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Abstract: The International Roughness Index (IRI) has been accepted globally as an essential indicator
for assessing pavement condition. The Laos Road Management System (RMS) utilizes a default
Highway Development and Management (HDM-4) IRI prediction model. However, developed IRI
values have shown the need to calibrate the IRI prediction model. Data records are not fully available
for Laos yet, making it difficult to calibrate IRI for the local conditions. This paper aims to develop
an IRI prediction model for the National Road Network (NRN) based on the available Laos RMS
database. The Multiple Linear Regression (MLR) analysis technique was applied to develop two new
IRI prediction models for Double Bituminous Surface Treatment (DBST) and Asphalt Concrete (AC)
pavement sections. The final database consisted of 83 sections with 269 observations over a 1850 km
length of DBST NRN and 29 sections with 122 observations over a 718 km length of AC NRN. The
proposed models predict IRI as a function of pavement age and Cumulative Equivalent Single-Axle
Load (CESAL). The model’s parameter analysis confirmed their significance, and R2 values were 0.89
and 0.84 for DBST and AC models, respectively. It can be concluded that the developed models can
serve as a useful tool for engineers maintaining paved NRN.

Keywords: International Roughness Index (IRI); Laos Road Management System (RMS); Cumulative
Equivalent Single-Axle Load (CESAL)

1. Introduction

As a landlocked country [1], the Lao People’s Democratic Republic’s (Lao PDR)
connectedness with adjoining countries is of pivotal significance [2]. As the country has
no harbor and has only 3.5 km of the railway link at the Thai border, the road network
is an essential means of transportation to link Laos with its neighbors and within the
country [3]. The transport sector is dominated by the road subsector, sharing 98% of the
entire passenger-kilometers traveled and 86% of freight moved in the homeland [4].

The Laos road network is split into six classes: (I) National Roads (NRs) link the
national capital to other provincial capitals and commercial centers and reach the global
borders; (ii) Provincial Roads (PRs) link provincial capitals to district centers, river ports,
tourist and important historic sites of the province; (iii) District Roads (DRs) link district
commercial centers to rural areas; (iv) Urban Roads (URs), which are internal to cities and
towns; (v) Rural Roads (RRs) link rural areas and utilities serving the rural houses; and (vi)
Special Roads (SRs) serve definite purposes, such as connecting to sightseeing areas [5,6].

Significant expansion in the Lao PDR’s road network has occurred over the last three
decades [3]. The road network length has increased from 14,000 km in 1990 to 60,560 km in
2018. As shown in Table 1 [7], the highest share of the total length of the network was RRs
(43.23%), followed by PRs (14.02%) and NRs (12.45%), and the remaining 30.30% were DRs,
URs, and SRs.
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Table 1. Summary of Laos road network statistics from 2018.

Type of Road Concrete Asphalt DBST Gravel Earth Total Percent

National Roads (km) 85.73 995.23 5426.01 794.95 238.05 7539.96 12.45%
Provincial Roads (km) 81.73 64.70 1770.69 5614.85 959.77 8491.74 14.02%
District Roads (km) 67.78 0.00 586.20 4244.73 2289.38 7188.09 11.87%
Urban Roads (km) 255.42 127.67 1219.02 1325.52 706.86 3634.50 6.00%
Rural Roads (km) 29.61 4.00 559.31 10,007.72 15,577.05 26,177.69 43.23%
Special Roads (km) 31.74 11.53 352.37 1198.02 5933.89 7527.56 12.43%
Total Length (km) 552.02 1203.13 9913.60 23,185.79 25,705.00 60,559.54
Percent 0.91% 1.99% 16.37% 38.29% 42.45%

DBST—Double Bituminous Surface Treatment.

Paved roads are grouped into three families: Cement Concrete (CC), Asphalt Concrete
(AC), and Double Bituminous Surface Treatment (DBST). While the road network in Laos
is extensive, only 19.27% of the roads’ total length is paved (using CC, AC, and DBST),
38.29% is gravel, and the residual 42.45% is of earth construction.

