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Abstract: The northern stretch of the Arun watershed in East Nepal is dominated by steep slopes and
rugged topography and experiences extensive landslides each year. Reliable landslide susceptibility
assessment can potentially be an important tool for risk evaluation and mitigation in the Himalayas.
The present study explores two GIS-based bivariate statistical methods, the weight of evidence
method and the frequency ratio method to assess the landslide susceptibility of the study area.
Seven major variables including slope angle, slope aspect, slope shape, geology, stream proximity,
stream power index and land use were examined as the major contributing factors to landslide
occurrences in the assessment. The landslide susceptibility map produced from these two methods
are characterized by four zones of very low, low, moderate and high susceptibility. The landslide
percentage of each zone turns out to be consistent with the order of its susceptibility. The results
suggest that the weight of evidence method is more sensitive to the spatial variation of relevant
factors; both methods produced fairly reliable results, as confirmed by a success rate of 75% for the
weight of evidence method and 71% for the frequency ratio method. The present study demonstrates
that the quantitative assessment methods explored may have a promising potential for landslide
assessment and prediction in the Himalayas.
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1. Introduction

Landslides are a prominent geohazard that pose a considerable threat to safety, in-
frastructure and environments. Landslides can be defined as the outward and downward
movement of rock, earth or debris material under the action of gravity [1]. Worldwide
landslides account for 17% of all casualties caused by natural hazards [2]. The weak,
young Himalayas of south Asia are a region especially susceptible to landslides [3–7].
In Nepal, from the Siwalik Hills to higher Himalayas, its distinct topography, geology
and geomorphology render a large part of the country inevitably vulnerable to geological
hazards of various gravity-driven mass movements, potentially facilitated by seasonal
rainfall, seismic movements and human activities. Every year, a significant loss in lives and
properties occurs in this country, and it is imperative to develop proper hazard prediction
and mitigation strategies [8].

Conventional engineering practice is primarily focused on the evaluation of the stabil-
ity of individual natural or man-made slopes. In the broader context of hazard mitigation,
landslide susceptibility must be assessed in the field scale to offer meaningful guidance
for reducing landslide impacts. An effective method to mitigate the risk is to develop a
landslide susceptibility map [9–11] for the region under investigation, which is capable of
assisting the decision-making process related to human settlements and infrastructures de-
velopment when highly vulnerable areas should be avoided. Traditional civil engineering
analysis must be enhanced and expanded by various new approaches or techniques with
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the consideration of a variety of key geological and environmental factors in order to reliably
develop such assessment tools. The geographic information system (GIS) has been widely
employed to generate, manage and analyze geographic data around the world, including
the prediction of possible landslide hazards. Various GIS-based techniques have been
explored [12,13], such as Fuzzy k-Means Classification and Bayesian Approach [14–16],
logistic regression method [17–21], weight of evidence method [10,22–25], artificial neural
network method [26–28] and frequency ratio method [29,30]. A number of studies have
emerged in recent years by focusing on landslide susceptibility in Nepal and around the
Himalayas [5,10,29,31–35]. However, the northeastern part of Nepal has not received much
interest and its landslide susceptibility has yet to be extensively explored. This region
features the Lesser Himalayan Arun Tectonic Window of the Main Central Thrust zone.
The northern stretch of Arun watershed in the East Nepal is dominated by steep slopes,
deep river valleys, varying topography, geological structures and high gradient streams
along with intense seasonal rainfall, due to which it experiences extensive landslides each
year. In the present study, a number of key factors contributing to landslides in this area
are discussed and incorporated into the relevant mathematical analysis. Two methods,
the weight of evidence method and the frequency ratio method are explored to assess
the landslide susceptibility in this area. The landslide susceptibility maps are developed
based on field records of landslide events; the results of these two methods are compared
and assessed.

