacement method to restore
function in volumetric muscle loss injuries [22], and tissue engineering may represent a
valid option.

Tissue engineering is a component in the field of regenerative medicine, which is
intended to produce tissue constructs to repair or replace native tissues [23].

This is a field that uses living cells, biocompatible materials, suitable biochemical and
physical factors, and their combinations, to create tissue-like structures [24]. Its ultimate
goal is to be a cure, not merely a treatment, by repairing and replacing tissues or organs
that fail due to diseases, genetic errors, congenital abnormalities, or traumatic injuries [25].

To date, no tissue-engineered skeletal muscle implants have been developed for clinical
use, but it may represent a valid alternative to treat volumetric muscle loss in the near future.

The field of skeletal muscle tissue engineering has taken great strides since Van-
denburgh’s first work in 1988, using cultured avian myotubes in collagen-coated tissue
culture plates [26]. Tissue engineering strategies can be divided into two main categories:
scaffold-based and scaffold-free approaches.

1.1. Methods

This systematic review was performed following the guidelines of the Preferred
Reporting Items of Systematic Reviews and Meta-analyses (PRISMA).

The PubMed database and Scopus database were queried for the same search string:
“tissue engineering for musculoskeletal repair”.

1.2. Results

After searching the databases, the total number of records was 4950, divided for
PubMed (n = 693) and SCOPUS (n = 4257), respectively. The title and abstract were screened,
and duplicates and nonrelevant records were removed, as summarized in Figure 1.
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2. Biomaterials

Robert S. Langer and Joseph Vacanti [27] realized that, in order to build an organ,
a framework that guides the cells’ growth is needed: a ‘scaffold’ to define the parts and
hold them together. The scaffold’s biochemical, topological and geometrical properties
and fabrication methods affect its behaviour in terms of differentiation, adhesion, and
viability [28,29]. They have a structural framework similar to the extracellular matrix
(ECM) in order to provide support for tissue regrowth.

A wide range of materials are used for scaffold processing: natural and synthetic
polymers, inorganic biomaterials, and their hybrid combination.

2.1. Natural and Synthetic Polymers

Natural polymers are obtained from plants, animals, algae or microorganisms, and
include proteins (silk fibroin, collagen, gelatin, keratin, fibrinogen, elastin, actin), polysac-
charides (chitosan, chitin, alginate, gellan gum) and glycosaminoglycans (hyaluronic
acid) [30]. They are similar to the macromolecules of the extracellular matrix, reducing the
occurrence of immune reactions and inflammation toxicity.

Acellularized tissue scaffolds are natural scaffolds derived from tissues or organs, in
which the cellular and nuclear contents are eliminated, but the tridimensional (3D) structure,
composition and microenvironment of the extracellular matrix (ECM) are preserved. They
have to be similar to the tissue that has to be repaired [31]. Recent works were performed
with animal and human skeletal muscle models. Porzionato et al. [32] decellularized
human skeletal muscle and used it as a scaffold in a rabbit model with an abdominal
wall defect. It gave good results in terms of integration, but recellularization was not
completely achieved. Wilson et al. [33] compared decellularized skeletal muscle taken from
rectus femoris and supraspinatus, showing that the muscle type influenced its material
properties. They demonstrated that these scaffolds biodegrade at a rate that corresponds
to the regeneration of the damaged muscle; biological scaffolds cannot be considered as
permanent implants, but should rather be used as a temporary support to ECM turnover
by resident cells. Davari et al. [34] implanted cryopreserved and decellularized patches,
derived from the hemidiaphragm of a deceased, in a canine model. They compared the two
methods and demonstrated that the healing process was similar, with fewer inflammatory
cells and foreign body granulomas on the decellularized patch. The ECM derived from
the decellularization of tissue may also be used for the tissue engineering of another tissue
type, as demonstrated by Wolf et al., who compared quadriceps-, hamstring- and intestine
derived scaffolds seeded with C2C12 cells implanted in the abdominal wall of a rat. After
35 days, the muscle fiber structure had been restored using each of the scaffolds [35]. A
limitation of acellularized tissue scaffolds is the limited donor tissue and the potential for
immune rejection. Trials of recellularization have been performed, and have demonstrated
that the most promising cell types are mesenchymal stem cells and induced pluripotent
stem cells, thanks to their capability of differentiation through different lineages, stimulated
by the ECM [36].

Synthetic polymers are also used. The most commonly employed are polyglycolide (or
poly glycol acid (PGA)) and polylactide (PLA), poly-lactide-co-glycolide (PLGA), poly-(D,
L-lactic acid) (PDLLA), poly-ethylene-glycol (PEG), and polycaprolactone (PCL) [37]. The
mechanical properties of these materials changes over time in a physiologic environment
according to their molecular weight and degree of crystallinity [38]. They can be hydrolyti-
cally and enzymatically degradable, and the hydrolytically degradable examples are the
most commonly used [39]. The disadvantage is that these polymers induce an immune
reaction [40].

