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Abstract: Perforations adversely affect the structural response of unreinforced masonry walls (UMW)
by reducing the wall’s load bearing capacity, which can cause serious structural damage. In the
absence of a reliable procedure to accurately predict the load bearing capacity and stiffness of
perforated masonry walls subjected to in-plane loadings, this study presents a novel approach
to measure these parameters by developing simple but practical equations. In this regard, the
Multi-Pier (MP) method as a numerical approach was employed along with the application of an
Artificial Neural Network (ANN). The simulated responses of centrally perforated UMW by the
MP method were validated utilizing full-scale experimental walls. The validated MP model was
used to generate a simulated database. The simulated database includes results of analyses for 49
different configurations of perforated masonry walls and their corresponding solid masonry walls.
The effect of the area and shape of the perforations on the UMW’s behavior was evaluated by the MP
method. Following the outcomes of the verified MP method, the ANN is trained to develop empirical
equations to accurately predict the reduction in the load bearing capacity and initial stiffness due to
the perforation of UMW. The results of this study indicate that the perforations have a significant
effect on the structural capacity of the UMW subjected to in-plane loadings.

Keywords: perforated masonry wall; load bearing capacity; stiffness; structural behavior; multi-pier
method; artificial neural network

1. Introduction

The accessibility of materials, unavailability of skilled experts, and ease of construc-
tion, along with geometric versatility and durability, allow masonry structures to be found
all around the world. However, these types of structures absorb strong forces during
earthquakes due to their high range of mass and stiffness values. Moreover, low tensile
and shear strength, and low ductility to resist seismic forces, along with the high variability
of masonry material properties, cause these types of structures to be vulnerable to damage
in even moderate earthquakes, which confirms the need for further investigation of their
behavior. Masonry is categorized as a non-homogeneous anisotropic material and requires
robust analysis to determine the masonry structure response [1]. Numerical modeling is
commonly employed to analyze the behavior of masonry structures using different load
applications. It is generally accepted that the presence of an opening in a masonry wall,
due to functional or ventilation requirements, changes the response of the wall, and con-
sequently affects the structure’s behavior. The impact of openings on masonry walls and
infills have been studied using numerous analytical simulations [2–10]. However, new
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sophisticated numerical models are required in order to overcome several fundamental is-
sues such as the inherent complexity of non-linear masonry response subjected to both low-
and high-level external load applications [11,12]. Thus, a robust, time-saving, and reliable
approach is required to analyze the response of masonry walls with openings. However,
the reported findings regarding the effects of openings on the behavior of masonry walls
have conflicting results. To achieve the greatest performance, Kakaletsis and Karayan-
nis [13] recommended the location of the wall openings being adjacent to the edges, while
others concluded that the wall openings should be located at the center of the wall [14,15].
In addition, Chen and Liu indicated that openings offset far from the loaded side have a
slight reduction effect not only on the strength, but also the stiffness of a masonry wall
compared to openings placed in the direction of the loaded side [7]. Moreover, provisions
for masonry walls with openings are not included in the current American and Canadian
masonry design specifications [7,16,17].

In many studies, numerical analysis has been conducted to evaluate the in-plane
behavior of perforated masonry walls. Kato et al. [18] proposed a seismic-based method
for designing shear walls with openings in accordance with the ultimate capacity approach.
Qamaruddin [19,20] suggested a new in-plane approach to evaluate the stiffness of a
shear wall with openings by assuming a flexible response of spandrels such as rotation
and translation subjected to lateral loads. Zhang et al. [21] simulated the performance
of reinforced masonry walls by applying out-of-plane seismic loads. Based on the test
outcomes, the load capacities of the openings considerably depend on their size and
location. Ghobarah and Galal [22] used strengthened unreinforced masonry walls (UMW)
with openings to enhance the wall capacity subjected to high-range out-of-plane loads.
In accordance with this finding, the wall capacity located adjacent to an opening can be
improved by strengthening the walls with carbon fiber-reinforced polymer strips. The in-
plane response of post-tensioned concrete masonry walls with an opening was researched
by Wight et al. [23] by applying lateral loads. In this study, the effects of openings in
the walls were analyzed using two single-story in-plane walls. The assessed damages
on the wall were cracks occurring below the openings, along with vertical bond beam
cracks. However, the reduction in the lateral strength was not reported. Augenti et al. [24]
researched the lateral in-plane performance of UMW with openings in a full-scale test.
The load bearing strength of the wall was controlled under the influence of a spandrel
panel, and the rocking of piers was controlled by the lateral wall stiffness. In-plane loading
experiments on masonry walls including a central opening were conducted by Vanin and
Foraboschi [25]. It was shown that the geometrical and mechanical properties, along with
the brick arrangement and loading conditions, play an important role in the structural
behavior of masonry walls.