The NRs cover approximately 7540 km of the road network, the majority of which
(86.30%) have a paved surface, whereas RRs, URs, DRs, PRs, and SRs are generally earth or
gravel roads and are vulnerable to pouring rain and floods. Most NRs’ paved sections are
DBST (71.96%), while AC and CC comprise only 13.20% and 1.14% of them, respectively.

Pavement condition can be assessed depending on four aspects: structural capacity,
surface distress, skid resistance, and ride quality [8]. Ride quality is commonly connected
with users’ comfort level regarding the traveled roadway, which is influenced by pavement
roughness [9]. Pavement roughness illustrates unevenness in the roadways’ surface, which
is calculated in terms of the International Roughness Index (IRI) [10].

The IRI is so-called because it was an output of the International Road Roughness Ex-
periment (IRRE), executed by researchers from the United States, England, Brazil, Belgium,
and France to identify such an index [11]. In 1982 [12], the IRRE was launched by the World
Bank to create correlation and a calibration standard for roughness measurements [13].
The IRRE involved the controlled measurement of road roughness for several roads under
various conditions and by a variety of methods and equipment [11].

The prime principles in designing the IRI were being transportable, relevant, and
settled over time while also being measured easily [11,14]. It had to be measurable with a
broad range of equipment to secure transportability, including response-type systems. It
had to be described as a mathematical conversion of a measured profile to be steady over
time [15].

The IRI is defined as “the accumulated suspension vertical motion divided by the dis-
tance traveled as obtained from a mathematical model of a simulated quarter-car traversing
a measured profile at 80 km/h” [15,16]. IRI values are expressed as the slope units (m/km,
in/mi, etc.), with a high value indicating extremely rough road [17]. The lower the IRI
value, the flatter the paved surface [18].

The IRI epitomizes the roughness condition that affects vehicle response and is of
utmost suitability for evaluating overall vehicle operating cost, overall ride quality, dynamic
wheel loads [14], and general surface condition [19].

The IRI data are usually surveyed by the Laos Public Works and Transport Institute
(PTI) at different frequencies, depending on the available funds [20]. The NRN is monitored
at frequent intervals, often 2–3-year intervals. Paved sections are categorized into six
groups, based on predetermined criteria for roughness adequacy, as shown in Table 2.

Table 2. The Roughness Scale of the International Roughness Index (IRI).

Pavement Condition Excellent Good Fair Poor Bad Failed

IRI (m/km) <3 3 to 4 4 to 5 5 to 6 6 to 8 >8
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A well-constructed pavement, newly laid, also has an initial IRI value (IRI just after
construction), and it continues to rise over time where the pavement deteriorates [21].
Pavement deterioration can be attributed to different factors such as traffic loads, pavement
age, material properties, environment condition, subgrade properties, and pavement
strength, which influence the pavement’s mechanical characteristics [8]. Many highway
agencies worldwide deal with the initial IRI value as a quality assertion norm and the
terminal IRI as an index of required pavement maintenance and rehabilitation activities [22].

An IRI condition survey of the NRN was conducted in 2016, which pointed out that
48% of the paved sections were in excellent, good, or fair condition, with nearly 30% in
bad or poor condition and approximately 22% categorized as having failed [20]. A Vehicle
Intelligent Monitoring System (VIMS) was introduced as the IRI survey equipment. It was
found to be relatively accurate and less expensive than other systems, which usually require
a specially equipped vehicle to measure IRI. VIMS was introduced under the technical
support of Nagasaki University [23].

In 2004, as a result of limited budget and growing challenges in pavement maintenance
and rehabilitation strategies, the Road Management System (RMS) was developed for NRs
based on Highway Development and Management (HDM-4) models with aid from the
World Bank [24]. RMS comprises several analysis modules, such as a Road Database (RDB),
Bridge Management System (BMS), Pavement Management System (PMS), and Traffic
Monitoring System (TMS).