2. Study Area

The study area in the present study is in the Sankhuwasabha District of Eastern Nepal
(Figure 1), primarily focusing on the area around the Arun River. The Arun River is the
major river in the study area; it flows through Nepal as part of the Sapta Koshi river system.
It originates from Tibet, China, and flows south across Sankhuwasabha District, forming
one of the world’s deepest valleys. Many perennial streams and ephemeral channels merge
into this river dendritically from the upper slope. The present study is focused on the
major watershed in the northern stretch of the river. Every year, the study area experiences
numerous landslides, debris flows, gully erosion, and soil slides due to its high intensity
rainfall. There are also some rock falls in many locations due to their steep hill slopes where
rock properties and joint orientations may also play an important role. Figure 2 shows
some images of the landslides in this mountainous region.

From the geological perspective, the study area is located within one of the tectonic
windows of Nepal Himalayas, i.e, the Arun Tectonic Window, which is developed in
transversely folded higher Himalayan antiformal culmination [36] and consists of lesser
Himalayan rock sequence surrounded by the higher Himalayan thrust sheet [37]. The
uneven or rugged topography of the area is due to the presence of rocks with varying
grade of metamorphism and competency: banded or augen-shaped migmatitic gneiss,
followed by mica schist, quartzite and calc-schist containing higher Himalayan sequences
over and around the window. Toward the top of the window, the grade of metamorphism
becomes expectedly higher and indiscernibly passes into the overlying higher Himalayan
sequence [36]. The study area is bounded by slope angles ranging from 0 to approximately
83◦, and its elevation ranges from about 1630 to 4445 m. There are four seasons with
temperate climate and polar tundra climate. Rain is the most common type of precipitation
with seasonal snowfall.
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Figure 1. (a) Sankhuwasabha district in Nepal around neighboring countries. (b) Location of the
study area in Sankhuwasabha District and bordering districts of Nepal. (c) The Arun River and many
streams in the study area.

Figure 2. Sample photos of some landslides locations in the study area. The image on the right-
handed side highlights three landslide slip surfaces; the two images on the left-handed side show a
close-up view of the sliding surface and debris material where the loss of vegetation is evident.

3. Method

The geographic data of the study area were retrieved from available databases for the
numerical analysis of landslide susceptibility. The present study examined seven major
factors that are widely believed to be responsible for landslide occurrence in the field scale,
i.e., slope angle, slope aspect, slope shape, geology, stream proximity, stream power index
and land use; each of them is considered in landslide susceptibility modeling.
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3.1. Data Acquisition and Processing

The digital elevation model (DEM) of the study area is used in the present study.
High resolution terrain-corrected DEM available from the Alaska Satellite Facility [38] is
retrieved and processed for the present analysis; its resolution is 5 m by 5 m per pixel.
The landslide events are identified through a field survey that thoroughly examined the
entire study area for any traces of landslides; any significant trace of sliding surfaces or
debris materials is considered as a landslide location. The investigation eventually revealed
74 landslides in the study area. The location and area of each landslide are typically
represented by a polygon recorded using the Google Earth computer program, which is
subsequently transferred to GIS for further analysis. QGIS and ArcGIS 10.7 (ESRI, USA) are
used in the present study. Figure 3 shows the locations of these landslides recorded in the
landslide inventory map, which also contains elevation information. The total landslide
area is 0.2726 km2, covering 0.2946% of the total study area. Some of these landslides pose
potential threats to adjacent villages or roads, for which their locations are also shown in
Figure 3.

Quantitative information of the five investigated factors of the study area, i.e., slope
angle, slope aspect, slope shape, stream proximity and stream power index, is readily
determined in the GIS tool based on the DEM retrieved. Two additional factors are explored
as well, and the map of geology was prepared from field exploration and from data obtained
from the Department of Mines and Geology of Nepal; a land-use map was prepared using
survey data provided by the Department of Survey of Nepal.

Figure 3. Elevation and landslide inventory map of the study area; each area marked in black
indicates the location of the landslide.