A parametric study on multi-story perforated masonry walls was done by Chavez [26].
The results show that the lateral load bearing capacity of masonry wall is governed by the
opening width compared to the opening height. It is also recommended to conduct further
investigation to secure a relationship between the load bearing capacity of the wall and its
opening shape. Howlader et al. [27] evaluated the in-plane response of the UMW subjected
to the cyclic loadings. Their results indicate that the in-plane capacity and the failure modes
were significantly affected by changes in wall geometry and the imposed vertical pre-
compression loading. The same models were investigated numerically using the simplified
micro-modelling approach by Howlader et al. [28]. The results of finite element modeling
agree well with experimental results. However, the finite element models overestimated
the peak lateral loads by an error margin of about 15%. Moreover, the numerical analysis
of specimens illustrated higher values of initial stiffness compared to the experimental
outcomes in all the models. Finite element analyses were not able to show pier diagonal
shear cracking, which was observed in some of the tested walls. The results of numerical
tests indicate an enhancement in load bearing capacity by improving the pre-compression
level. Considerable damage was reported in the piers and spandrel associated with the
increased load levels. Sandoli et al. [29] proposed a strut and tie scheme to model the
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spandrel panels in a full-scale masonry wall. In this method, the mechanical behavior of
spandrels is modeled with a more realistic representation, since the model considers the
axial force and the flexural and shear stiffness. An easy, although approximate, procedure
for the evaluation of the seismic safety index of Italian building heritage was suggested
by Guadagnuolo et al. [30]. This procedure was also used to optimize the strengthening
interventions. The ability of the proposed method was assessed by its implementation to
two buildings representative of a large number of residential buildings in Caserta, Italy.

2. Adopted Methodology
2.1. Proposed Discrete Element Method Approach

The prime objective of this study is to develop an innovative empirical approach
to anticipate the load-bearing capacity and initial stiffness of perforated UMW. To the
best knowledge of the authors, no reliable study has been performed to estimate the load
bearing capacity of the perforated UMW. Presently, just a few numerical and experimental
research studies have been conducted to analyze the effect of openings on the behavior of
UMW, which requires further robust analysis.

In this research study, the multi-pier (MP) approach, as a discrete element method
(DEM), was employed and the results were compared using the outcomes of the previous
studies. The MP was originally developed by Pirsaheb et al. [31,32]. This approach can
determine both the in-plane and out-of-plane non-linear general responses of masonry
walls, regardless of their shape, subjected to various loading conditions with acceptable
accuracy and simplicity. A specified assemblage of vertical and diagonal trusses, which sub-
stitute for a real masonry wall, are able to exhibit the non-linear behavior of structures
through one-dimensional elements. The effect of the area and shape of the opening on
UMW behavior was determined using the MP method. The results of the applied MP
method were used to train the artificial neural network (ANN) to achieve more accurate
results, along with developing a practical equation for predicting the effects of the opening.
This paper combines two different branches of science (i.e., numerical modeling and soft
computing) to address a complex problem. Figure 1 is a flow chart of the activities/tasks
performed in this study.

Figure 1. Flow chart of the activities/tasks performed in this study.
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2.2. Theoretical Basis of the MP Method

The truss method is a simple, practical, and time-saving approach which replaces
the macro method. This procedure is in accordance with the Holmes diagonal tension
concept [33] and has been analyzed in a few previous research studies [34–43], has attracted
the attention of practitioners. The idea of this method is, basically, to rely on simplifying
the problem of a masonry wall, which is basically two dimensional, to the assemblages of
axial members. This method can be utilized with less effort and provides the capability
to implement a simple one-dimensional failure criterion for truss elements, leading to
its appeal in standard practice. This method is applicable for the design and analysis of
retrofitted masonry buildings by determining the required global responses of the structure
(e.g., post-peak response, patterns of local cracks, maximum displacement, and load-
bearing capacity) [31].

The method was validated with various ranges of experimental masonry walls, in-
cluding low and high levels of pre-comparisons and various height-length (H/L) ratios
in [24]. The obtained results from the MP method, compared with experimental and FE
approaches, are satisfactory in both the entire pushover curve and the failure mechanism.
In the research of Pirsaheb et al. [24], a sensitivity scenario was carried out on piers with
different pre-compression and H/L ratios to show how the method is capable of predicting
the tensile, shear and compressive behavior of URM walls. [24].

In this method, the failure criterion is based on Mohr–Coulomb law, while the rela-
tionship between shear strength and precompression was discussed in detail in [24]. In this
case, it should be mentioned that the effect of compressive stresses on shear strength is in
two parts; the first is gravity loads and the second is compressive stresses due to lateral
loads. These two stages are discussed as follows:

a. Gravity loads:
Regarding the gravity loads, braces in the MP approach provide shear stiffness and

transfer shear stresses due to lateral loads in the equivalent truss assemblage of the masonry
wall. These shear stresses are converted to axial tension and compression in the braces.
The tensile strength of the braces is also calculated according to shear strength of the bed
joints of the masonry wall, according to the FEMA equation [44,45]:

fvm = 0.375 fv0 + 0.5σv (1)

where fvm is the bed joint shear strength of the masonry unit, fv0 stands for the pure shear
strength of the masonry unit, and σv indicates the vertical compressive stress due to gravity
loads. It is obvious the shear strength has a direct relationship with compressive stresses
due to gravity loads (Figure 2a).