Protein-based scaffolds provide a structural pattern like the fibrous protein compo-
nents of the ECM. These are available as scaffolds in gel form or suspended into matrices
with a pore size determined by cryogelation [41,42]. Synthetic polymers allow control
over the scaffold structure and the micro-architecture. The scaffold’s structural properties—
such as its diameter, alignment and porosity—guide the cell response, proliferation and
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differentiation [43], even after implantation [44]. Nigarawa et al. [45] used fibrin-based
scaffolds seeded with mesenchymal stem cells to demonstrate their high potential for
differentiation into skeletal muscles in vitro. Then, they implanted the construct in vivo,
into mouse damaged tibialis anterior muscle, and showed that the transplanted cells can
accelerate the functional recovery of injured muscles. Dynamic scaffolds can change their
diameter, alignment and porosity through temperature changes or magnetic fields, miming
the complexity of environmental changes in vivo. Fraley et al. [46] presented an integrated
study of ECM protein parameters in different ECM configurations using self-assembling
3D collagen, and showed how each parameter relates to others and to cell motility; cel-
lular motility was significantly predicted by fiber alignment; the cellular protrusion rate,
orientation, speed of migration, and invasion distance showed biphasic responses to in-
creasing collagen density. Wang et al. [47] also demonstrated the relationship between fiber
alignment and cells’ motility along the direction of the fiber alignment, and the change
from an unaligned to an aligned morphology. Although fiber micro-architecture influences
cellular behavior, a limitation of a synthetic polymer scaffold is the lack of cell signaling
provided by a native ECM. In order to reply to the native ECM environment, proteins and
growth factor can be incorporated into the scaffolds [48]. A hydrogel-based scaffold with
integrin binding domains improves mesenchymal stem cells’ attachment and bone repair
upon implantation [49,50].

TGF-b induced the differentiation of MSC toward chondrogenic and osteogenic lin-
eages depending on the fiber alignment [51]. PDGF induced the tenogenic differentiation of
adipose-derived stem cells in an aligned collagen nanoparticle composite fiber [52]. Quarta
et al. [53] engineered a biomimetic microenvironment that enabled the maintenance of
quiescent, potent mouse Muscle Stem Cells (MuSCs) and human Muscle Stem Cells. Both
mouse and human Muscle Stem Cells showed an enhanced engraftment and self-renewal
potential. The possibility of culturing MuSCs for a long time period without the loss
of potency gives the chance to correct genetic mutations, in order to transplant only the
corrected cells and replace the pathological tissue in muscle disorders [54,55].

2.2. Inorganic Biomaterials

Metallic and ceramic biomaterials have been used for musculoskeletal and periodon-
tal repair.

Metallic biomaterials (titanium) are characterized by high strength, low elasticity and
low density; ceramic biomaterials (aluminia, zirconia, CaPs, calico phosphate cements
(CPCs), silicates) are biocompatible, osteoconductive, and osteogenic [56].

Natural inorganic biomaterials are derived from marine shells, corals, sponges, nacres,
and animal bones, as they contain a great amount of calcium compounds.

Synthetic inorganic biomaterials are obtained by different methods (wet precipitation,
hydrolysys, mechanochemical syntehesis, microwave processing, spray drying), resulting
in materials with an increased crystal size and morphology.

They can be classified into: bioinert, bioactive, and bioresorbable.
Bioinert materials have no interactions with native living tissue, and are used essen-

tially to give structural support for bones. Examples of bioinert materials are aluminia,
zirconia, and titanium.

Bioactive materials tie with tissue, and are used to repair small bone or periodontal
defects. They are bioglasses and glass-ceramics. They have been treated with ionic elements
in order to accelerate natural tissue formation after implantation [57,58].

Bioresorbable materials are absorbed and gradually replaced by the adjacent tissue.
Examples include CaPs, CPCs, calcium carbonates, and calcium silicates.

2.3. Hybrid Biomaterials

Hybrid biomaterials are composed of a combination of organic polymers and inorganic
materials with good compatibility between the phases, maintaining the porosity and the
mechanical strengths of the scaffolds.
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These combinations have been used to produce tissues with enhanced osteoconduc-
tivity and mechanical properties. Nanostructured hybrids also show an enhanced bonding
capacity of the tissue to the organic matrices [59–62].

3. Biomaterials Modifications

The interaction between biomaterials and a biological environment depends on the
physico-chemical and morphological properties of their surface [63]. Polymers are promis-
ing materials to be used for tissue engineering. In their original form, they are biologically
inert, and the modification of the surface properties is necessary to allow the adhesion of
cells to the substrate, and cell proliferation [64]. Different methods of surface modification
have been studied. The following are the most used.

3.1. Laser Treatment

The laser irradiation of a solid substrate can induce the formation of a periodic pattern on
the surface of the substrate. This leads to laser-induced periodic surface structures (LIPSS).

According to the relationship between the wavelength of the laser radiation and
the period of the structure, these structures can be classified into: low spatial frequency
LIPSS, when the period is similar to the wavelength of the incident laser beam; high spatial
frequency LIPSS, when the period is smaller than the wavelength of the laser beam [65].

The periodic surface structures have different shapes; the most common are ripples.
The formation of the ripples depends on the interference between the incident laser beam
and the perpendicularly-reflected beam, which causes the formation and accumulation
of energy. This energy causes the heating of the non-crystalline phase of the polymer
and the melting of the crystalline phase, resulting in a periodic pattern on the polymer’s
surface [66].

The dimensions of the ripples vary according to the characteristics of the polymer
substrate and the conditions of the laser treatment: the height of the ripples remains
constant and the period increases with the increasing of the angle of incidence of the
laser beam.

Surface modifications induce variation in the chemical modification of the surface
itself, which promotes cell adhesion and proliferation. They also induce the cellular
orientation on the surface morphology, depending on the ripple period.

Human myoblasts proliferate in a systematic orientation parallel to the orientation of
the ripples only on ripples of large periods [67].

