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Abstract: A new Neural Network Optimization (NNO) algorithm for constitutive material parameter
identification based on inverse analysis of experimental tests of small-scale masonry prisms under
compressive loads is presented. The Concrete Damaged Plasticity (CDP) constitutive model is
used for the brick and mortar of the Unreinforced Masonry (URM) walls. By comparisons with
experimental data taken from laboratory tests, it is demonstrated that the constitutive parameters
calibrated by application of the proposed inverse optimization procedure on the small-scale (prism)
experimental results are sufficiently accurate to allow for the prediction of the mechanical response
of large-scale URM walls subject to compressive and lateral loads. This eliminates the need for
large-scale URM wall experimental tests for the identification of their material properties, making
the calibration process more economic. After verifying the accuracy of the calibrated constitutive
parameters based on the above comparisons, a numerical parametric study is performed for the
investigation of the effect of material behavior and geometrical aspect ratios on the failure mechanisms
of large-scale URM walls.

Keywords: unreinforced masonry walls; artificial neural network; optimization; inverse problem

1. Introduction

Extensive laboratory tests have been carried out in the past decades to evaluate the
behavior of masonry structures [1–3]. Various constitutive models for masonry walls and
their constituents have been used in the past. For example, Chaimoon and Attard [4]
introduced a numerical formulation to analyze URM walls under shear compression
fracture. The inelastic failure surface was modeled using a Mohr Coulomb failure surface
with a tension cutoff and a linear compression cap. The results were verified by comparison
with experimental response of shear walls under shear compression loading. However, due
to the nature of the material of bricks and mortar comprising URM walls, which is similar
to that of concrete, the majority of the constitutive models that are used for analyzing the
bricks and mortar are identical to, or variations of, those of concrete. In [5] the capability
of smeared crack models in capturing the strength and various failure mechanisms of
reinforced masonry shear walls is assessed. The model showed excellent performance
with respect to flexure dominated behavior, but it had a major drawback in capturing the
brittle shear behavior. A combination of plasticity and damage applied to modeling of
concrete failure has been used in [6]. Various contributions [7–10] led to the development
of the Concrete Damaged Plasticity (CDP) model, which includes scalar (isotropic) damage
and stiffness recovery effects under cyclic loading. This constitutive model is ideal for
cases in which lateral loads such as earthquakes are present, since it accounts for the
degradation of the elastic stiffness of concrete induced by its plastic straining both in
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tension and compression. Damage mechanics based constitutive models have also been
used for modeling of the in-plane loaded brick masonry shear walls, where both mortar
damage and decohesion between brick and mortar are considered in an effort to simulate
the opening and frictional sliding [11].

To minimize the error between the observation-based datasets and model parameters,
inverse methods have been applied to identify and characterize the material properties
in the constitutive models. For example, Chisari et al. [12] tested a detailed nonlinear
brick masonry mesoscale model subjected to diagonal compression loads and compared
its results with those of a finite element (FE) model to identify the material parameters
by minimizing the errors between the experiment and numerical data. In addition, they
have developed techniques for model and material parameter identification of masonry
structures [13,14] and have successfully performed parameter identification considering
uncertainties in the experimental data and response sensitivities to model parameters, from
the shear strength estimation of a masonry panel subjected to a diagonal compression
test [15]. Given the nature of the failure of quasi brittle materials, such as bricks and
mortar in URM walls, which is characterized by the growth and coalescence of microcracks,
eventually leading to the formation of narrow damage zones, indirect inverse identification
methods have also been used. Carmeliet [16] determined the damage material parameters
by minimizing the errors between the design variable of laboratory tests and prior informa-
tion from the gradient damage model parameters estimated by Markov estimator method,
and a reasonable agreement between the experimental and numerical results is achieved.
Despite the fact that FE modeling is the most common means of numerical simulation of
URM walls, other numerical methodologies can be found in the literature as well; e.g.,
Caliò et al. [17] used a discrete-element model based on the concept of macro-element
discretization to simulate masonry buildings behavior and investigate nonlinear behavior
response subjected to in-plane earthquake loads.

Besides the above, a variety of optimization algorithms have been used and tested for
inverse analysis for estimation of material parameters based on experimental results. For
example, Muñoz-Rojas et al. [18] identified the material parameters of Gurson’s damage
model by fitting the numerical to the experimental force vs. displacement curves from
tensile tests using a specially configured genetic optimization algorithm, designed to avoid
local minima through automatic adjustment of the elitism and mutation rates depending
on the population diversity. Nazari and Sanjayan [19] presented an approach for mate-
rial parameter estimation using different optimization algorithms to predict compressive
strength of geopolymer mortar, paste and concrete. Toropov and Garrity [20] proposed
an optimization method to identify material parameters that are based on the response
of relatively “nontrivial” large scale masonry elements. Sarhosis and Sheng [21] used an
optimization procedure to estimate the parameters of masonry constitutive models by
minimizing the difference between experimental results from the load testing of large clay
brick low bond strength masonry wall panels and data from their numerical simulation.
The estimated parameters were used to validate the numerical model against another ex-
perimental wall panel test, and good correlation between the experimental and numerical
results was found.

Apart from the constitutive behavior of the brick and mortar materials, the effect of
various parameters on the failure mechanisms of URM walls has also been investigated.
For example, the influence of the wall aspect ratio on the failure mechanism of URM walls
under lateral loads has been largely investigated in some early studies structures [22,23].
Apart from these, Magenes and Calvi [24] examined the strength, deformability, and
energy dissipation capacity of URM walls and proposed simplified methodologies for their
evaluation, based on experimental and numerical data. Agnihotri et al. [25] studied the
stability and safety of URM walls after being damaged by combined cyclic in-plane and
monotonic out-of-plane loading, considering different slenderness ratios and aspect ratios,
through nonlinear finite element models. The CDP model in ABAQUS 2021HF5 (6.21-6)
was used to simulate the inelastic behavior of masonry. Salmanpour et al. [26] carried
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out experimental static cyclic shear tests on full scale URM walls to investigate the effects
of various factors, i.e., unit type, vertical pre compression level, aspect ratio, size, and
boundary conditions, on the displacement capacity of URM walls. Howlader et al. [27]
investigated the shear behavior of URM walls with a semicircular arch opening subjected to
the in-plane loads numerically. Aspects of the complex nature of the URM walls including
their potential for shear cracking and/or sliding and rocking and/or toe crushing were
taken into account.

From the aforementioned paragraphs, it is obvious that, since URM walls are struc-
tural elements which generally show brittle and nonlinear inelastic mechanical response,
formulating constitutive models and calibrating material parameters in the constitutive
models is essential to provide reliable predictions of the response of URM walls under
mechanical loads. The CDP constitutive model [7–9] that describes only the plasticity stage
is used in this study to analyze the mechanical response of masonry structures. The four
most influential parameters of the CDP material model (i.e., the dilatancy angle ψ, the
flow potential eccentricity of the brick and the mortar ε, the ratio of initial equibiaxial
compressive yield stress to initial uniaxial compressive yield stress σb0/σc0, the ratio of
the second stress invariant on the tensile meridian to that on the compressive meridian at
initial yield of the brick and the mortar Kc) are used for the prism calibration analysis. The
selection of these CDP parameters as well as their typical ranges have been discussed in
several studies in the literature based on calibrations from experimental data [28–31]. The
agreement between the experimental and numerical results is enforced through a novel
Neural Network Optimization algorithm (NNO). In this study, the objective function is
applied using the least squares technique, which minimizes the sum of the squares of
the differences between experiment based measurements and the calculated response of
the model [32,33]. A table containing the references of the literature review, along with
corresponding keywords and findings is presented in Appendix A of the present study.