RMS is used to formulate road’s short- and medium-term maintenance strategies,
select priority projects, and choose optimum maintenance activity plans. In 2008, RMS was
incorporated with the Provincial and Rural Roads Management System (PRoMMS), so it
became achievable to develop maintenance plans for rural and provincial roads too [24].

The RMS/PRoMMS database has been improved and updated throughout the period
(2012–2016) by the JICA expert team as part of the Project “Improvement of Road Manage-
ment Capability in Lao PDR” [23]. The pavement deterioration models are essential for
PMS and are utilized to define various functions [8], as follows:

• Rate of pavement degradation at both the project and network level,
• Evaluation of pavement assets (residual service life), and
• Road user costs.

Laos PMS utilizes a default HDM-4 pavement deterioration models to predict IRI.
However, developed IRI values have illustrated the need to calibrate the IRI forecasting
model based on Laos’ local conditions or create a new IRI model.

Over the years, research agencies and individual researchers have developed various
IRI prediction models [21,22,25–35]. Some of these models were developed utilizing
the Long-Term Pavement Performance (LTPP) database, whereas others were derived
depending on direct field measurements or the domestic agency database. The results from
some of these studies are summed up in Table 3.

From the above literature review, it is apparent that the variables such as pavement
age, the structural strength of pavement, traffic loads, pavement defects, and environmental
conditions enormously affect the progression of roughness (IRI value). The calibration and
application of the Mechanistic–Empirical Pavement Design Guide (MEPDG) or HDM-4
models by highway agencies demand detailed and precise distress data [36]. Such data
records are not quite available for Laos yet, making it difficult to calibrate the HDM-4 IRI
prediction model for local conditions.

So, the domestic roughness deterioration models for various pavement categories
have to be developed covering the influence of Laos’ local conditions, which would have
direct implementation without any calibration factors based on accessible data in the
Laos RMS. The developed models’ primary objective is to evaluate and predict the Laos
NRN’s condition to assist the responsible authorities in making consistent and cost-effective
decisions related to pavement sections’ maintenance and rehabilitation.
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Table 3. Synopsis of Literature IRI Prediction Models.

First Author, Year Pavement Type Source of Data Prediction Method Independent Variables 1 Goodness of Fit

Von Quintus, 2001 [31]

Conventional HMA with
thick granular base

LTPP database,
GPS and SPS

Stepwise linear regression

IRI0, TC, COVRU, FC, BC,
LCSNWP, AGE, RSD, Rm,

P200, P0.02, PI, FI

R2 = 0.62, RMSE =
0.387 m/km, N = 353

HMA deep-strength with
asphalt-treated base IRI0, AGE, FI, TC, FC, P R2 = 0.49, RMSE =

0.29 m/km, N = 428

HMA semi-rigid with
cement-treated base

IRI0, SDRUT, FC, TC,
BC, LCNWP

R2 = 0.83, RMSE =
0.23 m/km, N = 50

HMA overlay of
flexible pavement IRI0, AGE, FC, TC, LCS, P, PH R2 = 0.70, RMSE =

0.18 m/km, N = 797

Nassiri (2013) [32]

New AC

Alberta’s PMS database Multiple Linear
Regression (MLR)

AGE, AADT, P200, TC,
MC, RUT

R2 = 0.39, SEE = 0.42 m/km,
N = 1000

Straight AC overlay AGE, AADT, FI, BTH, CTH,
RUT, PI.

R2 = 0.39, SEE = 0.452 m/km,
N = 501

Makendran, 2015 [33] Flexible
pavement

Direct field
measurement, India MLR AGE, MSN, CVPD R2 = 0.89, SE = 0.77 m/km,

N = 120

Mazari,
2016 [34]

AC over unbound
granular layers LTPP, SPS database Gene expression

programming algorithm
IRI0, AGE0, CESAL0, SN,

∆AGE, ∆CESAL
R2 = 0.99, SE = 0.112 m/km,

N = 80

Abdelaziz, 2018 [22] AC overlay
LTPP database for six
sections; GPS-1, 2, 6;