3.2. Landslide Susceptibility Modeling

The approach adopted in the present study for landslide susceptibility modeling is
based on the site’s characteristics, with an aim to develop a susceptibility map of the entire
study area. Two methods are explored, the weight of evidence method and the frequency
ratio method. The basis of quantitative susceptibility assessment is the site condition that is
specifically characterized for each influencing factor.
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For each factor, the entire domain of the study area is categorized into several classes
depending on the numeric values or qualitative attributes of the factor. For example, for the
first considered factor in the present study, the slope angle is categorized into seven classes:
(1) 0∼15◦; (2) 15◦∼25◦; (3) 25◦∼35◦; (4) 35◦∼45◦; (5) 45◦∼55◦; (6) 55◦∼65◦; (7) above 65◦.
On the other hand, the stream power index is categorized into three classes: (1) low erosion;
(2) high erosion; (3) very high erosion. The details of each of the seven factors explored in
the present study can be found in Section 4. Hence, each point, i.e., each pixel of the map,
is characterized by seven “attributes”, each of which represents one of the classes for each
considered factor and is used for the mathematical modeling of landslide susceptibility.

Weight of Evidence Method

The weight of evidence (WoE) method is based on a bivariate statistical approach and
is represented in a log-linear form of the Bayesian probability model that is used to estimate
the relative importance of evidence. The detail on the mathematical model of the WoE
method can be found in the early work of Bonham-Carter et al. [39]. In the present study,
only the essential key concepts involved are briefly discussed.

For each factor, as each point (i.e., pixel) of the map is associated with a class F, the
weight for the presence of this specific class, W+, and the weight for the absence of this
specific class, W−, can be calculated as follows.

W+ = ln
P(F|L)
P(F|L̄) (1)

W− = ln
P(F̄|L)
P(F̄|L̄) (2)

In the above and following equations, P is the probability; the symbol L represents the
presence of landslides, while L̄ the absence of landslides; F and F̄ represent the presence
and absence of the specific class (of a factor), respectively. Therefore, P(F|L) represents the
probability of the specific class under the presence of a landslide, and P(F|L̄) represents
the probability of the specific class in the absence of landslide. Both probabilities can be
readily calculated using the pixel numbers in the distribution map P(F|L) = N(F|L)/N(L);
N(F|L) is the number of pixels of landslide in class F, and N(L) is the total number of pixels
of landslides on the map. Similarly, it can be established that P(F|L̄) = N(F|L̄)/N(L̄),
N(F|L̄) is the number of pixels of non-landslide in the class F and N(L̄) is the total number
of pixels of non-landslide on the map.

The weight for the absence of specific class, W−, in Equation (2) can be calculated in a
similar manner. Here, P(F̄|L) represents the probability of absence of the specific class F
under the presence of landslide, and P(F̄|L̄) represents the probability of absence of the
specific class F in the absence of landslide. Both probabilities can be readily calculated as
well; P(F̄|L) = N(F̄|L)/N(L); N(F̄|L) is the number of pixels of landslide in all the classes
other than F; P(F|L̄) = N(F|L̄)/N(L̄), N(F̄|L̄) is the number of pixels of non-landslide in
all the classes other than F.

The difference between the two weights is known as the weight contrast, C.

C = W+ −W− (3)

The magnitude of contrast reflects the overall spatial correlation between the specific
class of the factor and the landslides [23]. A positive value indicates a spatial association
while a negative one indicates a lack of spatial association. This value is usually standard-
ized by dividing C by its standard deviation, S(C), i.e., the value of C/S(C) offers as a
measure of the significance of the spatial correlation [40].

The calculation of the standardized contrast is performed for each factor, and the sum
of all contrasts yields the overall value of the susceptibility index for each point (each pixel)
on the map.
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3.3. Frequency Ratio Method

The frequency ratio method is one of the simplest methods for landslide susceptibility
mapping and has been widely applied in many case studies [30,41–44]. The frequency
ratio is defined as the ratio of the probability of an occurrence to the probability of a non-
occurrence [40], for any given set of attributes. A low-value frequency ratio means a weak
relationship between the occurrence of the landslide and the given factor’s attribute [44].