Despite the variety of the aforementioned studies, in which efforts are made towards
understanding the response of URM walls, only few studies have addressed the possibility
of predicting the response of an entire wall system (macroscale) based on the experimental
data taken from experimental tests of a masonry prism (mesoscale) model. This possibility
will lead to large financial gains, through reducing and even cutting the costs associated
with complex experimental testing, as experimentation with macroscale specimens is totally
avoided and replaced by studies using only mesoscale experimental setup. The present
study tries to address the above research gap. This study is comprised of two parts. Firstly,
the material properties of the CDP model are calibrated from an experimental stress strain
curve obtained from a uniaxial compression test of a small scale prism. The material
properties that correspond to the optimum fit between the numerical and experimental
curves are found using the proposed NNO algorithm. The calibrated material properties are
subsequently used for a parametric study of the response of URM walls under lateral loads.
The calibrated material parameters and model is first validated from two experimental
tests on the shear response of URM walls. A good agreement between numerical and
experimental results demonstrates the accuracy of the material properties that are used in
the FE models, and therefore the accuracy of the proposed NNO algorithm. A parametric
study is finally performed to identify the factors that have a major effect on the shear
response of URM walls and also estimate the failure modes of the URM walls. One of
the advantages of this study are that it eliminates the need for large scale experiments
for estimating the material parameters through inverse optimization, which is a relatively
expensive experimental practice. On the contrary, in this study only small scale (prism)
experiments are used for this purpose. It is proved that the optimum material parameters
based on these small scale experiments can then be used to make predictions in large
scale experiments. The proposed research has shown a great impact in the assessment of
mechanical properties of a masonry prism (mesoscale) that allow to (i) verify the capacity
of the model to predict the response of the entire wall system (macroscale) (ii) open the
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possibility of reducing and even cutting the costs associated with complex experimental
testing.

2. Materials and Methods
2.1. General

The constitutive properties of the CDP model, which is available in ABAQUS 2021HF5
(6.21-6) FE code, are calibrated so that the numerical stress strain curve (SSnum) fits the
corresponding experimental curve (SSexp). This is done through the implementation of an
inverse optimization analysis, whereby an optimization procedure is implemented that
minimizes the least square error between the numerical and experimental data. ABAQUS
2021HF5 (6.21-6) FEA software [34] is used for performing the structural analyses, and
MATLAB R2021a [35] is used for the implementation of the NNO optimization procedure,
which is used for carrying out the optimization process. MATLAB R2021a is appropriately
coupled with ABAQUS 2021HF5 (6.21-6) by using Abaqus2Matlab v.2.0 [36], a novel
software that can transfer model data and results between ABAQUS 2021HF5 (6.21-6) with
MATLAB R2021a and vice versa, leading thus to a user-friendly integrated simulation and
programming environment. A flowchart of the various steps that are presented in this
section is shown in Figure 1.

Figure 1. Flowchart of the steps implemented in the Section 3 of the present study.

2.2. Description of the Prism Model

The model is comprised of 5 bricks and 4 layers of mortar between the former. The
cross section dimensions of the prism are 9.525 cm × 20.32 cm × 32.13 cm and the mortar
thickness between the bricks is 0.95 cm [1]. The prism is fixed at its bottom and at the
top a uniform displacement is imposed. Since the compressive strength is lower parallel
to the bed joints compared to that in the normal direction, the interfaces between the
bricks and mortar in the prism model are assumed to be fully bonded [3]. The ABAQUS
2021HF5 (6.21-6) model of the prism is discretized in 530 3D solid elements (C3D8R),
defined by 1073 nodes (see Figure 2). An appropriate mesh sensitivity analysis has been
performed to ensure that the mesh refinement does not affect significantly the final results.
The constitutive behavior of both the bricks and the mortar is defined by the ABAQUS
2021HF5 (6.21-6) CDP model, the parameters of which are treated as design variables of
the NNO problem. The Poisson ratio of the bricks is considered to be equal to 0.2 whereas
the Poisson ratio of the mortar is treated as a design variable ranging from 0.1 to 0.4. The
viscosity parameter µ which is used for the visco-plastic regularization of the concrete
constitutive equations in ABAQUS/Standard (v. 2021HF5, 6.21-6) is considered to be zero.
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It is assumed that the other parameters of the CDP model that define the flow potential
and yield surface are considered to be identical for the brick and mortar materials, since
more than one type of loading (i.e., other than compression test that is considered in the
present study) have to be applied on the prism specimens, in order to be able to identify
the different effect of the brick and mortar material on the total response of the prism
specimen, enabling the possibility of calibrating the constitutive properties of each one
of these two materials. Furthermore, the bricks and the mortar layers are considered to
be tied across their interfaces. The stress-strain curve in compression for both brick and
mortar material is defined only by specifying the initial yield stress value at an inelastic
(crushing) strain equal to 0.0. This corresponds to a simple elastoplastic behavior in the
compression post cracking regime. Tension stiffening for both brick and mortar materials
is modeled as a linearly decreasing post failure stress/cracking-strain relationship, defined
by the direct failure stress σt0 at zero direct cracking strain, and by the remaining direct
stress 0.1σt0 at direct cracking strain equal to εtf. εtf is the strain at which the material is
considered to have failed in tension. Moreover, damage factors in compression and tension
have not been considered, since they control only the unloading and reloading response of
the brick and/or mortar materials, i.e., cyclic response. As the compressive loading applied
to the prism specimen in this study is only monotonic, the aforementioned parameters
can be ignored. Static analysis is performed to obtain the response of the prism due to the
imposed displacement. More specifically, there are 10 design variables in this optimization
problem:

• The moduli of elasticity (EC, EM) of the brick and the mortar respectively;
• The dilation angle in the p–q plane of the brick and the mortar ψ;
• The flow potential eccentricity of the brick and the mortar ε;
• The ratio of initial equibiaxial compressive yield stress to initial uniaxial compressive

yield stress σb0/σc0;
• The ratio of the second stress invariant on the tensile meridian to that on the compres-

sive meridian at initial yield of the brick and the mortar Kc;
• The Poisson ratio of the mortar, νM, since it has a major influence on the behaviour of

masonry;
• The initial yield stress value of brick material in compression, σc0,C for crushing strain

equal to 0.0.
• The initial yield stress value of mortar material in compression, σc0,M for crushing

strain equal to 0.0.
• The cracking strain in tension, εtf, for failure stress value equal to 0.1σt0, where σt0 is

the failure stress value for cracking strain equal to 0.0. σt0 is assumed to be equal to
0.1σc0,C for brick material and 0.1σc0,M for mortar material.