SPS-1, 3, 5
MLR IRI0, AGE, FC, TC,

SDRUT
R2 = 0.57, SE = 0.325 m/km,

N = 2439

Sandra,
2012 [21] AC overlay Direct field

measurement, India MLR IRI0, RUT, P, PH, MC, RL R2 = 0.98, RMSE =
0.17 m/km, N = 355

Odoki,
2000 [35]

Asphalt mix and
surface treatment

Sections from more than 100
developed and

developing countries

Structured empirical
approach

IRI0, AGE, ESAL, AADT,
SNPKb, ACXa, PACK,
HSNEW, HSOLD, M,

∆ACRA, ∆RDS, TLF, FM,
NPTa, ∆NPT

N/A

1 All abbreviation definitions are provided in Appendix A.
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2. Methodology

The research methodology followed in this study began by reviewing the pertinent
literature. The required data were then collected from different resources, mainly from
the Laos RMS database. After that, the data processing was accomplished. Finally, the
MLR analysis technique in Statistical Package for the Social Sciences (SPSS) was applied
to evolve a regression model to correlate IRI with the study’s variables. Fundamental
statistical analyses were conducted to verify and explain the proposed models’ sensitivity.
The research methodology is summed up in Figure 1.
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Figure 1. Flow chart of the research methodology.

2.1. Data Collection

A broad number of precise and valid data are necessary to develop a regression model
of the IRI and the variable’s effect on it. This study was planned to cover 14 years, starting
from 2001 to 2015, to track development trends of pavement roughness condition over a
total length of 7540 km of the NRN.

Every road in the NRN is separated into homogeneous sections. A homogeneous
section can be defined as “a section of pavement that has uniform characteristics along its
length, for instance; structural design, pavement materials, subgrade condition, number of
lanes, construction (by the same contract), age since opening for service, the proportion
of truck traffic, and maintenance actions applied” [37]. Then, each pavement section is
divided into 100 m sample units. For every homogeneous section, the following data are
obtainable from the Laos RMS database:

• Road Inventory Survey (RIS): road and section number, section length and width,
surface type, no. of lanes, shoulder type and width, kilometric stations, road category,
and survey date.

• Road Roughness Survey (ROS): 100 m interval IRI values over each section’s entire
length. The IRI data were measured at an approximate speed of 80 km/h for the
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right (outer) wheel track without any specific criteria for the distance from the road’s
pavement edge.

• Traffic Condition Survey (TCS): annual average daily traffic (AADT), traffic growth
rates, classified traffic volume survey, and vehicle classification (See Table 4).

• Last maintenance activity type and date.

Table 4. Laos vehicle classifications.

Class Group Description Class Group Description

Class 1 Bicycle Class 8 Small bus (max 12 seats)
Class 2 Oxcart Class 9 Medium bus (from 13 to 25 seats)
Class 3 Minitractor Class 10 Heavy bus (more than 25 seats)
Class 4 Motorcycle Class 11 Light truck (less than 4 tons)
Class 5 Tuk-tuk Class 12 Medium truck (2 axles)
Class 6 Passenger car Class 13 Heavy truck (3 axles or more)
Class 7 Pick-up Class 14 Truck trailer

2.2. Data Separation

In this study, the pavement family approach is applied [38], in which pavement
sections with identical surface properties are clustered into families. The pavement sections
in the NRN are clustered into families as following; AC, DBST, and CC.

After the pavement families are specified and the sections clustered correspondingly,
the data for homogeneous sections are gathered from the Laos RMS database. There are
six observations for each section in the following years: 2001, 2004, 2008, 2013, 2014, and
2015. An identification code is applied to define each observation. It is an unparalleled
collection of attributes as follows: road number, section number, and the IRI survey year
(e.g., 13N_S_2008).

2.3. Data Screening

The assembled data were thoroughly checked for irregularities and missing data from
collection or documentation. The data were also reviewed and cleaned for oddity and
gross data errors. In this study, the total number of 1214 observations from 254 sections
covered the paved NRN. The 100 m interval IRI values were averaged over each section’s
entire length.