3.2. Ion Implantation

High energy ions are separated by a magnetic field and accelerated by an electric
field, and then implanted on the surface of the substrate. Their energy is thus dissipated,
inducing the breaking of macromolecular chains and the consequent change in the structure
of the polymer, inducing cell adhesion and proliferation. The depth of penetration depends
on the weight and energy of the ions. The ions of noble gasses and of oxygen or nitrogen
are the most commonly used for biomedical applications. Low energies are usually used,
because the interactions happen between the upper layers of the material [68].

3.3. Plasma Treatment

Plasma is defined as an ionized gas consisting of positive and negative charges in
equal density. There are two categories of plasma: thermal and non-thermal plasma,
depending on its thermal equilibrium state.

In thermal (or equilibrium) plasma, the electron and ion temperatures are in equi-
librium. In non-equilibrium (or cold) plasma, the temperatures of the electrons and ions
are not in equilibrium. Equilibrium plasmas are applied for the surface modification of
materials that can stand high temperatures, while non-equilibrium plasmas are ideal for
the modification of thermosensitive materials, such as polymeric nanofibrous scaffolds.
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The most commonly used plasma type for the treatment of nanofibrous scaffolds is
dielectric barrier discharge (DBD). It consists of two parallel electrodes separated by a gas
gap of a few millimeters to a few centimeters. At least one electrode is covered with a
dielectric layer, such as glass, quarz or aluminia. When a high voltage with a frequency in
the range of kHz is applied, it creates an electric field. Collisions between the accelerating
electrons and the gas determines the ionization of the gas, generating and sustaining
the plasma. When it is exposed to plasma discharges, plasma–surface interactions are
possible. The modified surfaces allow biomolecule immobilization, which is necessary for
the realization of functional substrates [69,70]. Bourkoula et al. cultured fibroblasts on
plasma-treated surfaces of increasing roughness, with effects on their adhesion proliferation
rate and morphology [71].

Kitsara et al. used plasma treatment, combined with electrospinning, to develop a
scaffold capable of activating osteoblasts [72].

Table 1 summarizes the in vitro cells studies performed on plasma-activated nanofi-
brous scaffolds.

Micropatterned substrates are synthetic polymers designed to control many aspects of
cellular behavior, including spatial organization, migration, proliferation, and differenti-
ation [73–75]. Skeletal muscle is made of multiple bundles of fiber formed by the fusion
and alignment of myoblasts into myotubes, which is necessary to produce appropriate
contraction. This is the reason why the alignment and fusion of myotubes are crucial
aspects for muscle tissue engineering. Micropatterned scaffolds have been used to guide
these processes.

Soft lithography uses an elastomeric master that is easy to mold or emboss, which can
be used directly as a substrate for biological applications or as a mold. It is widely used
for the patterning of cells and proteins through various techniques, such as microcontact
printing, microfluidic patterning, and stencil micropatterning [76–78]. It can be used for the
patterning of ECM proteins such as collagen, fibronectin or laminin; and the printing of self-
assembled monolayers with cell-repellant molecules, and a combination of cell-repellant
and cell-adhesive molecules [79–81]. Shimizu et al. [82] used a stencil membrane seeded
with C2C12 myoblasts that proliferated and differentiated, forming a pattern of single
myotubes. A direct inkjet printing technique has been used to obtain myoblasts’ pattern-
ing, improving the cell alignment and tissue formation [83]. Contractile C2C12 myotube
line patterns embedded in a fibrin gel have been developed in order to afford a physio-
logically relevant and stable bioassay system by Nagamine et al. [84]. Huang et al. [75]
used micropatterned polydimethylsiloxane (PDMS) or poly2-hydroxyethyl methacrylate
(pHEMA) as a scaffold, and transferred the aligned myotubes to biodegradable collagen
gel. Functional nanomembranes, ultrathin polymeric films of fibronectin and fibril carbon
nanotubes, can be micropatterned in order to promote myoblasts’ alignment, elongation
and differentation [85]. In five-layer 3D tissue made of human umbilical vein endothelial
cells sandwiched between myoblasts sheets, endothelial cell connections and capillary-like
structures were found throughout the layers. After trasplantation into the subcutaneous
tissue of nude rats, the endothelial networks connected the host vessels, allowing the
graft’s survival [86]. Takahashi et al. [87] discovered that an anisotropic cell sheet placed
on top of other cell sheets induced myoblast alignment. Guillarme-Gentil et al. [88] used an
electrochemical strategy for the micropatterning and detachment of heterotypic cell sheets.
These methods present the possible creation of co-cultured cell sheets, and the creation of
cellular constructs which mimic the cellular complexity of native tissue.
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Table 1. In vitro cell studies on plasma-activated nanofibrous scaffolds.

Application Cell Type Plasma Source Gas Substrate Results Reference

Bone

Human-induced
pluripotent stem

cells (iPSCs)
MW O2

Polyethersulfone
(PES)

Enhanced proliferation and
osteogenesis [89]

Human primary
osteosarcoma
cells (Saos-2)

RF O2 and Ar PCL Improved cell viability and
proliferation [90]

Mouse osteoblast
cells

(MC3T3-E1)
RF Ar/O2, NH3/O2

and N2/H2
PCL Improved cell attachment and

proliferation [91]

MC3T3 RF O2 PCL Improved cell adhesion and
ALP activity [92]

Human
mesenchymal

stem cells
(hMSCs)

Not specified Ar and N2 PCL

Improved cell attachment.
Accelerated

differentiation towards
osteoblasts

[93]

hMSCs Not specified He PCL/CMC

Enhanced osteoinductivity
without external osteogenic

differential agent, did not
support the proliferation

[94]

hMSCs RF O2 PolyActive
Significant upregulation of

bone sialoprotein and
osteonectin expression

[95]

hMSCs Not specified Air PLGA

Greatly enhances peptide
immobilization which

increases the ALP activity,
calcium content and

expression osteogenic markers
of collagen type-I, osteocalcin

(OC) and osteopontin (OP)

[96]

hMSCs RF O2 PLLA
Improved expression of genes

associated with osteoblast
linkage

[97]

hMSCs Not specified Air PLLA
Improved cell proliferation,

ALP activity and
mineralization

[98]

hMSCs Not specified Air PLLA/PVA
Increases the ALP activity
level, protein content and

calcium deposition
[99]
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Table 1. Cont.