Figure 2. Numerical model of 3D prism considered for the parameter identification in this study.
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The upper and lower limits are set for the design variables based on the literature and
are shown in Table 1.

Table 1. Description and bounds of the design variables considered for fitting the experimental stress strain curve of the
prism.

Design Variable Description Lower Bound Upper Bound

EC Modulus of elasticity of the brick material 4688.43 MPa 4826.33 MPa
EM Modulus of elasticity of the mortar material 2757.90 MPa 2895.80 MPa

ψ
Dilation angle in the p–q plane of the brick

material 0.1 40

ε Flow potential eccentricity 0 1

σb0/σc0

Ratio of initial equibiaxial compressive yield
stress to initial uniaxial compressive yield

stress
1.1 1.2

Kc

Ratio of the second stress invariant on the
tensile meridian to that on the compressive

meridian at initial yield
0.51 1

νM Poisson ratio of the mortar material 0.1 0.4

σc0,C
Initial yield stress value of brick material in
compression for crushing strain equal to 0.0 6.89 MPa 41.37 MPa

σc0,M
Initial yield stress value of mortar material in
compression, for crushing strain equal to 0.0 3.45 MPa 34.47 MPa

εtf

Cracking strain in tension, for failure stress
value equal to 1/10 of the failure stress value

for cracking strain equal to 0.0
10−4 10−3

2.3. Proposed Methodology for Material Parameter Identification

The NNO algorithm that has been used for the inverse optimization process employs
a novel technique that combines common inverse optimization analysis and neural net-
work training. The essential steps are illustrated in the algorithm outline presented in
Algorithm 1.

Algorithm 1. Neural Optimization.

1: Read the experimental stress-strain curve SSexp
2: Define M combinations of the 10 design variables
3: for k from 1 to M
4: Perform simulation in ABAQUS corresponding to parameters xk
5: Read kth stress-strain curve and append it in array SSraw
6: end for
7: Initialize err = +∞ and j = 1
8: while j ≤maxIter & err > tol
9: Train an Artificial Neural Network (ANN), net, as follows:

• Training function: Bayesian regularization
• Input training data: xk, k = 1 . . . M
• Output training data: norm(SSexp − SSraw,k ), k = 1 . . . M

10: Find optimum values xj by Interior Point optimization as follows:
• Objective function: the ANN net, fANN (see previous step)
• Initial guess: xj−1
• Constraints: xi,lb ≤ xi,j ≤ xi,ub

11: Perform simulation in ABAQUS corresponding to parameters xj
12: Read stress-strain curve and append it in array SSraw
13: Update err = norm(SSexp − SSraw,j ) < tol
14: Update j = j + 1
15: end while
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2.3.1. Initial Sets of Values Assigned to the Design Variables

A set of initial values (M sets) is assigned to the design variables. Assuming that the
number of the design variables is N, then the initial design variable sets are groups, each of
which contains N values and corresponds to one possible design of the URM wall prism.
In the beginning of the neural optimization algorithm and prior to the iterative application
of the Artificial Neural Network (ANN), M groups of N values, each which lead to M
simulations in ABAQUS 2021HF5 (6.21-6) and consequently M output stress strain curves,
are considered. The values of the design variables can be selected randomly, or according
to a given distribution which can be different among the various design variables. Each
one of the M design variable combinations corresponds to a single ABAQUS 2021HF5
(6.21-6) simulation case. The initial sets of design variable values should be chosen so that
they span a range that is large enough so that it includes the optimal solution. Generally,
the more initial points that are specified, the higher the performance of the neural network.
However, care should be taken so that the number of initial points is neither too small
nor too large with respect to the capacity of the neural network. In the first case of a low
number of training data, the ANN could learn the initial data too “well” and overfit the
initial dataset, which prevents the ANN from performing well on new training data that
are generated as the neural optimization algorithm proceeds. The opposite happens in
the case of underfitting, i.e., when the ANN has capacity too high to learn from the initial
training data. In this case, the ANN can learn neither from the initial training data nor from
the new training data generated during the neural optimization procedure. As a result,
there is an optimum size of the initial training data that needs to be considered, to avoid
both of the above negative situations. Currently, there is not any standard methodology for
selecting the initial data size; this depends on the nature of the algorithm, the ABAQUS
2021HF5 (6.21-6) model(s) involved, and also the hyperparameters of the ANN and the
optimizer function. The size of the initial training data considered in this study (i.e., the
value of the variable M mentioned above) is equal to 50.

2.3.2. Calculation of Initial Stress Strain Curves

The M ABAQUS 2021HF5 (6.21-6) models that correspond to the M design vari-
able value combinations generated in the previous step are analyzed using the ABAQUS
2021HF5 (6.21-6) software, the stress strain curve of the prism model is obtained using
Abaqus2Matlab v.2.0 after the ABAQUS 2021HF5 (6.21-6) analysis terminates, and is stored
in an array so that after all M models are analyzed, the corresponding stress strain curves
are accessible. During this step, the ABAQUS 2021HF5 (6.21-6) capabilities are exploited, a
practice that eliminates the difficulty of developing the FE simulation method of the model
analyzed in MATLAB R2021a.

The stress strain curve is obtained in Abaqus2Matlab v.2.0 by reading the stresses
at the upper surface of the prism and summing them appropriately to obtain the stress
averaged over the cross sectional area. The overall axial strain is obtained by reading the
imposed axial displacement at the upper surface of the prism and then dividing it by the
prism length. Furthermore, the computations are efficiently carried out by using a for
loop, which scans all the M sets of the initial design variable values by taking advantage of
Abaqus2Matlab v.2.0 capabilities to read and modify ABAQUS 2021HF5 (6.21-6) input files
automatically.

2.3.3. Discretization of Stress Strain Curves

The stress strain curves that are extracted from the ABAQUS 2021HF5 (6.21-6) sim-
ulations are further discretized in a larger number of points via linear interpolation and
extrapolation, to render the calculation of the error between the numerical and experi-
mental curves more accurate. These data points are generated from the lower and upper
bounds of the material parameters to simulate the stress strain curves of the masonry prism.
This operation, apart from estimating the error more accurately, can enable the application
of weighting factors that depend on strain values that are specified a priori. For example, if
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for some reason emphasis is placed on the error between the experimental and numerical
stress strain curves in their elastic branch, then this part of the curve should be highly
discretized and/or appropriately weighted.

2.3.4. Training of the ANN

The ANN is set up and trained with the initial data. The training function that is
specified for the ANN is Bayesian Regularization backpropagation (‘trainbr’). This function
uses the Levenberg—Marquardt [37] optimization algorithm to update the weight and
bias values of the ANN, and then determines a combination of squared errors and weights
to produce a network that generalizes well. MATLAB’s ‘trainbr’ function can train any
network as long as its weight, net input, and transfer functions are differentiable.