A linear relation between IRI and pavement age for whole sections was investigated
to examine the IRI data against possible irregularities. The sections that demonstrated the
negative trend (lessening IRI value over time) and unexplainable fluctuations in condition
were excluded from this study. The negative IRI trend was observed due to the implemen-
tation of some maintenance activities on the pavement section without registration in the
RMS database. Accordingly, IRI values decreased, and a negative trend appeared with
pavement age, contrary to expectations of increasing IRI values due to the positive effect
of the traffic loads and not carrying out any maintenance activities according to the RMS
database. Figure 2 shows examples of the negative trend and fluctuations of IRI along with
pavement age.
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Figure 2. Examples of irregularities in IRI data along with pavement age.

Thus, the valid number of sections and observations was diminished, as presented in
Table 5. The number of valid observations available for the CC surface type was inadequate
for developing a reliable model. Therefore, the analysis was limited to DBST and AC
surface types, utilizing the valid number of observations, including 269 observations from
83 sections covering a total length of 1849.26 km of DBST NRs and 122 observations from
29 sections covering a total length of 718.55 km of AC NRs.

Table 5. Summary of the number of sections and observations in each surface-type group.

Surface Type Total No. of Sections Total No. of Observations Valid No. of Sections Valid No. of Observations

DBST 214 997 83 269
AC 36 184 29 122
CC 4 33 2 6

2.4. Missing Data Completion

The Laos RMS database lacks the initial AADT measurements. To overcome this
problem, a regression model for every section among measured AADT and corresponding
pavement age (started from the traffic opening date) was developed based on the avail-
able observations for backcasting the initial AADT data. The statistics of the developed
regression models of the studied sections are summarized in Table 6.

Table 6. Statistics of developed regression models for backcasting initial AADT.

Surface Type
No. of the Best Fitting Relationship Type

Avg. R2
Exponential Linear Logarithmic Power

DBST 44 27 8 4 0.94
AC 10 10 - 9 0.97

2.5. Determining the Potential Factors Affecting Pavement Roughness

This study considered the factors of pavement age and Cumulative Equivalent Single-
Axle Loads (CESAL). Despite the significant influence of the initial IRI0 value, pave-
ment structural capacity, and subgrade soil properties on the progression of the uneven-
ness [21,22,31,33–35], an assessment of the effect of those factors on IRI progression was
not possible, since the Laos RMS database does not have any information regarding those
variables. The same usually happens in many developing countries where pavement
history data are not available, especially for the network level [39,40]. The data required
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to calculate pavement age and CESAL factors were extracted mainly from the Laos RMS
database. Below is a brief description of these factors and how they were calculated.

2.5.1. Pavement Age

The pavement age is the usual factor employed in roughness modeling [41]. The Laos
RMS database provides a survey date for IRI inspection and last maintenance activity type
and application date. The variable age is calculated for every observation by subtracting
the IRI survey date from the last major rehabilitation (overlay) or reconstruction date
(those actions that directly influence the IRI in terms of improving smoothness after their
application). The pavement age is expressed in days.

2.5.2. Cumulative Equivalent Single-Axle Load (CESAL)

A load applied on pavement varies based on the wheel configuration, traffic volume,
gross vehicle weight, and the number of lanes in each direction. The impact of uneven
traffic loads is transformed to a standard axle (18 kips), referred to as the Equivalent
Single-Axle Load (ESAL).

Data required for calculating CESAL were collected mainly from the Laos RMS
database, and other data were collected from governmental reports and the Laos road
design manual. The following steps explain how to calculate CESAL:

• Axle load distribution: The axle load distribution, wheel configuration, and maxi-
mum gross vehicle weight amongst commercial vehicles that use NRs were collected
from the Ministry of Public Work and Transport (MPWT), Lao PDR (as shown in
Figure 3). The legal axle load limits enforced in Lao PDR are as follows: 9.10 tons for
single-axle 4-wheelers, 6.80 tons for single-axle 2-wheelers, 6.10 tons (per axle) for
tandem-axle 4-wheelers, and 6.80 tons (per axle) for triple-axle 4-wheelers [6,42].