Application Cell Type Plasma Source Gas Substrate Results Reference

Cartilage

Mouse
chondrocyte

teratocarcinoma-
derived cells

(ATDC5)

RF O2 and Ar PCL Improved cell viability and
proliferation [90]

Neonatal human
knee articular
chondrocytes
(nHAC-kn)

MW Ar Silk fibroin
Improved cell attachment,

proliferation and
glycosaminoglycan synthesis

[100]

Schwann cells
(RT4-D6P2T) RF Air PCL Improved cell proliferation [101]

MSCs Not specified Air PCL

Improved cell attachment and
proliferation,

chondro-differentiation in a
non-differential medium

[102]

Mouse lung
fibroblasts (L929) RF O2 and Ar PCL Improved cell viability and

proliferation [90]

Human foreskin
fibroblasts (HFFs) DBD Ar, N2 and

He/NH3
PCL Improved cell adhesion and

proliferation [103]

HFFs DBD Ar, N2 and
He/NH3

Chitosan/PEO Improved cell adhesion and
proliferation [104]

Normal human
epidermal

keratinocytes and
fibroblasts

(NHEKs and
NHEFs)

RF O2 Silk fibroin Improved cell attachment [105]

Epithelial

3T3 fibroblasts DBD O2 and NH3 PLGA Improved cell adhesion and
proliferation [101]

Mouse embryonic
fibroblasts (MEFs) Corona N2 PLLA

More elongated and dendritic
cell morphology. Improved

cell vitality
[106]

Bovine aorta
endothelial cells

(BAECs)
RF Ar and

Ar-NH3/H2
- Improved cell adhesion,

spreading and infiltration [107]

Stem cells

Porcine
mesenchymal

stem cells
(pMSCs)

RF O2 PLLA Improved cell adhesion [100]

Adipose-derived
stem cells
(ADSCs)

DBD Ar and Air PCL
Improved cell adhesion,

proliferation, spreading and
viability

[108]

Muscle

Primary porcine
smooth muscle

cells (SMCs)
RF Air PCL Improved spread-out cell

morphology [100]

Bovine smooth
muscle cells

(BSMCs)
RF Ar and

Ar-NH3/H2
- Improved adhesion,

spreading and infiltration [107]

Immune
System Human monocyte RF Air PLLA

Disruption of macrophage
polarization balance towards

an anti-inflammatory
profileImproved cell

morphology with
filopodia-like and

podosome-like structures on
plasma-treated samples

[109]
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4. Scaffolding Strategies

Tissue engineering mainly uses 3D porous scaffolds and hydrogels that are fabri-
cated with multiple technologies. Here, we focus on phase separation, 3D printing, and
electrospinning.

Table 2 compares the advantages and disadvantages of these techniques.

Table 2. Advantages and disadvantages of three different scaffold techniques.

Technique Advantages Disadvantages

Phase separation

• 3D pore arrangement
• Pore size and shape controllable
• Tailorable mechanical properties

• Complex procedures
• Lack of control of fiber arrangement
• Low yield
• Limited range of polymers can be used

3D printing

• Multiple extrusions with different materials
• Simplicity
• Cost effectiveness
• High speed
• Solvent free
• Tailorable internal and external architecture

• Limited range of biocompatible materials can
be used

Electrospinning

• Simple
• Continous fibers
• Wide range of materials
• Control on fiber diametres and orientations
• Tailorable mechanical properties

• Use of toxic solvents
• Difficult to control pore size and shape

4.1. Phase Separation

Phase separation can be non-solvent–induced or thermally-induced.
The non-solvent–induced phase separation process produces a heterogeneous pore

structure [110], so it is not suitable for scaffold production, since it generally requires a
uniform structure.

Thermally-induced phase separation (TIPS) allows us to obtain homogeneous porous
scaffolds [111]. During this process, a row polymer is dissolved in an appropriate solvent;
then, there is phase separation between the polymer-rich phase (which becomes a gel) and
the polymer-poor phase (the solvent); the solvent is extracted from the gel, and the gel
is frozen and dried. In this way, the polymer-rich phase forms a porous 3D matrix [112]
(Figure 2).
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Ma et al. [113] prepared, for the first time, 3D nanofibrous scaffolds from poly-L-lactic
acid (PLLA) dissolved in tetrahydrofuran (THF).

The porosity and fiber size of the scaffolds can be modified by controlling each step of
the process: the polymer/solvent system, polymer concentration, gelation temperature,
and gelation duration [114,115].
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Da et al. [116] used a biphasic scaffold composed of a bony phase, a chondral phase,
and a compact layer. The bony phase was seeded with autogenic osteoblast-induced
bone marrow stromal cells, and the chondral phase was seeded with chondrocyte-induced
bone marrow stromal cells. The biphasic scaffold-cell constructs were implanted into
osteochondral defects of rabbits’ knees, and showed an enhanced regeneration of the
osteochondral tissue.