The procedure of neural network training can be viewed as a function optimization
problem, where the weights and biases are considered as design variables and the network
error is considered as the objective function to be minimized. The neural network can be
considered as an arbitrary function of the input vector x and the weights of the network w
as follows:

F(x,w) = y (1)

where y is the corresponding output vector approximated or predicted by the network. The
Levenberg—Marquardt algorithm approximates the function F by solving in each iteration
the equation:

(JTJ + λI) δ = JTE (2)

where:

• J is the Jacobian nt by nw matrix, where nt is the number of entries in the training set
and nw is the number of the design variables (weights and biases), containing all the
first order partial derivatives of F with respect to w (J = ∂F/∂w).

• λ is the damping factor which is adjusted at each iteration according to the convergence
rate of the optimization process. If the reduction in the error is rapid, then λ can be
reduced, which gradually makes the algorithm behave in a way similar to that of the
Gauss Newton algorithm. In the opposite case of insufficient reduction in the residual,
then λ can be increased, which makes the algorithm resemble the gradient descent
algorithm.

• E is the error vector containing the residual for each input vector that is used for
training the network.

• δ is the update of the weights
• Bayesian regularization minimizes a linear combination of squared errors and weights

(cost function), mainly to overcome the problem in interpolating noisy data [38,39].
Two Bayesian hyperparameters α and β are used in the cost function, which deter-
mines the direction that the learning process must seek, in order not only to minimize
the errors but the weights as well. These parameters are updated after each training
cycle. The cost function is given by the following equation:

C = βEe + αEw (3)

where Ee is the sum of squared errors and Ew is the sum of squared weights. The
Bayesian parameters are updated using MacKay’s [40] formulae as follows:

γ = nw − [α· tr(H−1)] (4)

β = (nt − γ)/(2Ee) (5)

α = γ/(2Ew) (6)

The flowchart of the Levenberg Marquardt algorithm expanded with Bayesian regu-
larization that is used in this study is shown in Algorithm 2.
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Algorithm 2. Backpropagation with Bayesian regularization.

1: Compute the jacobian J = ∂F/∂w
2: Compute the error gradient g = JTE
3: Compute the Hessian approximation H = JTJ
4: Compute the cost function C = βEe + αEw
5: Solve (JTJ + λI)δ = JTE to find δ
6: Update the network weights: w’ = w + δ
7: Calculate C using w’
8: if C has not decreased, then discard w’, increase λ and go to step 5;

else if C has decreased, then decrease λ
9: Update the Bayesian parameters

The ANN has one hidden layer with size 10. One of the objectives of the proposed
NNO algorithm is that it should approach the optimum solution by using a minimum
amount of training data, which saves ABAQUS 2021HF5 (6.21-6) simulation time. To
achieve this goal, the target data are fully exploited to train the ANN and no target data
are used for either its validation or testing. The maximum number of epochs of the ANN
training process is set equal to 50. A graphical view of the ANN that is used in this study is
shown in Figure 3.

Figure 3. Architecture of the feedforward ANN with backpropagation that is used in the present
study.
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2.3.5. Optimization Procedure

An optimization procedure is carried out to minimize the error between the experi-
mental and the numerical stress strain curve, fANN, subject to the following constraints:

4688.43 MPa ≤ EC ≤ 4826.33 MPa
2757.90 MPa ≤ EM ≤ 2895.80 MPa

0.1 ≤ ψ ≤ 40
0 ≤ ε ≤ 1

1.1 ≤ σb0/σc0 ≤ 1.2
0.51 ≤ Kc ≤ 1

0.1 ≤ νM ≤ 0.4
6.89 MPa ≤ σc0,C ≤ 41.37 MPa
3.45 MPa ≤ σc0,M ≤ 34.47 MPa

10−4 ≤ εtf ≤ 10−3

(7)

The objective function fANN is a function that accepts any set of design variable values
(input data of the ANN) and gives as output the error (output data of the ANN). It is
important to note here that as the algorithm proceeds, the training data increases, the
trained ANN becomes “better”, and the objective function that is based on this ANN
becomes better as well. This means that the objective function changes continuously as the
algorithm proceeds, continuously shifting the optimum values of the design variables as
well as the objective function.

The gradient based interior point algorithm (IPA) approach is used for the solution
of the optimization problem [41]. According to this algorithm, the original inequality
constrained minimization problem is stated as follows:

minX{fANN(X)} (8)

subject to:

g(X) =
[

LB− X
X−UB

]
≤
[

0
0

]
(9)

where X is a vector containing the 10 design variables and LB, UB are also vectors containing
the lower and upper bounds of the design variables respectively. Equation (8) is solved as
a sequence of the following approximate equality constrained minimization problems for
µ > 0:

minX,s{fANN(X,s)} = minX,s{fANN(X)} − µ∑iln(si) (10)

subject to:
g(X) + s = 0 (11)

there is one slack variable (si ≥ 0) for each inequality of a design variable, namely the
optimization problem at hand has 16 slack variables. As µ decreases to zero, the minimum
of [fANN, µ] and the minimum of fANN should coincide.

To solve the approximate problem, the algorithm uses one of the following two main
types of steps at each iteration:

• N Step. A direct (Newton) step in (X,s). This step attempts to solve the Karush
Kuhn Tucker (KKT) equations [42,43] for the approximate problem using a linearized
Lagrangian as follows: H 0 JT

g
0 SΛ −S
Jg −S I

 ∆X
∆s
−∆λ

= −
 ∇fANN − JT

gλ

Sλ − µe
g + s

 (12)

where H is the Hessian of the Lagrangian of the approximate equality constrained
minimization problem, calculated according to the BFGS formula [44–46], Jg is the
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Jacobian of the inequality constraint function g(X), S is a diagonal matrix with entries
si, λ denotes the Lagrange multiplier vector associated with constraints g(X), Λ is
a diagonal matrix with entries λi, and e is a vector of ones the same size as g(X).
Equation (12) defines the direct step (∆X, ∆s).

• CG Step. A CG (Conjugate Gradient) step, using a trust region. The conjugate
gradient approach to solve the approximate problem, Equation (10) adjusts both X
and s, keeping the slacks s positive. The algorithm obtains Lagrange multipliers by
approximately solving the KKT equations by:

∇XL = ∇XfANN + ∑iλi∇gi(X) = 0 (13)

subject to λ > 0. The following quadratic approximation to Equation (10) is minimized
in a trust region of radius R:

min∆X,∆s{∇fANN
T∆X + 1⁄2∆XT∇XX

2L∆X + µeTS−1∆s + 1⁄2∆sTS−1Λ∆s} (14)

subject to the linearized constraints:

g(X) + Jg∆X + ∆s = 0 (15)

From Equation (14) the step (∆X, ∆s) is obtained.
By default, the algorithm first attempts to take a direct N step. If it cannot, it attempts

a CG step. The algorithm takes a CG step either if the approximate problem is not locally
convex near the current iterate, or if the Hessian is not positive definite at the current
iteration.

For the first iteration, the initial guess that is supplied to the optimization function
corresponds to the best case (i.e., that has the minimum error) among the initial design
variable value combinations. For subsequent iterations, the initial guess corresponds to the
optimum values that have been obtained in the last iteration of the NNO algorithm.