• Equivalent Axle Load Factor: The ratio of the destructive effect of a nonstandard axle
load to a standard axle load is called the Equivalent Axle Load Factor (EALF) [44].
The number of repetitions under every single-, tandem-, or triple-axle load should be
multiplied by its EALF to get the equivalent effect depending on an 80 kN single-axle
load. Equation (1) is used to calculate the EALF for different axle loads applied in
Laos commercial vehicles [6].

EALF =

(
Axle load (kg)

8160

)4.5
(1)

• Truck Factor (TF): TF can be counted for every vehicle by collecting all vehicle EALF
values. Then, an average TF is calculated for each vehicle class (e.g., medium trucks,
heavy trucks, and truck trailers) by collecting the ESAL of all vehicles in every class
and dividing by the number of vehicles using Equation (2).

TFi =

(
n

∑
j=1

EALFj

)
/n (2)

where: TFi = Truck factor for the ith vehicle class, n = vehicle number in the ith vehicle
class, EALFj = Equivalent Axle Load Factor for the jth vehicle.

• Cumulative Equivalent Single-Axle Load: The data and parameters obtained from
the prior sections can now be utilized to calculate the CESAL using Equation (3) [45].

CESAL = 365∗DF ∗ LF∗
[
(1 + r)n − 1

]
r ∑(AADT0)i(TFi) (3)

where: DF = Directional Factor is the ratio of ESAL allocation by direction. LF = Lane
distribution Factor is the ratio of traffic volume allocation over lanes in one direction.
(AADT0)i = Initial annual average daily traffic for the ith vehicle category in both



CivilEng 2021, 2 166

directions. TFi = Truck factor for the ith vehicle category. r = Traffic growth rate, found
in the Laos RMS database. n = Design period.
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2.6. Matching Observation Dates

It was noticed that both IRI measurements and traffic survey dates in Laos RMS were
not necessarily surveyed simultaneously. The IRI survey date was taken as a reference date
to solve this issue, where CESAL measurements for homogenous sections were calculated
at its corresponding IRI survey date.

3. Result
3.1. Regression Model Development

Before the data could be analyzed, the significance of each variable calculated was
first studied utilizing the Pearson correlation coefficient. Another issue that needed special
attention was the problem of multicollinearity among variables. Multicollinearity emerges
in the model when independent variables that are strongly correlated exist [46]. For
instance, the moderate correlation between the age variable and the CESAL is 0.57 in AC
data modeling.

The average Yearly Equivalent Single-Axle Loads (YESAL) ratio (average CESAL over
pavement age) was used instead to overcome this problem [38]. As shown in Table 7, a
good correlation exists between IRI and independent variables, while a low correlation
exists between independent variables themselves to avoid multicollinearity.
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Table 7. Pearson correlation coefficient matrixes.

DBST Model AC Model

Variable IRI AGE CESAL Variable IRI AGE YESAL

IRI 1 0.85 0.73 IRI 1 0.82 0.64
AGE 0.85 1 0.42 AGE 0.82 1 0.31

CESAL 0.73 0.42 1 YESAL 0.64 0.31 1
YESAL—Yearly Equivalent Single-Axle Loads.

The database was randomly sorted and split into two sets to eliminate any possible
bias, referred to as the “in-sample” and “out-of-sample” data. The in-sample group
composed most of the data, at around 80 percent, which was utilized to develop the
regression models. The residual 20 percent of the data, referred to as the “out-of-sample”
or “testing data”, was utilized to assess the regression equations’ prediction efficiency. The
developed models would represent all sections’ mean behavior in a particular pavement
family. The basic statistics of data utilized for the model’s development and validation are
shown in Table 8.

Table 8. Basic statistics of data utilized for the model’s development and validation.