Figure 2. Axial stresses distribution in braces. (a) Gravity loads. (b) Lateral load (shown in some elements).
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b. Lateral loads:
For considering the effect of lateral loads, Figure 2b shows how the lateral loads

divide a masonry wall into two tensile and compression regions. The compression stresses
will appear in the braces due to the application of gravity loads. The tensile stress due
to the lateral load in the tensile region decreases as shown in Figure 2a, because of the
pre-compression in the wall. On the contrary, the pre-compression causes an increase in the
compression stress of the braces in the compression region. The tensile stresses in the left
hand side of the wall in Figure 2b induce tensile cracks in a masonry wall. Toe crush may be
seen in the right hand side due to the compression stresses and an increase in these stresses
due to lateral loads. The active mechanism which arises in the equivalent system due to
distribution of the aforementioned stresses in the braces enriches Mohr–Coulomb’s law.

In the MP method, the masonry building model is analyzed using separated arbitrary
vertical axial piers connected to cross-linking brace members. The flexural and shear
response of the masonry structure is simulated using vertical and diagonal members,
respectively. The various components of wall stiffness and its equivalent system must be
assessed and assigned to the piers and braces. The axial stiffness values of the analyzed
wall are the summation of all piers’ axial stiffness. The moment of inertia of the wall can be
expressed as Equation (2).

Iw = ∑N
n=1 tw(

Lw

N
)d2

n (2)

where Iw, tw, Lw, and dn are the moment of inertia, thickness, length, and nth pier’s distance
in respect to the center of the simulated wall, respectively. The shear behavior of the wall is
considered by diagonal braces in the MP method, which are assumed to accurately take into
account the shear force transfers within the model piers. The shear stiffness values of the
bracing system along with the masonry wall are measured based on Equations (3) and (4),
according to Milani et al. [46].

kwall =
ApG
1.2hp

(3)

kbraces =
2AbE

lb
cos2θ (4)

where Ap, G, hp, Ab, and E are the cross-section of a pier, the shear modulus, the height
of a pier, the cross-section of a brace, and the modulus of elasticity. lb is the length of a

brace, which can be calculated as
√

lp2 + hp2. θ is the brace angle and is equal to lp/lb.
The equal values of shear stiffness in the trusses’ assemblage and in the real masonry
are used in the analysis. In this respect, the gross cross section is determined according
to Equation (5). For a shear masonry wall, a common equivalent system with trusses is
replotted in Figure 3.

Ab =
Gtw

(
lp

2 + hp
2)1.5

2.4 Ehplp
(5)

Figure 3. Masonry wall and equivalent system.
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2.3. Multi-Pier Algorithm for Perforated and Unreinforced Masonry Wall

The milestones for the sound practical implementation of the MP method are as
follows, according to Pirsaheb et al. [24]:

1. Split the wall into nearly square cells.
2. Create continuous vertical piers with an equal thickness of the wall section for the

middle and side piers equal to Equations (6) and (7), respectively.

lp =
Lw

N
(6)

lp =
Lw

2N
(7)

3. Determine the cross-section area of the braces and assign it to the brace elements in
the proposed equivalent system, using the Equation (5).

4. Evaluate the material characteristics in the non-linear phase and assign them to
the members.

5. Analyze the load-control static nonlinear behavior of the wall subjected to the grav-
ity loads.

6. Analyze displacement-control static nonlinear response of the wall by applying
lateral loads.

7. Extract the ultimate load capacity and the related displacement values using the
pushover curve. Some correction needs to be implemented in order to utilize the
MP method for perforated masonry walls. The equivalent truss system of braces
and piers, in which there are spandrels, should be rotated and placed horizontally to
sustain horizontal stresses.

2.4. Validation of MP Modeling with Experimental Data

Two experimental masonry wall specimens with and without a central opening were
simulated and analyzed to ensure the reliability of the MP method to assess the global
load-displacement response of the walls. The experimental specimens were selected based
on their accessibility, which is an important factor for conducting a more reliable numerical
simulation. The predicted global response using pushover analyses is discussed. In this
regard, the effect of peak load, initial stiffness and the displacement related to the peak
load are considered. Table 1 presents the characteristics of these parameters. In this
table, D donates the displacement related to the peak load. In the following experimental
specimens, descriptions are presented. In the MP method, a displacement control approach
was conducted for the global non-linear static analyses in the softening phase by applying
lateral loads up to the failure criteria.

The JD specimen (Figure 4) is a masonry wall with 1000 × 990 × 100 mm dimensions,
which was made of 10 mm thick mortar along with 210 × 52 × 100 mm wire-cut solid
clay bricks, without any opening [47]. A constant 0.3 MPa compression load is applied
to the top surface of the wall in vertical direction using a rigid steel beam during the
experiments. The wall was completely fixed on a rigid foundation using specifically
conceived connectors [48].
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Figure 4. Validation of multi-pier (MP) modeling with experimental data.