2.3.6. Evaluation of the Stress-Strain Curve of the Optimal Point

An ABAQUS 2021HF5 (6.21-6) analysis is performed in which the material constitutive
properties of the prism model are set equal to the optimum solution obtained in the
optimization procedure that is described in Section 2.3.5. From the analysis, the stress
strain curve is obtained in the same way as outlined in Section 2.3.2. At this step, it is
checked if any one of the termination conditions is satisfied. Two termination conditions
have been included in the neural optimization algorithm, i.e., if the number of iterations
exceeds an upper limit, or if the error becomes lower than a prescribed tolerance:

j > maxIter (16)

err < tol (17)

If any of these two conditions is satisfied, the algorithm terminates and returns as
output the best design that is achieved so far (i.e., the design that corresponds to minimum
error). If none of the above conditions is satisfied, the last optimum solution is treated as
an additional input output training data and is added into the pool of the initial training
data. The ANN is retrained based on the enriched training data.

2.4. Material Parameter Identification Results

Figure 4 presents the evolution of the objective function during the inverse optimiza-
tion procedure. It is obvious that the objective value (i.e., the error) stabilizes after a number
of local maxima, as the algorithm proceeds towards its termination point. The oscillating
behavior towards convergence depends on the size of the ANN used inside the NNO
algorithm (i.e., number and size of hidden layers, etc.). Despite these oscillations, a strongly
converging behavior is observed which is indicative of the suitability of the proposed
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neural optimization algorithm for the solution of inverse optimization problems for model
parameter identification. After the optimum calibrated material properties have been ob-
tained, an ABAQUS 2021HF5 (6.21-6) analysis is performed with these properties assigned
to the prism model. The numerical stress-strain curve shows a very good agreement with
the experimental observation (see Figure 5).

Figure 4. Evolution of the objective function during the NNO process.

Figure 5. Stress strain experimental observation vs. FE model prediction.

3. Results & Discussion

An essential consideration to assess masonry walls is to examine their resistance
against a lateral force caused by wind or earthquake loads. Flexural cracking, shear sliding,
and compressive failure are the most common failure modes of the walls under lateral loads.
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The feasibility of the evaluation process is verified through comparison with corresponding
experimental results [1–3]. The CDP model is being used to model the mechanical response
of mortar layers and bricks in the masonry walls, the material properties of which are
based on the optimized CDP material parameters that are obtained from the inverse
analysis of the small scale (prism) simulations with the proposed neural optimization
algorithm. Moreover, unlike the prism specimens in which the loading is in the vertical
direction only, the loading of the URM walls is not only vertical, but also lateral, and for
this reason it is assumed that along the brick—mortar interfaces shear failure according to
the Mohr-Coulomb shear friction relationship occurs if the shear loading exceeds a certain
limit.

The numerical results of the masonry walls regarding the shear stress (τ)—lateral
displacement (U) curves showed a good agreement with corresponding experimental
observations, as shown in Figures 5 and 6 below.

Figure 6. Mesh convergence results for the model “Wall 2”.

Next, the model is used to understand failure mechanisms in the masonry walls under
lateral loads. The essential aspects that control the flexural cracks in masonry walls are,
apart from the material parameters, the wall geometry and the ratio of vertical load to
lateral load. Therefore, the effect of different parameters is accounted for by performing a
parametric study of load combination and wall aspect ratio l/heff to investigate the crack
patterns due to flexural cracking, compressive failure, and sliding shear failure through
varying the tensile strength, compressive strength, and coefficient of friction and shear
stress on the intact elements between mortar layers and bricks. The ultimate shear strength
is determined from the sum of lateral forces at the top nodes of the masonry wall divided
by the cross sectional area.

3.1. Mesh Convergence Study

A vital issue in FE simulations that affects accuracy is mesh convergence, namely the
mesh refinement that is required, so that the FE solution becomes practically independent
of the discretization of the model. Since the geometry of the wall is simple, i.e., without
curved geometry, it is obvious that there are not any geometric constraints on the mesh
refinement process. The model “Wall 2” [1] is used for the mesh convergence study. This FE
model of the URM wall is solved for two levels of refinement for the mortar and three levels
of refinement for the bricks. The refinements of the mortar and the bricks are independent,
thus they yield six refinement cases, as shown in Table 2. The naming convention of the six
models used for the mesh convergence study is meshRefBXMY, where X is the refinement
level of the bricks and Y is the refinement level of the mortar. As X and/or Y increase,
the refinement increases, i.e., the number of nodes and elements of the FE mesh increase,
leading to more accurate solutions. X = 1 corresponds to two finite element discretization



CivilEng 2021, 2 956

along the brick edges. Y = 1 corresponds to one finite element discretization along the
thickness of the mortar. For example, in the model meshRefB1M1 all bricks are discretized
in two finite elements per edge (i.e., 4 finite elements per brick), and one element along
with the mortar thickness. X = 2 and X = 3 correspond to the discretization of three and four
elements per edge respectively. Y = 2 corresponds to discretization through the thickness
of the mortar in two finite elements. It is noted that the aspect ratio of each finite element
of the mortar is equal, or as closest as possible to unity, in order to preserve a good mesh
quality. Furthermore, special attention has been paid to ensure that hourglassing and shear
locking phenomena do not occur in the FE mesh during the solution process [47]. The
number of nodes and elements of the bricks and the mortar of each model is shown in
Table 2.

Table 2. Modeling details of the 6 simulation cases used for the mesh refinement study.

Model Part Element Type Elements Nodes

meshRefB1M1
Mortar CPS4R 10,108 19,570
Bricks CPS4R 1568 3528

meshRefB1M2
Mortar CPS4R 34,941 50,822
Bricks CPS4R 1568 3528

meshRefB2M1
Mortar CPS4R 10,108 19,570
Bricks CPS4R 3528 6272

meshRefB2M2
Mortar CPS4R 34,941 50,822
Bricks CPS4R 3528 6272

meshRefB3M1
Mortar CPS4R 10,108 19,570
Bricks CPS4R 6272 9800

meshRefB3M2
Mortar CPS4R 34,941 50,822
Bricks CPS4R 6272 9800

The naming convention of Table 2 is used in the legend of Figure 6, where the shear
stress vs. top displacement curves are plotted for the various cases. For reasons of easy
comparison, the experimental result has been plotted in Figure 6. It is apparent that the
cases with increased mesh refinement are closer to the experimental curve than those with
the coarse mesh, which shows that the former cases have increased accuracy. In addition,
since the numerical results of the refined mesh are in satisfactory agreement with the
experimental results, it is concluded that further refinement of the mesh is not necessary.
Therefore, the mesh refinement of the case meshRefB3M2 is used for the parametric analysis
the results of which are presented in this study.