Variable Description Notation Unit
Range

Mean Std. Deviation
Min Max

DBST Model

Roughness IRI m/km 2.20 8.91 5.09 1.44
Pavement age since the last overlay Age years 0.10 14.10 6.03 3.73

Cumulative Equivalent
Single-Axle Load CESAL 104 axles/lane 0.02 99.26 13.28 16.55

AC Model

Roughness IRI m/km 1.47 5.46 3.54 1.02
Pavement age since the last overlay Age years 0.09 13.08 5.95 3.44

The average Yearly Equivalent
Single-Axle Load YESAL 104 axles/lane 0.03 20.53 4.42 3.34

IRI was chosen as the dependent variable in these models, and the counted pavement
parameters—age, CESAL (DBST model), and YESAL (AC model)—were selected as the
independent variables. After many modeling attempts, the most precise regression models
were determined, as depicted in Table 9.

Table 9. Summary of regression statistics by pavement type.

Pavement Type Model Equation R2 Std. Error of Estimate No. of Observations

DBST IRI = 3.006 + 0.259 age + 0.038 CESAL 0.892 0.483 215
AC IRI = 1.782 + 0.203 age + 0.123 YESAL 0.847 0.395 98

The above models show that the IRI’s average initial values for DBST and AC pave-
ment sections after overlay or reconstruction (when age and CESAL/YESAL are considered
to be zero) are 3.006 and 1.782 m/km, respectively. Further, IRI has a direct relationship
with both age and CESAL/YESAL, as they appear with positive coefficients. Also ob-
served was the high values of the coefficient of determination (R2), indicating a good
correlation between the dependent variable IRI and independent variables such as age
and CESAL/YESAL. This agrees with the previous studies’ findings [22,32–34] that IRI is
directly affected by pavement age and traffic loads.

The difference between the predicted and observed IRI values (residuals) are plotted
against the predicted IRI values in Figure 4. The residuals vary mainly between −2 and
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2 m/km and expand in a horizontal band around the zero line. No specific pattern is
observed in the residuals’ distribution, indicating a good fit for a linear model.
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3.2. Model Validation

A graph of the observed IRI values of the “out of sample” data and predicted IRI
values from proposed models was outputted to assess the developed models’ robustness,
as illustrated in Figure 5. The alignment of sketched points along the line of equality points
out the developed models’ soundness.
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3.3. Statistical Validity of the Developed Models

In order to verify the models’ statistical validity and to audit the significance of the
variables, an Analysis of Variance (ANOVA) was conducted on the regression outcomes.
It was implemented with the null hypothesis that the IRI is not linked to pavement age
and CESAL/YESAL. In contrast, the alternative hypothesis was that IRI is linked to the
aforesaid independent variables. Furthermore, every independent variables’ coefficient
was assessed by another hypothesis test, where the coefficient was equal to zero in the null
hypothesis and was not equal to zero in the alternative hypothesis.

Tables 10 and 11 illustrate the regression coefficients obtained from the ANOVA test
and the hypothesis test. The null hypothesis in both tests is unacceptable as the p-value
was less than 0.05 in both of them. Thus, all models’ variables are agreeable and significant
for predicting IRI value. Also, it was observed that the Variance Inflation Factor (VIF), as
shown in Table 11, has a small value (less than 10) [47] for all independent variables, which
eliminates the potential of multicollinearity among them.
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Table 10. ANOVA results.

df Sum of Squares Mean Square F p-Value

DBST Model

Regression 2 406.912 203.456 872.091 3.6858 × 10−103

Residual 212 49.459 0.233
Total 214 456.370

AC Model

Regression 2 82.508 41.254 263.848 8.0861 × 10−39

Residual 95 14.854 0.156
Total 97 97.362

Table 11. The performance prediction models’ statistics.

Independent Variable Coefficient Std. Error Student’s t p-Value VIF

DBST Model

Age 0.259 0.010 26.426 3.7348 × 10−71 1.214
CESAL 0.038 0.002 18.265 1.5469 × 10−45 1.214

AC Model

Age 0.203 0.012 16.405 2.4503 × 10−29 1.105
YESAL 0.123 0.012 10.230 2.6803 × 10−16 1.105

VIF—Variance Inflation Factor.