Table 1. Comparison of experimental and numerical results (units are kN and mm).

Specimen Exp. P Num. P. Num
Exp. P Exp. K Num. K. Num. K

Exp. K Exp. ∆ Num. ∆ Num.∆
Exp. ∆

JD [49] 52.68 56.18 1.06 67.04 84.63 1.26 2.59 2.71 1.04
J2G [49] 37.13 38.22 1.03 35.77 35.79 1.00 7.6 5.94 0.78
W2 [48] 414.8 400.2 0.96 204.4 232.0 1.13 9.9 8.6 0.86
W4 [48] 208.0 202.7 0.97 86.0 71.0 0.82 7.0 5.4 0.76

Experimentally, another masonry wall was tested, labeled as J2G, with dimensions of
1000× 990× 100 mm, containing a rectangular central opening and a width/height ratio of
0.99 [49]. During the loading procedure, a similar 0.3 MPa compression load was applied in
the vertical direction on the top of the wall. Rotations of the top were fixed using a stiff steel
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beam, and subsequently, the top of the wall was subjected to an incremental compression
load in the horizontal direction. The central opening includes two relatively small weak
piers and forces the compressive strut that develops by the loading in horizontal direction
to extend over either side of the opening.

Two different masonry walls of 240 mm thickness constructed using Chinese codes
were selected to verify the MP method results. The dimensions of the walls were 1990 ×
1490 × 240 mm and a constant vertical pre-compression of 0.3 fcm was applied on the top
edges using a rigid concrete beam. fcm is the compressive strength of the masonry unit
and was equal to 10 MPa the in study of Peng et al. [48]. Therefore, the pre-compression
of these models was 3 MPa, which is a relatively high pre-compression. W2 (Figure 4e) is
a masonry wall without an opening and W4 (Figure 4g) is the same wall with a central
opening of 630 × 760 mm, representing an opening area ratio of 16% [48].

The results of the numerical and experimental analyses indicate that the suggested
method can precisely evaluate the maximum load, despite its ease and simple theoretical
basis, as listed in Table 1. Moreover, the MP method is able to cover a wide range of
pre-compression values, from low, which is correspondent to tensile failure, to high pre-
compression, indicating shear and compressive failure. The proposed method considers
initial wall stiffness in the elastic phase based on the introduced approximations. The global
numerical results can also be estimated using the MP method with reasonable accuracy.
The key advantage of the proposed method is that all these capabilities, requiring very
limited material properties, expertise, or time to make and analyze the model, compared
with other methods, can predict such results [31].

2.5. Generating Database by Numerical Simulation for ANN Application

The suitable accuracy of the MP method in predicting the load-bearing capacity and
the initial stiffness of a perforated masonry wall was determined. As previously stated,
the MP method is capable of predicting the peak load, initial stiffness, displacement
corresponding to the peak load, general behavior of the load-displacement of UMW, and
crack pattern of UMW with less time and effort in both the pre-processing along with the
computational phase with high accuracy in results. These capabilities make this approach
more favorable than other methods, such as finite element modeling. In this regard, the
effect of the opening area and aspect ratio on the global response of a masonry wall was
investigated. The masonry wall has dimensions of 1000 × 990 × 100 mm and is assumed
to have constant mechanical properties and pre-compression (as listed in Table 2). A set
of appropriately designed experiments were used to generate a handful of numerical
simulations. They were used as the input in a soft computing algorithm [50,51], i.e., ANN,
and further developed the meta-models related to the experimental test.

Table 2. Mechanical properties of unreinforced masonry walls (UMW) to generate database based on
MP method.

Dimension (mm) L/W fcm
(MPa)

ftm
(MPa) fϑ0 (MPa) Eϑ (MPa) G (MPa) σϑ(MPa)

1000 × 990 × 1000 ~1 10 0.5 0.6 5500 2200 0.1 fcm

The results obtained from the numerical study using the MP method were used to esti-
mate the response of a perforated masonry wall containing a central opening. The database
included 49 distinctive UMW with different opening areas and aspect ratios. To gener-
alize the numerical results to other masonry walls, the results were expressed relatively:
(e.g., the ratios of the opening height to wall height and opening width to wall width were
considered as inputs, and the load bearing capacity and stiffness of the masonry wall with
an opening to the similar wall without an opening were determined as outputs). The
selection of these two inputs was based on the fact that the results of this study may be
used for creating a new opening in an existing wall owing to architectural or functional
purposes. Table 3 presents the parameters for the masonry wall dataset. In this table, h, l, H,
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L, P0, P, K0, and K are the height of the opening, the width of the opening, the height of the
masonry walls, the width of the walls, the wall load bearing capacities of the perforated
wall and solid masonry wall, the stiffness of the perforated wall, and the stiffness of the
solid masonry wall, respectively. As mentioned in Section 2.3, the distance between each
pier is equal to the thickness of the wall. Therefore, the increase in the size of the opening
is limited by the masonry wall thickness, which was 100 mm in this study (results in h/H
and l/L equal to 0.1). The simulated database is given in Table 4.