3.2. Model Validation

To check the validity of optimal material parameters obtained from the NNO algorithm
for the prism, two URM walls (referred to as “Wall 1” and “Wall 2”) are simulated and
compared to experimental tests by Epperson and Abrams [1]. The optimal constitutive
parameters of the masonry prism implemented in the numerical simulations of walls are
summarized in Table 3. The geometrical model of URM walls is represented by a clay brick
panel with the same height of 1828.8 mm height and two different widths 2895.6 mm and
2387.6 mm for “Wall 1” and “Wall 2”, respectively. The cross-section area of “Wall 1” is
1,206,449 mm2 and for “Wall 2” 1,032,256 mm2 which are tested by vertical compressive
stress and lateral load displacement. The walls are fixed at their bottom and free at their
ends. The ABAQUS 2021HF5 (6.21-6) model of the wall is represented by 2D plane stress
elements (CPS8R). The constitutive behavior of both the bricks and the mortar thickness
of 19 mm is described by the CDP model. The Poisson ratio of the bricks is equal to
0.2, whereas the Poisson ratio of the mortar is 0.29, obtained according to the results of
the inverse optimization analysis presented earlier. The flow potential eccentricity (ε) is
equal to 0.61 for both the bricks and the mortar layers, and the ratio of initial equibiaxial
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compressive yield stress to initial uniaxial compressive yield stress (σb0/σc0) is set equal to
1.11 for both the bricks and the mortar. The optimal parameters of the masonry prism have
been specified in the material definition of the walls, which showed a good agreement with
experiment tests (see Figure 7).

Table 3. Optimal material properties of the small scale wall prism.

Design Variable Optimum Value

EC 4744.97 MPa
EM 2819.13 MPa
ψ 8.88
ε 0.61
σb0/σc0 1.112
Kc 0.84
νM 0.294
σc0,C 15.547 MPa
σc0,M 9.067 MPa
εt f 1.01 × 10−4

Figure 7. Experimental and numerical shear stress versus top displacement curves: (a) model “Wall
1”, (b) model “Wall 2”.

3.3. Failure Modes and Failure Criteria

A parametric study has been conducted to investigate the effect of various factors on
the response of URM walls, as outlined in Table 4, and presented in the following sections.
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Table 4. Classification of parameters and models in the parametric study of URM walls carried out in this study (see
footnote after the table for the conclusion statements).

Description Constant Input Varying Input
Outputs

ConclusionShear Stress (τ)
MPa

Lateral Dis (U)
mm

Influence of
Vertical

Compressive
Stress

l/heff = 1.5
f’m = 11 MPa
µ = 0.5

τo = 0.69 MPa.
f’t = 2.06 MPa

σv = 0.344 MPa
σv = 0.69 MPa
σv = 1.03 MPa
σv = 1.37 MPa
σv = 1.72 MPa

(0.72) a

(0.78) a

(0.83) a

(0.88) a

(0.91) a

(15.24) b

(15.24) b

(15.24) b

(15.24) b

(15.24) b

Note 1

Influence of Aspect
Ratio

f’m = 20.69 MPa
µ = 0.5

τo = 0.69 MPa.
σv = 1.03 MPa
f’t = 2.06 MPa

l/heff = 0.55
l/heff = 1.3
l/heff = 1.5

(0.32) a

(0.63) a

(0.96) a

(15.24) b

(15.24) b

(15.24) b
Note 2

Influence of
Material

Sensitivity:
Flexural Tensile

Strength

l/heff = 1.5
µ = 0.5

τo = 0.69 MPa
σv = 1.03 MPa
f’m = 11 MPa

f’t = 0.069 MPa
f’t = 0.344 MPa
f’t = 0.69 MPa

(0.40) a

(0.54) a

(0.59) a

(15.24) b

(15.24) b

(15.24) b
Note 3

Influence of
Material

Sensitivity:
Compressive

Strength

l/heff = 1.5
µ = 0.5

τo = 0.69 MPa
σv = 1.03 MPa
f’t = 2.06 MPa

f’m = 6.9 MPa
f’m = 13.78 MPa
f’m = 20.68 MPa

(0.72) a

(0.83) a

(0.72) a

(15.24) b

(15.24) b

(15.24) b
Note 4

Influence of
Material

Sensitivity:
Coefficient of

Friction

l/heff = 1.5
f’m = 11 MPa
τo = 0.69 MPa.
σv = 1.03 MPa
f’t = 2.06 MPa

µ = 0.5
µ = 0.7
µ = 0.9

(0.80) a

(0.83) a

(0.85) a

(15.24) b

(15.24) b

(15.24) b Note 5

Influence of
Material

Sensitivity:
Cohesion Stress

l/heff = 1.5
f’m = 11 MPa
µ = 0.5

σv = 1.03 MPa
f’t = 2.06 MPa

τo = 0.69 MPa.
τo = 1.03 MPa.
τo = 1.3 MPa

(0.83) a

(0.90) a

(0.99) a

(15.24) b

(15.24) b

(15.24) b

a Represent the shear stress values when wall b lateral displacement reaches to 15.24 mm. Note 1: By assuming increasing vertical
compressive stress the failure mode from flexural to compressive splitting exhibited in Figure 8. With high vertical compressive stress, fail
in flexure may occur quickly towards the toe due to flexural cracking progresses in bed joint. Note 2: Wall with l/heff > 1.3, the failure is
primarily a result of compressive splitting from flexure and compressive splitting. Slender wall fails in bed joint due to the flexural cracks
or local sliding. Note 3: The flexural tensile strength significantly influences on the lateral stress that instigates cracking. As a result, the
more the flexural tensile strength, the more the shear capacity for flexural cracking failure. Note 4: The shear strength is dominated by the
compressive strength when the wall is investigated for the compression failure mode. If the wall fails in compression, this means the shear
strength depends on the compression strength. Note 5: The variations for cohesion and coefficient of friction values may cause slide failure
at different vertical stress level. In consequence, the compressive strength failure may occur in some local area due to the lack of bond
between the mortar and brick units.
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Figure 8. Influence of compressive vertical stress on shear strength of URM walls. Xu and
Abrams [3] presented an equation to evaluate the cracking of unreinforced walls due to flexu-
ral tensile stress τ = 1/6 l/heff(ft + σv) where τ is the nominal shear stress between the brick and
mortar layers.

3.3.1. Flexural Cracks

An important parameter in terms of the shear strength of the wall is the flexural
tensile strength of the bed joints which can affect the distribution of shear and normal
stresses between masonry layers through flexural cracking. Figure 8 shows that the onset
of cracking corresponds to the lateral displacement of 2.54 mm which means that the
significant deformation begins after 2.54 mm of horizontal displacement. Also, it is obvious
that the flexural failure occurs for low vertical compressive stresses σv between 0 to
0.344 MPa combined with high lateral force. Consequently, as the lateral force applied in
plane of the wall increases, the inelastic (nonlinear) behavior is more pronounced. As a
result, when the flexural tensile cracks extend to the toe of the wall, overturning will occur.
Overturning can occur only when the unreinforced wall cracks and the following criterion
is used to check failure due to overturning:

τ = 1⁄2·(σv)l/heff (18)

3.3.2. Shear Sliding

The typical shear failure along the bed joint is due to the high lateral forces that cause
high shear stress between the bricks and mortar layers. Also, the shear stress between the
layers depends on several factors such as the bond between the layers, friction, cohesion,
and material heterogeneities. In this study, the friction and cohesion stress between the
elements have been investigated. The flexural tensile strength is more important for aspect
ratio l/heff = 0.5 with relatively low vertical compressive stress (see Figure 9b). Increasing
lateral loads can significantly propagate the crack towards the toe. When the flexural
tensile stress exceeds the allowable flexural tensile strength, the cracks propagate near the
wall base.