4.2. 3D Printing

Three-dimensional (3D) printing plays an important role in the production of scaffolds
for tissue engineering. The main 3D printing categories are presented here.

4.2.1. Fused Deposition Modeling

A thermoplastic polymer is introduced into the heating chamber and melted. This
is extruded through a nozzle onto a platform, onto which it is deposited layer-by-layer,
creating a 3D form. The position of the nozzle and its movement are controlled by a
computer program, and they continue until the desired form is created [117]. The diameter
of the nozzle, the print speed, the angle and the distance between fibers, and the number
of layers define the resolution of the details [118].

The advantages of this technique are the possibility of multiple extrusions with different
materials, and its simplicity, cost-effectiveness, high speed, and solvent-free nature [119,120].

The disadvantages are the limited number of biocompatible thermoplastic materials [121].

4.2.2. Selective Laser Sintering

A laser beam heats a layer of powder materials (ceramic, plastic, thermoplastic poly-
mers) and fuses them together, with the shape being defined by a computer program. The
process is repeated layer-by-layer until the final structure is obtained [122].

This method allows us to fabricate large and complex scaffolds, and does not need
support structures and solvents [123]. The main disadvantage is that the product obtained
is rough and needs polishing [124].

4.2.3. Stereolithography

Stereolithography uses a narrow beam of light to induce the polymerization of a liquid
resin, thus obtaining the desired pattern according to a computer model. The process is
repeated layer-by-layer until the desired product is obtained [125].

Each layer is printed at the same time when multiple objects are being printed, decreasing
the printing time [126]. Since the width of the light source is small and highly-controlled, the
external and internal architecture of the scaffold can be controlled [127]. The main disadvantage
is the limited number of biocompatible materials available for this method [128].

4.2.4. Bioprinting

Bioprinting prints scaffolds using hydrogels seeded with cells. There are three main
technologies: inkjet, extrusion, and laser bioprinting (Figure 3).
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4.2.5. Inkjet Bioprinting

In thermal inkjet bioprinting, a bioink—that is, a prepolymer solution containing
cells—is loaded into an ink cartridge. The cartridge is placed in the printer, and small
droplets of ink are created thanks to the air bubbles produced by heat. The size of the
droplets depends on ink’s viscosity and the temperature applied [129].

In piezoelectric inkjet bioprinting, different potentials are applied to the piezoelectric
crystal in the bioprinting, generating a pressure that ejects the bioink droplets [130].

4.2.6. Extrusion

The extrusion method extrudes bioink using a pneumatic or a mechanical system.
In a pneumatic system, air pressure allows the extrusion of bioink from the nozzle as an
uninterrupted filament [131].

The mechanical system dispenses bioink using a screw or a piston [132].
Cells are subjected to high mechanical stresses that can decrease cell viability [133].

The main problem of this technique is the clogging of the nozzle due to cell aggregation or
the drying of the material in the nozzle.

4.2.7. Laser-Assisted Bioprinting

Laser-Assisted Bioprinting consists of a pulsed laser source, a donor layer, and a
receiving substrate. Bioink is placed below a ribbon that contains an energy-absorbing
layer. The pulsed laser source is focused on the laser-absorbing layer, generating a vapor
bubble, which creates a pressure that deforms the bioink and forms droplets. These cell-
loaded hydrogel droplets are collected and crosslinked on the receiver [134]. Laser assisted
bioprinting prevents clogging due to the absence of a nozzle and the lack of mechanical
stress on cells, increasing cell viability [133].

4.3. Electrospinning

Electrospinning is based on the use of electrical forces to produce fibers with sizes
from micro- to nanometers. The electrospinning process needs three components: a nozzle
tip attached to a high voltage direct current (HVDC) source, a flow rate controller, and a
grounded collector [135]. When an electric field is applied between the nozzle tip and the
grounded collector, a microsphere is formed at the end of the nozzle. The microsphere
elongates itself as the strength of the electric field increases, assuming a conical shape
called the Taylor cone. The electrostatic force in the cone becomes greater than the surface
tension, generating a liquid jet from the cone. The jet causes the whipping of fibers,
generating a randomly-orientated fibrous mat (Figure 4). These microsized or nanosized
fibers provide a large surface-area-to-volume ratio which can enhance cellular activities
such as attachment, proliferation and differentiation. They also simulate the structure
of the native extracellular matrix (ECM), which has a fundamental role in cell survival,
polarity, proliferation, migration, and differentiation [136–139].

Electrospun scaffolds are used in biomedical applications to regenerate various tissues.
Since some tissues—like muscles, nerves and tendons—are made of aligned structures,
studies have been conducted to align fibers. Aviss et al. [140] achieved the alignment of
poly(lactide-co-glycolide) fibers for skeletal muscle regeneration, using a rotating mandrel
as the grounded collector.

The limitations of the procedure are the use of toxic solvents, poor cell infiltration, and
non-homogeneous cell-distribution.

Cell electrospinning was introduced in order to overcome the limitations of electro-
spinning. It differs from conventional electrospinning in its use of viable cells. Townsend-
Nicholson et al. [141] introduced this method using astrocytoma cells (1321N1) embedded
in a cell suspension, which was supplied to the needle of the nozzle. Then, various cell
types and biocompatible materials were used [142–144].
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Cell electrospinning shows compatibility with different types of muscle cells, such as
cardiac, skeletal, and smooth muscle cells [145–148].