3.4. Sensitivity Analysis of Roughness Models

To explain the IRI model’s sensitivity to pavement age, a graph was made among
random pavement age values, and the corresponding IRI values were gained from the
proposed model considering the mean value (13.28) of CESAL for DBST sections and the
mean value (4.42) of YESAL for AC sections. Figure 6 shows the line’s steepness, indicating
the models’ sensitivity for slight variation in pavement age value. It can be noticed that
the IRI value in the DBST model increases by 0.259 m/km and by 0.203 m/km in the AC
model when the age value rises by one year.
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Figure 6. The relation among predicted IRI and pavement age for sensitivity analysis for the (a) DBST model and (b)
AC model.

Also, to explain the IRI model’s sensitivity to traffic loads, a graph was made of
random CESAL/YESAL values and the corresponding IRI values gained from the proposed
model considering the mean age values of 6.03 years for DBST and 5.95 years for AC
sections. Figure 7 shows the line’s steepness, indicating the models’ sensitivity for slight
variation in CESAL/YESAL value. It can be noticed that the IRI value rises by 0.03 and
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0.123 m/km in DBST and AC models, respectively, when the CESAL/YESAL value rises
by 104 axles/lane.
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and (b) AC model.

4. Discussion

The data available in the Laos RMS were utilized to develop two indigenous IRI
prediction models for DBST and AC pavement sections. Regression analysis revealed that
for DBST sections, age and CESAL are linearly correlated with IRI. Furthermore, the IRI
for AC sections was found to depend on age and YESAL. The developed models can be
incorporated into the Laos RMS to provide a better estimation of IRI values, which in turn
will improve the evaluation and prediction of Laos NRs’ pavement condition, thus assisting
in making consistent and cost-effective maintenance decisions. The effect of pavement
structural capacity as an independent variable on IRI progression will be further studied.
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Table A1. The abbreviation and definition of variables used in the IRI literature review models.

Abbreviation Symbols Variable Name Abbreviation Symbols Variable Name

IRI0 Initial IRI TLF Time Lapse Factor

AGE
Pavement age since last

overlay reconstruction or
new construction

RL Ravelling as percent of total
lane area

AGE0 Initial age RUT Rutting

∆AGE0 Difference in AGE0 SDRU Standard Deviation of Rut Depth

AADT Average Annual Daily Traffic COVRU Rut Depth Coefficient of Variation

ESAL Equivalent Single-Axle Load TC Transverse Cracking

CESAL0 Initial Cumulative ESAL MC Miscellaneous Cracking

∆CESAL0 Difference in CESAL0 FC Fatigue Cracking

CVPD No. of Commercial Vehicles
per day BC Block Cracking

MSN Modified Structural Number PI Plasticity Index

SNPKb
Adjusted Structural Number

due to Cracking ∆RDS Incremental change in standard
deviation of rut depth

BTH Base Layer Thickness P Patches as percent of total lane area

HSOLD Total thickness of previous
underlying surfacing layers LCSNWP Sealed Non-Wheel Path

Longitudinal Cracking (WPLC)

HSNEW Thickness of most
recent surfacing LCNWP Non-WPLC

ACTH Asphalt Concrete
Overlay Thickness LCS Sealed WPLC

Rm Average Annual Rainfall ACXa Area of Indexed Cracking

RSD Standard Deviation in
Monthly Rainfall PACK Area of Previous Indexed Cracking

in the old surfacing

FI Freezing Index ∆ACRA Incremental change in area of
total cracking

M Environmental Coefficient NPTa Number of Potholes per km

P200 Percent Passing No.200 sieve ∆NPT Incremental change in NPTa

P0.02 Percent Passing 0.02 sieve PH Potholes as percent of total lane area

FM Freedom of
Maneuvering Index
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