σy ≤ ft (19)

where σy is the tension stress at the base of the wall which is normal to the bed joint and ft
is the flexural tensile strength. In general, flexural cracks initiate after the initial stage of the
wall response, namely when the horizontal displacement exceeds 2.54 mm. Figure 9a shows
failure due to sliding may occur in slender walls with a high aspect ratio l/heff > 1.5 [3].
However, for aspect ratio l/heff = 0.5 shear sliding along the wall length may prevail when
it is subjected to high lateral force and low vertical compressive stress. Because the failure
can extend over the full width, slender walls are most likely to fail in earlier loading stages
compared to stocky walls (see Figure 9b). A major factor that affects this is the bond
between brick and mortar layers; for this reason, friction and cohesion stresses have been
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studied in detail. According to the Mohr-Coulomb shear friction relationship, the shear
failure criterion can be stated as follows:

τ ≤ τo + µσy (20)

where τo is the cohesion stress and µ is the coefficient of friction. The latter has been
considered in ABAQUS 2021HF5 (6.21-6) software to investigate the effects of the normal
and tangential behavior in the contact interfaces between bricks and mortar layers.
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Figure 9. URM wall simulations in ABAQUS for validation of the various failure mechanisms:
(a) stocky, (b) slender and (c) square.

3.3.3. Diagonal Compressive Splitting

The diagonal compressive splitting occurs usually when l/heff > 1.5 which is a common
failure mechanism, especially when the wall is subjected to high lateral force and vertical
compressive stress. Compressive splitting is the last stage before the collapse of the
unreinforced walls. In other words, when the wall starts to deflect and a local area of shear
sliding starts to form, the diagonal compressive splitting occurs toward the toe causing
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the wall to overturn. When the URM wall reaches shear sliding failure, redistribution of
normal and shear stresses takes place which can be induced from the resultant shear force
and can generally delay the collapse event (see Figure 9a). Consequently, toe crashing or
diagonal compression splitting may happen due to redistribution of the stresses. Page [48]
defined the failure criteria of the biaxial stresses and the principal stresses (σ1,σ2) with their
orientation θ in terms of 3D surface stresses. These stresses are the normal, tangential, and
shear stress to the bed joint, which can be represented by σn, σt, and τ respectively. The
failure criteria of biaxial stress is given by:

τ2 ≤ (fmt − σt)(fmn − σn) (21)

where fmt and fmn are the compressive strength at the normal and tangential directions at
the bed joints respectively, which can be obtained from masonry prism tests. When the
normal stress σn is larger than the compressive strength fmn crushing occurs at the toe [3]
(see Figure 9a).

3.3.4. Diagonal Tension Cracking

In this mode, the wall tends to crack at the heel due to high lateral forces and lack
of diagonal tensile strength such as seismic loads [49]. This type of failure can occur in
the strong brick units and weak mortar which is typically found in walls with aspect ratio
l/heff > 1.5. Xu and Abrams [3] stated that strong mortar and weak units cracked with high
vertical compressive stresses while weak mortar strong units cracked with low vertical
compressive stresses. Essawy and Drysdale [50] presented an equation to determine the
principal tensile stress according to Mohr’s circle at a point:(

τ

σ0

)
=

(
1− σt

σ0

)(
1−σn

σ0

)
(22)

where σ0 is the diagonal tension strength in which the diagonal crack occurs when diagonal
tensile stress is larger than the diagonal tensile strength.

3.4. Influence of Vertical Compressive Stress

In order to understand the effect of vertical compressive stress, a relationship has been
considered between the lateral displacement and shear strength. An aspect ratio l/heff
equal to 1.5 is used with compressive strength (f’m) 11 MPa, flexural tensile strength (f’t)
2.06 MPa coefficient of friction (µ) 0.5 and cohesion stress (τo) 0.69 MPa. The values of
vertical compressive stress (σv) applied at the top of the walls range from 0.344 MPa to
1.72369 MPa (see Figure 8). The variation of vertical compressive stress can significantly
affect the failure mode. When low vertical compressive stress is applied at the top of a
slender wall with high lateral loads, the shear sliding may predominate the failure modes.
The wall with aspect ratio l/heff = 0.5 is more likely to fail by sliding due to its short length.
The effect of vertical compressive stress on the shear strength is slightly increased after the
shear sliding modes start to propagate between the brick units and bed joints. Consequently,
the shear stress is redistributed in some local areas in the normal and tangential directions
that can increase the shear strength till a compression failure is reached. The URM wall
with lateral displacement between 0 to 20.32 mm exhibits elastic behavior while nonlinear
behavior takes place as soon as the wall starts cracking.

3.5. Influence of Aspect Ratio

In this section, the relationship between the lateral shear load displacement and
shear strength is investigated in terms of the length to effective height (aspect) ratio l/heff.
The shear strength is estimated from the summation of lateral forces, due to the imposed
displacement (ranging from 0 up to 15.24 mm) at the top nodes of the masonry walls divided
by their gross sectional area. The vertical compressive stress, flexural tensile strength, and
compressive strength are specified equal to 1.03 MPa, 2.06 MPa, and 20.69 MPa respectively.
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The friction coefficient and cohesion stress are equal to 0.7 and 1.03 MPa respectively. The
aspect ratio is the only parameter that is varied to investigate the effect shear strength
capacity (e.g., 0.55, 1.3 and 1.6). The shear strength resistance increases significantly when
l/heff increases (see Figure 10) [3]. The common failure mechanisms are flexural cracking,
shear sliding and compressive splitting which occur in sequence. The higher the aspect
ratio, the more failure modes show up during high lateral loads combined with low vertical
compression stress [26]. When the aspect ratio is l/heff > 1.5, most failure modes occur
during high lateral loading (e.g., rocking, bed joint sliding, diagonal tension splitting and
toe crush) (see Figure 9a). The sequence of this failure started with cracks usually near
the wall base which then propagate across the wall [49]. Then, the wall started unbinding
between the brick units and mortar layers in which this stage may extend across the wall
length especially with l/heff < 1.5 (see Figure 9b,c). Shear sliding can play a significant
role to redistribute the normal and tangential stresses between the bed joints and brick
units. Consequently, the propagation of shear sliding forms a typical stair stepped bed joint
that can enhance a ductile mode with significant hysteretic energy dissipation capability.
Masonry walls with 0.5 < l/heff < 1.5 may show all failure mechanisms except rocking
foundation during high loads (See Figure 9c).

Figure 10. Influence of aspect ratio in shear strength of URM walls.