For muscle regeneration, a uniaxially-arranged micropattern is important in order to
mimic the structure of the native extracellular matrix. Yeo et al. [149] used a cell-electrospun
scaffold seeded with C2C12 myoblasts and, as a control, a 3D cell-printed scaffold in order
to compare the efficiency of the cell alignment and differentiation on myoblasts. A highly-
arranged, multinucleated cell morphology was confirmed in the cell-electrospun scaffold,
which facilitates myogenic differentiation.

Table 3 summarize advantages and disadvantages of conventional electrospinning
and cell-electrospinning [150].

Table 3. Advantages and disadvantages of conventional electrospinning and cell-electrospinning.

Advantages and Disadvantages Electrospinning Cell-Electrospinning

Advantages

• Simple process
• Provide controllable

micro/nano-sized fibers
• Mimic the native ECM structure

• All the same advantages of electrospinning
• High resolution (nanoscale)
• Efficient and fast nutrients/oxygen exchange
• Excellent cell-to-cell interaction
• Homogeneous cell distribution

Disadvantages

• Use of toxic solvents
• Insufficient cell infiltration
• Inhomogeneous cell distribution

• Low mechanical properties
• Restrict to develop into 3D structure
• Low cell density controllability
• Low precision in fiber deposition

Electrospun scaffolds, fabricated using biodegradabl polymers such as ECM pro-
teins [140,151–155], have been used for muscle tissue engineering [156]. Elastin-like re-
combinamer fibers are cytocompatible, and allow for the incorporation of different func-
tionalities, such as cell adhesion domains for fibroblasts and keratinocytes [157]. Collagen
electrospun scaffolds seeded with myoblasts facilitate the regeneration of muscle fibers
with low biocompatibility [153]. This method gives control over the scaffold’s parame-
ters, which is important for cell adhesion and myotube formation, and is quick and cost
effective [158,159].

Recent studies using different scaffold strategies for tissue engineering are summa-
rized in Table 4.
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Table 4. Recent studies using different scaffold strategies.

Technology Materials Cells/Growth Factors Outcomes Application References

3D bioprinting

Polycaprolactone (PCL) Saos-2 cell seeding

positive influence on the biological performance of the
cells; higher values for the mineralization, activity of

osteogenic-related genes, and deposition of the
mineralized matrix.

Bone tissue engineering [160]

Alginate/alginate-sulfate MC3T3-E1 cells/BMP-2

Alginate/alginate sulfate bioinks allowed good 3D cell
printing. Improvement of the release of BMP-2 was
achieved using alginate sulfate. Proliferation and

differentiation of the printed osteoblasts were enhanced

Bone tissue engineering [161]

GelMA and methacrylated hyaluronic
acid (HA) modified with HAp hASCs Positive effects on bone matrix production and

remodelling Bone tissue engineering [162]

Collagen/dECM/silk fibroin (SF) MC3T3-E1 cells

High compressive modulus mainly due to the
methanol-treated SF; high cellular activities in in vitro
tests using MC3T3-E1 cells, induced by Collagen and

dECM.

Bone tissue engineering [163]

α-TCP/collagen MC3T3-E1 cells The scaffold showed good mechanical properties and
cellular activities Bone tissue engineering [164]

collagen type I/agarose with sodium
alginate Primary chondrocytes

Addition of collagen or agarose had an impact on gelling
behavior and improving mechanical strength. The
collagen facilitated cell adhesion, accelerated cell

proliferation, and enhanced the expression of
cartilage-specific genes, (Acan, Sox9, and Col2a1)

Bone tissue engineering [165]

Fibrin and wollastonite Loaded with rabbit BMSCs
Possible extensive regeneration of both cartilage and

subchondral bone induced by in vivo transplantation of
the scaffolds

Osteochondral tissue [166]

CS/PCL dECM coating/WJMSCs seeding Improved osteogenic differentiation in vitro and bone
regenerative potential in vivo Bone [167]

PCL/β-TCP dECM coating/MC3T3-E1 seeding Improved osteogenic differentiation in vitro and bone
regenerative potential in vivo Bone [168]
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Table 4. Cont.

Technology Materials Cells/Growth Factors Outcomes Application References

Electrospinning

Graphene-incorporated electrospun
PCL/gelatin PC12 cells Good cell attachment and proliferation Nerve tissue engineering [169]

PCL/collagen Human endometrial stem cells
seeding

Good cell attachment and proliferation Higher wettability,
attachment, and proliferation rates of hEnSCs on the

PCL/collagen scaffold
Skin [170]

Polyhydroxybutyrate-co-
hydroxyvaletare (PHBV) containing

bredigite
-

Bredigite nanoparticles increased the mechanical
properties, biodegradability, and bioactivity of the

scaffolds
Bone tissue [171]

PLLA/β-TCP hMSCs seeding Enhanced water uptake ability, in vitro bio-mineralization,
and bioactivity promoted by the incorporation of β-TCP Bone [172]

Electrospinning
combined with 3D

bioprinting
PCL Laden with L929 mouse fibroblasts

Multi-layered structures—3D scaffolds—with loosely
packed nanofibers, with better surface wettability (when

compared to the 2D scaffolds)
Not defined [173]

Electrospinning
electro-spraying

PCL/HAp Murine embryonic cell seeding
High capacity to guide the migration of differentiated
bone cells throughout the cavities and the ridge of the

scaffolds
Bone regeneration [174]

PCL/gelatin and multi-walled carbon
nanotubes (MWNTs) Adult rabbit chondrocytes seeding

Increased hydrophilicity and tensile strength, and higher
bioactivity and slower degradation rate due to presence of

MWNTs; 99% antibacterial properties against
gram-positive and gram-negative bacteria.