Table 3. Parameters of perforated masonry wall containing central opening and their ranges.

Parameter Symbol Min Max Increment Step

Opening height to wall height ratio h/H 0.1 7 0.1
Opening width to wall width ratio l/L 0.1 7 0.1

Load bearing capacity ratio PO/P 0.14 0.98 0.1
Stiffness ratio KO/K 0.08 0.96 0.1

Table 4. Simulated database in this study.

l/L h/H Opening Area/Wall Area h/l v/vf k/kf

0.1 0.1 0.01 1 0.980666 0.96871
0.2 0.2 0.04 1 0.806663 0.858486
0.3 0.3 0.09 1 0.606038 0.696498
0.4 0.4 0.16 1 0.445122 0.514551
0.5 0.5 0.25 1 0.312017 0.33711
0.6 0.6 0.36 1 0.23022 0.188257
0.7 0.7 0.49 1 0.145598 0.08563
0.1 0.2 0.02 2 0.925045 0.93214
0.1 0.3 0.03 3 0.852023 0.887458
0.1 0.4 0.04 4 0.775431 0.838527
0.1 0.5 0.05 5 0.716984 0.788952
0.1 0.6 0.06 6 0.654372 0.741823
0.1 0.7 0.07 7 0.603807 0.699845
0.2 0.3 0.06 1.5 0.725312 0.796807
0.2 0.4 0.08 2 0.653183 0.736415
0.2 0.5 0.1 2.5 0.598899 0.680144
0.2 0.6 0.12 3 0.549524 0.630312
0.2 0.7 0.14 3.5 0.499554 0.588076
0.3 0.4 0.12 1.3 0.545062 0.627865
0.3 0.5 0.15 1.6 0.496877 0.567216
0.3 0.6 0.18 2 0.439024 0.515452
0.3 0.7 0.21 2.3 0.42326 0.472573
0.4 0.5 0.2 1.25 0.392772 0.451198
0.4 0.6 0.24 1.5 0.36392 0.399176
0.4 0.7 0.28 1.75 0.339233 0.357584
0.5 0.6 0.3 1.2 0.290155 0.287535
0.5 0.7 0.35 1.4 0.269482 0.250064
0.6 0.7 0.42 1.16 0.206276 0.157353
0.2 0.1 0.02 0.5 0.893962 0.917203
0.3 0.1 0.03 0.33 0.762493 0.848056
0.3 0.2 0.06 0.66 0.681588 0.770925
0.4 0.1 0.04 0.25 0.625818 0.765388
0.4 0.2 0.08 0.5 0.558745 0.673191
0.4 0.3 0.12 0.75 0.500892 0.588849
0.5 0.1 0.05 0.2 0.496877 0.673191
0.5 0.2 0.1 0.4 0.450773 0.569148
0.5 0.3 0.15 0.6 0.406008 0.477723
0.5 0.4 0.2 0.8 0.345033 0.400335
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Table 4. Cont.

l/L h/H Opening Area/Wall Area h/l v/vf k/kf

0.6 0.1 0.06 0.16 0.402736 0.575328
0.6 0.2 0.12 0.33 0.352023 0.462271
0.6 0.3 0.18 0.5 0.308745 0.366984
0.6 0.4 0.24 0.66 0.270821 0.290497
0.6 0.5 0.3 0.83 0.241077 0.23178
0.7 0.1 0.07 0.14 0.314247 0.472959
0.7 0.2 0.14 0.28 0.271565 0.35385
0.7 0.3 0.21 0.43 0.231261 0.259722
0.7 0.4 0.28 0.57 0.199584 0.190317
0.7 0.5 0.35 0.71 0.17445 0.141386
0.7 0.6 0.42 0.86 0.162701 0.108164

3. Artificial Neural Network Analysis
3.1. ANN Background

Neural networks can simplify complex models to a practical and accurate system.
Neural networks consist of straightforward elements that function in parallel to each other.
These systems are information manager models developed based on the human brain’s
function. The functionality of the neural networks in nature is assessed by the way in
which the components are interconnected [52]. Therefore, it is possible to construct an
artificial structure in accordance with natural networks [53], and determine the relationship
between its components by adapting the values of each connection, as the weight of the
connection. After adjusting or training the neural network, applying a specific input results
in a particular outcome as an output. The most important part of training is minimizing the
error. This is done by changing the weights during the learning step and continuing this
until the error function, e.g., the mean square error (MSE), becomes less than the specified
limit. The error is determined as follows:

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (8)

where N denotes the number of analyzed samples, and yi and ŷi are the target and antic-
ipated results, respectively. This is a repetitious operation performed by initializing the
value of w, predicting ŷi , and calculating the corresponding MSE. In the initial step, the
error is high because weights are randomly selected. The challenge of network learning
is to detect weights that cause the minimum possible error for all data sets. In most artifi-
cial networks, finding a direct method to detect is impossible due to the high number of
weights. Estimating weights by trial and error would be time consuming and would re-
quire considerable effort. The gradient descent method is an effective approach in network
training to quickly identify the lowest sets of error. Error gradient is used in the gradient
descent method to minimize the error [54]. Such an error is related to the network output
and depends on the weighted output of the hidden neurons and on the weights. Thus,
the chain rule of differentiation can be extended from the error to the weight of the first
layer, ∂E

∂wnm
. This method was initially introduced by Werbos [55] as the backpropagation

method, and then developed by Rumelhart [56]. In backpropagation, as a gradient descent
algorithm, network weights move in the direction opposite to the slope of the performance
function. It has been shown that this type of network is more accurate and faster than other
networks and is also suitable for engineering purposes [57–60].

A neural network functions according to the following assumptions:

1. Information process using simple members named neurons.
2. Signal transmission from neurons to connection links.
3. Assigned specific weight values to each connection
4. Each neuron transmits inputs from the activation function and determines the outputs.
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A neural network is known based on its learning algorithm, architecture, and the
activation function. Using neural networks reduces the number of experiments and
saves time [58,61].

3.2. ANN Analysis

Abiodun et al. [62] defined modeling the network as presenting a real-life object or
phenomenon using mathematical-based expressions. It is important to determine the
optimum configuration of a network that provides well-set and high accuracy at the same
time. Considering the fact that there is no equation to specify the number of hidden layers
or neurons located on a specified layer, such a number was determined with trial and error.
The best possible architecture was selected using the presented ANN model according
to the test results of various types of structures containing different neuron and hidden
layer numbers attributed to a specified layer [63]. It was observed that the network with a
single hidden layer containing seven neurons had the best performance for anticipating
the load-bearing and stiffness of the perforated masonry wall containing a central opening.
The optimal architecture of the networks is shown in Figure 5.

Figure 5. The architecture of the proposed artificial neural network (ANN).

To train the network, the Levenberg–Marquardt (LM) algorithm was used due to its
suitable convergence, high precision, and low time consumption [64,65]. This algorithm
randomly divided the data into three parts: 70% for training, 15% for validation, and 15%
for testing. The activation functions in both the output and hidden layers were chosen as
tansig (Equation (9)) and purlin (Equation (10)), respectively. The learning process ended
whenever the desired performance of the network was accomplished.

y = tansig(x) =
2

(1 + e−2x)
− 1 (9)

y = purlin(x) = x (10)

3.3. ANN Model Performance

The ratio of the load-bearing capacity of a perforated masonry wall to a solid wall, and
its stiffness ratio, can be predicted once the network is trained. In addition, the complex
relationship between the input parameters can be determined. The performance of the
networks in evaluating the response of masonry walls is shown in Figure 6. The best
validation performance was obtained as 1.55 × 10 × 5 at the 22nd epoch. The occurrence
of overfitting is ruled out because the validation curve remains constant. Thus, no changes
need to be made to the training process, network architecture, or the dataset. Figure 7 shows
a strong correlation between the target (numerical results) and ANN output according
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to the correlation coefficient (R) for all data. The total response with R values close to 1
confirmed that the network calculated the outcomes with good accuracy.

Figure 6. The performance of the proposed ANN.

Figure 7. The regression of the proposed ANN.

4. Results and Discussion
4.1. ANN Design of Experiments

The design of the experiments refers to a systematic method to regulate the relation
between the input and output parameters in a process (i.e., cause-and-effect concept) [66].
This is an important step to optimize the output by managing the input parameters of the
process. In this section, the parameters that control the response of a perforated masonry
wall are further evaluated using the MP method.

The ratio of the opening height to the wall height and the opening width to the wall
width ratio were considered as affecting parameters on the global behavior of a perforated
masonry wall with a central opening. Subsequently, several discrete values were assumed
for each parameter, as listed in Table 3. The full combination of all those parameters results
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in 7 × 7 = 49 unique numerical models. Those models were analyzed, and all the results,
i.e., peak load and initial stiffness, were used as the inputs of the ANN network. Figure 8
plotted some of the masonry walls with various opening areas and shapes which were
analyzed using the MP method.

Figure 8. Masonry wall with different opening areas and shapes.

The summary of the numerical results based on the MP method is listed in Table 3,
which is used as the dataset for the ANN network. For each response, the minimum, maxi-
mum, mean, and standard deviation (STD) were extracted. These results were considered
as targets of the networks. It should be mentioned that in order to make the results com-
prehensive, the inputs, which are the opening area ratio and aspect ratio, were considered
as dimensionless parameters. The same procedure was done for the targets. The results are
represented as a reduction in the peak load and initial stiffness in the perforated masonry
wall compared with a masonry wall without an opening.