3.6. Influence of Material Sensitivity

In order to investigate the effects of material parameters sensitivity, a relationship
between lateral displacement and shear strength has been constructed for URM walls. The
shear strength of a cracked wall is calculated by the maximum in-plane lateral force divided
by the gross sectional area, i.e., from the sum of lateral force of the top nodes divided by
the gross sectional area. The masonry wall is simulated in ABAQUS 2021HF5 (6.21-6) with
dimensions of 1.83 m height and 2895.6 mm length and its gross area is 1,206,449 mm2.
The wall is subjected to an in-plane lateral load displacement [26], starting from 0 up to
15.24 mm. The CDP model is used with the material parameters that have been used for
the verification of the wall response in Section 3.1. In order to understand the post cracking
behavior, it is essential to carry out parametric studies, the parameters of which are the
compressive strength, the coefficient of friction and the cohesion between the bricks and
mortar layers [1–3].

3.6.1. Flexural Tensile Strength

Flexural tensile strength is the most important factor which contributes to the shear
resistance and controls the ductility when the masonry walls are subject to in-plane lateral
loads. The low vertical compressive stress and high lateral displacement can significantly
affect slender walls. In order to investigate the flexural shear strength, the relationship
between the lateral displacement and shear strength is considered [3]. The aspect ratio is
1.5 with 11. MPa as compressive strength and coefficient friction and cohesion stress are
equal to 0.7 and 0.69 MPa respectively. Flexural tensile strength (f’t) is the only parameter
that is varied (e.g., 0.069 MPa, 0.344 MPa, and 0.69 MPa) to evaluate the shear strength.
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Figure 11 shows that for higher flexural tensile strength, the masonry wall’s resistance
to the lateral loads and ductility increase. For lateral displacement equal to 20.32 mm
flexural cracks begin to propagate [3]. In addition, when the wall is subjected to lateral
load displacement equal to 12.7 mm, it fails with 0.069 MPa of flexural tensile strength.
Also, the shear sliding failure predominates in the failure stage as illustrated in Figure 11
compared to other failure stages. Consequently, the shear sliding between the bed joints
increases the resistance against collapse as well as ductility.

Figure 11. Influence of flexural tensile strength on shear strength of URM walls.

3.6.2. Compressive Strength

Compressive strength is an important parameter that controls failure due to vertical
compressive stresses. Three values for compressive strength (f′m) have been considered in
the simulation (e.g., 6.9 MPa, 13.8 MPa, and 20.68 MPa). The vertical compressive stress is
equal to 1.03 MPa for masonry wall, l/heff = 1.5 and the other parameters are as follows:
flexural tensile strength 2.07 MPa, cohesion stress 1.03 MPa and coefficient of friction 0.7.
However, when the compressive strength is equal to 6.9 MPa, the strength of the wall
is significantly reduced, and it fails at lateral load displacement equal to 10.16 mm (see
Figure 12). From Figure 12 it is noted that flexural cracks are created when the lateral
displacement ranges from 2.54 mm to 5.08 mm and the shear sliding ranges between
5.08 mm and 10.16 mm and then compressive splitting takes place until collapse. The
variation of compressive strength demonstrates clearly that all curves start in the same
range of flexural cracking and shear sliding whereas the compressive splitting controls the
shear strength. Consequently, if the wall does not fail due to the compressive stress, then
the shear strength of the wall does not depend on the compressive strength [3,4].
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Figure 12. Influence of compressive strength on shear strength of URM walls.

3.6.3. Coefficient of Friction and Cohesion Stress

Coefficient of friction (µ) and cohesion stress (τo) depend on the normal and tangential
behavior between the brick units and mortar layers. The Mohr Coulomb criterion in
Equation (20) shows that friction and cohesion significantly affect the shear sliding failure.
As these two parameters increase, the shear strength to resist shear sliding failure that
propagates along the length of masonry wall increases (see Figure 13a). When the applied
lateral load is low, the variation of the shear strength is slightly changed with respect to
high coefficient of friction and cohesion stress [3]. Consequently, in most cases the region
of sliding failure varies based on the local values of normal and tangential stresses between
the bed joints [49]. To investigate the variation effect of coefficient of friction and cohesion
stress, URM walls are individually simulated corresponding to parameters and aspect ratio
similar to those mentioned above, except for coefficient of friction and cohesion stress,
which take the values [0.5, 0.7, 0.9] and [0.69 MPa, 1.03 MPa, 1.37 MPa], respectively. The
result is a slightly change in shear strength from 0.7 to 0.9 while the coefficient of friction is
more sensitive for values from 0.5 to 0.7. Consequently, for higher values of the friction
coefficient, less variation of shear strength can be achieved. The variation of cohesion
significantly controls the shear strength when the wall is subjected to in-plane lateral loads.

Figure 13. Cont.
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Figure 13. Influence of contact properties on shear strength of URM walls: (a) friction, (b) cohesion.

For lower values of cohesion stress the effect on the shear strength becomes more
pronounced. Figure 13b illustrates that shear sliding begins earlier for cohesion equal to
0.69 MPa compared to the other cohesion values.

4. Conclusions

A novel Neural Network Optimization (NNO) algorithm has been proposed for the
calibration of the material properties of URM walls based on experimental stress—strain
curves taken from wall prism compression tests. The calibrated material properties that are
output from this algorithm have been used in large scale URM wall FE models the results
of which agree very well with analogous experimental data from large scale URM walls.
Consequently, it is concluded that the proposed NNO algorithm is able to calibrate the
brick and mortar material properties for large scale URM walls, by using experimental
results only from wall prism tests, without the necessity for performing costly large scale
URM wall experimental tests. This advantage makes the proposed methodology not only
cost effective, but also it shows that the NNO concept yields a sufficiently robust and
accurate inverse optimization technique for the development of numerical models based
on inverse analysis of experimental data.

Apart from this, based on the material properties calibrated with the proposed NNO
algorithm, various FE models of large scale URM walls have been developed and the
influence of various factors on their shear response is investigated. It has been found that
the shear stress is redistributed in some local areas in the normal and tangential directions
that can increase the shear strength till a compression failure is reached. Shear sliding
can play a significant role to redistribute the normal and tangential stresses between the
bed joints and brick units. Consequently, the propagation of shear sliding forms a typical
stair stepped bed joint that can enhance a ductile mode with significant hysteretic energy
dissipation capability. Generally, the shear sliding between the bed joints increases the
resistance against collapse as well as the ductility of the wall.

The application of the proposed calibration strategy to estimate the response of URM
walls based on the experimental response of a mesoscale model has shown some critical
issues, and treating them in future studies may lead to substantial improvements regarding
the implementation of the proposed algorithm. Apart from this, the proposed algorithm
can be applied for constitutive calibration in more complicated URM wall structural
response, which in turn requires increasingly complex constitutive and numerical models,
or can be applied even for predicting the response of other types of loading and/or
materials, e.g., interface elements, mortars, bricks, out-of-plane loading of URM walls,
etc. Given this broad scope of applications of the proposed NNO algorithm and its
mixed AI-gradient nature, it is obvious that future research is needed to improve both its
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programmatical implementation and its applications in practical engineering problems, as
already mentioned above.
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