Cartilage tissue [175]

Phase separation
process

Cartilage
ECM-derived/PLGA-β-TCP-collagen

type I
BMSCs seeding

Enhanced OC regeneration. Chondro and
osteogenic-induced BMSCs with independent

environments
Osteochondral tissue [116]

BMSCs: bone marrow stem cells; ECM: extracellular matrix; HA: hyaluronic acid; hMSCs: human mesenchymal stem cells; hASCs: human adipose stem cells; PCL polycaprolactone; PLLA: poly-L-lactic acid; SF:
silk fibroin; TCP: tricalcium phosphate.
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5. Scaffold-Free Approaches

Although classical tissue engineering is based on a combination of cells, scaffolds
and signals, scaffold-free techniques have emerged. They exploit the cells’ capability
of synthetizing tissues and responding to signals, offering advantages over traditional
scaffold-based techniques. Cell viability is increased because they do not use electric
fields, elevated temperatures or toxic chemicals [176]. Scaffold-free approaches provide
a biomimetic microenvironment allowing cell communication and the maintenance of
cell phenotypes in order to increase ECM production [177–180]. Tissue regeneration can
happen rapidly, because there is no need for scaffold degradation. They also do not cause
immune rejection in the host [181]. The advantages of scaffold-free technology over classical
scaffold-based tissue engineering make them promising solutions for use in clinical practice
in the near future.

5.1. Self-Organization Process

The self-organization process produces organized tissues with the use of external
forces, such as physical manipulation or thermal input [182,183]. Cell-sheet engineering,
pellet culture aggregates or spheroids are examples of self-organization.

5.1.1. Cell-Sheet Engineering

Cells are cultured in monolayers either on functionalized substrates or on thermo-
responsive polymers. In the first case, they are removed via the mechanical or enzymatic
cleavage of their cell-matrix attachments to the surface; in the second case, they are removed
through the change in conformation induced by the variation in temperature [184]. The last
method preserves the cell-matrix–binding interactions. After that, monolayers go through
the process of tissue fusion. Through tissue fusion, isolated cell populations make contact
and adhere [185]. The fusion of multiple cell-sheet layers can be used to generate tissues of
greater thickness in order to replicate the architecture of a target tissue [186].

5.1.2. Pellet Culture

Pellet culture consists in the centrifugation of cells inside a conical-shaped tube, and
then cell pellets are cultured in a medium in order to cause cell differentiation and ECM
deposition [187,188]. This method fails in creating tissues with mechanical properties
suitable for clinical use.

5.1.3. Aggregate Culture

Aggregate cultures are based on various methods that induce aggregate formation.
The aggregate cells lie in an environment that can induce cell differentiation, ECM synthesis,
and the formation of neotissue. These methods, like pellet culture, are not suitable alone
for in vitro biomimetic tissue engineering, because they produce small cell aggregates. In
any case, these approaches can be used in tissue engineering with other technologies for
the maintenance of many cell types [189,190].

Self-organizing musculoskeletal tissues show structural features and mechanical
functions similar to those of the native tissues [191,192]. Donnelly et al. [193] showed
that the physiology and function of muscle can be improved in vitro using an electrical
stimulation bioreactor. Electrical stimulation applied to monolayers in a culture caused
an increase in protein synthesis, while the stimulation of three-dimensional engineered
muscle improved force production and excitability.

5.2. Self-Assembling Process

The self-assembling process produces tissues with spontaneous organization without
the influence of external energy. These tissues are characterized by the use of a non-
adherent substrate to minimize the tissue’s free energy, sequential phases that reassume
native tissue formation, tissue constructs with clinically relevant size and morphology, and
functional properties like those of native tissue [194].



Surgeries 2021, 2 73

This process has been used especially in articular cartilage tissue engineering [195].
The differential adhesion of surface-bound molecules and differential interfacial tension
are mechanisms that contribute to the explanation of self-assembly.

Williams et al. [196] produced scaffold-free constructs and implanted them into the
hind limb of a rat along the sciatic nerve. After one week in vivo, the engineered constructs
showed phonotypical modification: a developing capillary system, an epimysium-like
outer layer of connective tissue, and an increase in myosin-heavy chain content. In addition,
they increased in contractile strength, and no signs of immune rejection were observed.

Carosio et al. [197] engineered three-dimensional vascularized skeletal muscle tissue
and implanted it in place of the extensor digitorum longus muscle in mice, restoring the
functionality of the damaged muscle.

The advantages of scaffold-free techniques consist in the native tissue integration,
enhanced ECM deposition and direct mechanic transduction, and the avoidance of the
release of harmful by-products. They also avoid issues of cytotoxicity caused by the
processing conditions required for the production of some biomaterials. By avoiding the
use of synthetic materials, biocompatibility issues are mitigated.

These technologies present some limitations. The engineered tissues have to present
the same mechanical characteristics as the tissue that needs to be repaired. Dennis and
Kosnik [197] produced a self-assembling skeletal muscle tissue in which the myotubes
remained arrested in an early developmental state due to the absence of signals to pro-
mote the expression of adult myosin isoforms. This limitation can be resolved by the
development of a vascular network in vitro [198].