4.2. Meta-Model Based on ANN

The ANN technique was applied to the dataset. In this soft-computing method, 70%
of the data are included in the training procedure of the meta-model, while the rest are
used equally for validation and testing. Several metrics are used for error evaluation: mean
absolute percentage error (MAPE), mean square error (MSE), Nash–Sutcliffe efficiency
(NSE) coefficient, root mean square error (RMSE), mean absolute error (MAE), along with
the coefficient of determination (R2) (see Equation (11)). These metrics are listed in Table
4 for the ANN soft-computing technique. The ideal value for MSE, RMSE, MAE, and
MAPE is zero, while its unit for NSE and R2, where y, ŷ and y are individual outputs, the
estimated output, and the mean value, respectively. The predicted results using the ANN
model are compared with those produced by the MP method in Figure 9. As can be seen,
the results of the network are in accordance with the analytical results. The error of the
prediction for both the load bearing capacity and initial stiffness are listed in Table 5, based
on six different statistical measurements. The MSE of the ANN for predicting the load
bearing and initial stiffness ratio are 1.58 × 10−5 and 6.05 × 10−6, respectively.

MSE = ∑(ŷ−y)2

N

RMSE =

√
∑(ŷ−y)2

N

MSE = 1
N ∑N

i=1|yi − ŷi|

MAPE = 100%× 1
N ∑N

i=1

∣∣∣ yi−ŷi
yi

∣∣∣
NSE = 1− ∑(ŷ−y)2

∑(y−y)2

R2 = ∑(ŷ−y)(y−y)√
∑ (ŷ−y)2

√
∑((y−y)2

(11)
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Figure 9. The comparison of the predicted result and numerical data.

Table 5. Mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE),
mean absolute percentage error (MAPE), Nash–Sutcliffe efficiency (NSE), and the coefficient of
determination (R2) for all data in the ANN network.

Target Response MSE RMSE MAE MAPE NSE R2

Load bearing ratio 1.58 × 10−5 0.004 0.003 0.007 0.999 0.999
Initial stiffness ratio 6.05 × 10−6 0.002 0.001 0.005 0.999 0.999

4.3. Stability Analysis of the ANN Model

The ratios of the predicted to experimental results versus the affecting parameters,
which indicate the stability in anticipating the load bearing capacity and initial stiffness
ratio, are shown in Figure 10. The affecting parameters are the opening height to wall
height ratio and the opening width to wall width ratio. The variation of data about the
horizontal line starting from the ratio of 1 (the bold line in black color) shows the stability of
the parameters, and the closer the data are to this line, the greater stability of the parameters.
As seen in Figure 10, the values of initial stiffness were more stable. However, the network
could predict the results with acceptable accuracy for both responses.

Figure 10. Stability of (a) load bearing and (b) initial stiffness.

4.4. Sensitivity Analysis of the ANN Model

As discussed earlier in Section 4, the weight of each neuron indicates its importance.
In order to analyze the relative significance of parameters in the network, Garson’s fac-
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tor [67] was considered. The relative significance of a network’s inputs as a single hidden
layer can be calculated using Equation (12).

Qik =
∑L

j=1(
wij

∑N
r=1 wrj

ϑjk)

∑N
i=1(∑

L
j=1(

wij

∑N
r=1 wrj

ϑjk))
(12)

where ∑N
r=1 wrj equals the sum of the connection weights between the N input neurons

and the hidden neuron j, and vjk is the connection weight between the hidden neuron j
and the output neuron k [68].The results of sensitivity analysis indicate that the opening
width ratio (l/L), and opening height ratio (h/H) have 58.02% and 41.97% influence on the
initial stiffness ratio along with peak load of the perforated masonry wall, respectively. As
can be seen, the effect of the opening’s width is more dominant than the opening’s height.
This can be attributed to the effect of rectangular opening in reducing the width of adjacent
piers and interrupting the resistance of piers, and consequently, the reduction in initial
stiffness and load bearing capacity compared to the square opening with the same area.

4.5. Development of Predictive Equations for Perforated UMW Behavior

The suitable accuracy of the results, as well as the similar contribution of the input
parameters in the network, allow the implementation of the ANN models to predict
the numerical results, and at a higher level, propose a formula for the estimation of the
reduction in load-bearing capacity and initial stiffness due to implementing a central
opening. For this purpose, the number of network inputs was increased to 1308 to cover
all possible situations in creating a central opening in the masonry wall. The formula
uses the biases and weight values of the ANN model to evaluate the response of the
analyzed masonry wall. The generation of empirical equations can reduce the limitations
of neural network use. The pattern formula applied here for anticipating the behavior of
a masonry wall was introduced by Leung et al. [69]. To determine an empirical formula,
the most effective parameter on the output was kept constant in its reference value, i.e.,
its median, and outputs of the network for the variation of other inputs were obtained.
Using the curve fitting tools in MATLAB, a line of best fit in the least square error method
can be determined. It is assumed that the variation of the load-bearing capacity and
initial stiffness with each parameter is independent of the other parameters, and can be
expressed as Equations (13) and (14), respectively. In Equation (13), PO/P is the ratio of
the load bearing capacity of a perforated masonry wall to a solid masonry wall, h is the
opening height, l is the opening length, H is the wall height, and L is the wall length. In
Equation (14), KO/K is the reduction in the initial stiffness of the perforated masonry wall
compared to the solid wall.