The needs of the cell source are also an important issue. Stem cells are an attractive
cell source, since they can differentiate into different cells and tissues, so co-cultures of
primary cells and stem cells should be explored [199]. The problem is that, in many cases,
they don’t totally differentiate into the target tissue, compromising the properties of the
neo-tissue. Another limitation for the creation of functional muscle tissue is the time
required for myoblasts and fibroblasts to assemble a robust tissue through ECM. Even
if the process is faster than the scaffold-based approaches, it takes almost a month to
assemble an implantable muscle–tendon construct in vitro. For this reason, scaffold-free
constructs could be more appropriate for chronic reconstruction, rather than the acute
repair of traumatic injuries.

6. Clinical Use of Tissue Engineered Products

The progress in the field of tissue engineering led to the development of tissue-
based products that could be a valid alternative to conventional approaches in clinical
practice. The development of a tissue engineered product is complex and time consuming,
because it requires the application of legal and regulatory frameworks established by
health care agencies. A marketing authorization (MA) by the competent authority is
necessary for commercialization. These depend on the nation in which they are intended
to be marketed [200]. Currently, only 12 tissue-based products have been authorized
worldwide [201] (Table 5).
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Table 5. Tissue-based products authorized worldwide.

Name (MA Holder) Therapeutic Indication Jurisdiction

Spherox (CO. DON AG) Articular cartilage defects of the femoral condyle
and the patella of the knee up to 10 cm2 European Union

MACI (Vericel Denmark ApS.) Full-thickness cartilage defects of the knee of
3–20 cm2 European Union

CHONDROCELECT (TiGenix N.V.) Cartilage defects of the femoral condyle of the knee
of 1–5 cm2. European Union

Holoclar (Holostem Terapie Avanzate S.R.L) Moderate to severe limbal stem cell deficiency due to
physical or chemical ocular burns. European Union

MACI (Vericel Denmark ApS) Full-thickness cartilage defects of the knee with or
without bone involvement in adults. Unied States of America

GINTUIT (Organogenesis, Inc.) Topical treatment for vascular wound bed
postsurgery with mucogingival conditions in adults United States of America

Carticel (Vericel Denmark ApS)
Cartilage defects of the femoral condyle, in patients

who have had an inadequate response to a prior
surgical repair procedure

United States of America

HeartSheet (TerumoCorporation, Ltd.) Severe heart failure Japan

JACC (Japan Tissue Engineering Co., Ltd.) Osteochondritis and traumatic cartilage defects Japan

JACE (Japan Tissue Engineering Co., Ltd.)
Treatment for severe burns

Giant congenital melanocytic nevus
Dystrophic and junctional epidermolysis bullosa

Japan

Kaloderm (Tego Science, Inc.) Second-degree burn
Diabetic foot ulcer South Korea

Holoderm (Tego Science, Inc.) Second- and third-degree burns South Korea

7. Conclusions and Future Directions

Tissue engineering studies different techniques to produce synthetic tissues with the
same architectural, structural and functional properties as native tissues. In the last few
decades, it has made significant progress in creating functional tissues that are able to
replace the ones damaged by age, disease or trauma. Scaffold-based and scaffold-free
approaches have been developed and studied over the years.

The main goal is to produce a material that is able not only to replicate the structural
components of the extracellular matrix of the native tissue, but also the interactions with
cells, regulating adhesion, proliferation and differentiation. This presents a challenge
because the production of an engineered tissue is a multistep process which consists of
multiple components, and acting on one of its properties can negatively affect the others.
Different types of natural and synthetic biomaterials, used alone or in combination, have
been developed for musculoskeletal tissue engineering.

Even if the development and maturation of the musculoskeletal system are difficult to
reproduce in laboratory, deepening the knowledge of the processes regulating endogenous
regeneration will be critical for the development of engineered materials. This could help
us to understand the interactions between materials and cell environments in the tissue, in
order to improve their effectiveness after implantation in vivo.

For example, a scaffold that provides mechanical stability, fiber alignment and con-
trolled bioactive molecules is able to cause functional skeletal muscle regeneration. These
scaffolds should be engineered in order to promote vascularization and innervation, which
are necessary for normal muscle function and regeneration.

Engineered muscle tissue has to be biocompatible in order to permit muscle regrowth
without immune reactions. It also has to be scaled up in order to replace clinically-relevant
volumes of tissue. Studies in vivo could be more effective than in vitro to obtain biocom-
patible and large-enough tissue. The development and standardization of the appropriate
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animal models are needed in order to create valuable long-term results and allow clinical
application.

The simultaneous use of scaffold and scaffold-free approaches is a promising method,
depending on the characteristics of the tissue that needs to be repaired. The choice of the
method should be based on the knowledge of the development of the tissue in vivo, in order
to use an approach that is as close as possible to the biological process. For example, the
phases of the self-assembling process are similar to the development of articular cartilage
in vivo.

Further research into the biological mechanisms at the basis of muscular endogenous
regeneration could guide new approaches that can be used in skeletal muscle tissue
engineering. The ultimate aim of tissue engineering is to synthetize neo tissues with a high
level of complexity that present the exact features of native tissue, in order to regenerate it.

To date, the commercialization and clinical use of tissue-engineered devices is still
poor. This is due to scientific and technical challenges, but also regulatory ones. Although
the current research shows promising results, long-term studies are necessary in order to
evaluate the implant–tissue interactions and turn them into a clinical strategy. The clinical
translation of these products has led to the creation of regulatory schemes by regulatory
bodies. Tissue-engineered products follow different regulatory approaches depending on
the jurisdiction in which they have to be marketed. The creation of common regulatory
schemes and market authorization requirements could accelerate their commercialization
and use in clinical practice.
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