PO/P = [

(
0.2887×

(
h
H

)2
)
−
(

0.716×
(

h
H

))
+ 0.6898]× =[

0.1089×
(

l
L

0.4

)2
−(0.6568×

(
l
L

0.4

))
+ 1.563] (13)

KO/K = [

(
0.3563×

(
h
H

)2
)
−
(

0.987×
(

h
H

))
+ 0.8582]× =[

0.1137×
(

l
L

0.4

)2
−(0.768×

(
l
L

0.4

))
+ 1.669] (14)

The error distribution between the empirical and network results following the em-
pirical method in terms of the percentage difference is presented in Table 6. The MSE,
RMSE, MAE, MAPE, NSE, and correlation coefficient of the network, R2, for anticipating
the reduction in the load bearing capacity of a perforated masonry wall compared to a
solid wall are 0.016, 0.126, 0.117, 0.27, 0.688, and 0.954, respectively. The statistical metrics
for initial stiffness reduction are 0.015, 0.124, 0.105, 0.453, 0.719, and 0.892, respectively.
The empirical formula considered 51% and 61.7% of samples in the error range of ±20%
for PO/P and KO/K, respectively. The empirical approach can estimate 92.4% of data for
both responses in the error range of ±40%. The empirical approach proposed in this paper
is not only practical and easy to use, but also shows good correlation and low MSE error.
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In Figure 11, a decline in the response of the masonry wall obtained from the empirical
approach is higher than the predicted value when a point lies under the 45◦ line. As can
be seen, quite a few values are conservative, i.e., under the 45◦ line, which indicates a
conservative approach in practice.

Table 6. Precision of proposed formulae and data distribution in the error range.

Response MSE R Coefficient
Number of Data in Error Range and

Percentage to Total Data

±20% ±40% ±60%

PO/P 0.016 0.954 667 (51%) 1209 (92.4%) 1273 (97.3%)
KO/K 0.015 0.892 807 (61.7%) 1209 (92.4%) 1255 (95.9%)

Figure 11. Predictions of (a) PO/P and (b) KO/K in proposed formula.

The utilization of the neural network to generate empirical design charts is a practical
approach to make the results more intelligible. In Figure 12, the variation of masonry walls’
responses versus opening area and the aspect ratio is plotted. As can be seen, an increase
in the relative opening area, i.e., A0/Awall, leads to a decrease in load bearing capacity and
initial stiffness of the perforated masonry wall. However, the reduction in the masonry
wall’s response due to an increase in the opening area is more severe in the lower aspect
ratio. This can be attributed to the low width of adjacent piers, which are responsible for
lateral load bearing capacity. The high aspect ratio of the piers adjoining the opening leads
to the pure rocking failure in the masonry wall. This is in accordance with the results of Rai
and Goel [70]. It was concluded that the response of a substructure as a whole was largely
dependent on the pier failure mechanism [71]. In addition, for a constant relative opening
area, an increase in the opening aspect ratio greater than one has a negligible effect on the
response of a masonry wall. An increase in the opening aspect ratio, i.e., height/width,
causes the piers to remain wide, and causes the reduction in strength and stiffness of the
adjacent piers to be less, and therefore the perforated masonry wall is able to resist the
lateral load more appropriately. It can be concluded that the suitable shape for openings
in masonry walls with a constant area is standing rectangular with an aspect ratio greater
than 1.
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Figure 12. Reduction factors based on opening area and aspect ratio for (a) load-bearing capacity and (b) initial stiffness.

5. Conclusions

In this study, the effect of central perforation on the load bearing resistance and the
stiffness of the masonry unreinforced walls is investigated by conducting a numerical
analysis using the MP method and adopting the generated outcomes in an ANN.

The results of this research are summarized as follows:

a. Increasing the relative opening area in the wall leads to a reduction in the load
bearing strength and initial stiffness of a perforated masonry wall. Such a decrease is
reported as more considerable in lower aspect ratios of perforated area to the total
area of the wall.

b. It was observed that the presence of opening areas with aspect ratios greater than 1
does not have a significant effect of the masonry wall’s structural capacity.

c. The suitable shape of incorporating openings in the masonry walls is reported as
vertical rectangular with aspect ratios greater than 1. This opening arrangement
leads to further structural capacity compared to other opening arrangements with
similar opening area.

d. For practical purposes, simple and empirical equations are developed to predict the
reduction in the load bearing capacity and initial stiffness of the perforated masonry
walls. The equations are introduced based on the ratios of height and width of the
existing perforations to the total dimensions of the wall.

e. Useful charts are presented to predict the reductions in the wall’s load bearing
resistance and stiffness based on the opening aspect ratios and relative opening areas.
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