Similarly to the weight of evidence method discussed above, in this method, the
overall landslide susceptibility index is based on each frequency ratio, which corresponds
to each influencing factor considered in the present study. For each factor, the frequency
ratio can be estimated as the ratio of the percentage of landslide in the specific class to the
percentage of the specific class, described as in the following equation:

FR = ln
Lc

Ac
(4)

where Lc represents the percentage of landslide in the specific class of the considered factor,
and it can be calculated via Lc = N(F|L)/N(L) × 100% using the number of pixels of
landslide in the class F, N(F|L) and the total number of pixels of landslides on the map,
N(L), as already defined in the preceding section. Ac represents the percentage of the
specific class F of the entire study area; it can be calculated via Ac = N(F)/Nt × 100%
based on the number of pixels of the specific class F, N(F) and the total number of pixels
of entire study area on the map, Nt.

Gyawali et al. [45] developed a series of subsequent operations to improve this method
by introducing the concept of relative frequency to account for weights of different factors.
These modifications are also used in the present study to yield the final relative frequency
ratio for each of the seven considered factors; and eventually the sum of these seven ratios
provides the landslide susceptibility index.

4. Results

In the present study seven key factors that typically play a crucial role in landslides
are considered in the susceptibility assessment. These factors and their distributions are
discussed in Section 4.1. Subsequently, the modeling results of the susceptibility assessment
based on the two methods discussed in the preceding section are presented in Section 4.2.

4.1. Influencing Factors
4.1.1. Slope Angle

The susceptibility of landslides is directly associated with their slopes. Hence, the
slope is a critical factor for landslide susceptibility assessment. The slope angle in the
study area ranges from 0 to 83◦. The slope, typically characterized in an angle, is classified
into seven different classes: (1) 0∼15◦; (2) 15◦∼25◦; (3) 25◦∼35◦; (4) 35◦∼45◦; (5) 45◦∼55◦;
(6) 55◦∼65◦ and (7) above 65◦. The total numbers of pixels from Class (1) to (7) are 202,156,
563,158, 1,019,975, 993,193, 591,787, 258,830 and 71,924, which correspond to the area
percentage of 5.46%, 15.22%, 27.56%, 26.84%, 15.99%, 6.99% and 1.94%, respectively. The
distribution of landslides in slope map is shown in Figure 4. Evidently, the slope angle of
25∼35◦ is the most prominent one with the highest percentage of land area, while the very
steep slopes above 65◦ are featured very modestly in the study area.
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Figure 4. Distribution of slope angle in the study area.

4.1.2. Slope Aspect

Aspect is the orientation of the slope’s surface, measured clockwise in degrees from
0 to 360. It is an important factor for landslides as the aspect can influence moisture and
precipitation [46], which may play an important role in vegetation and rock strength. In
the present study, the aspect has been classified into nine different classes (Figure 5), in-
cluding (1) flat (i.e., no slope); (2) northeast (22.5◦∼67.5◦); (3) east (67.5◦∼112.5◦); (4) south-
east (112.5◦∼157.5◦); (5) south (157.5◦∼202.5◦); (6) southwest (202.5◦∼247.5◦); (7) west
(247.5◦∼292.5◦); (8) northwest (292.5◦∼337.5◦); (9) north (337.5◦∼360◦ and 0∼22.5◦). As
shown in Figure 5, the largest spatial area is covered by the southeast aspect; the flat area
(with no slopes) is the smallest among all classes, which demonstrates the dominance of
mountainous topography.

Figure 5. Distribution of slope aspect in the study area.

4.1.3. Slope Shape

Slope shape has a significant impact on slope stability in steep terrain by concentrating
or dispersing surface and subsurface water in the landscape [10]. The slope shape is
categorized in three spatial distribution curvatures: (1) linear; (2) concave and (3) convex.
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Figure 6 shows that the flat area is very small and mainly coincides with the water streams,
the areas of the concave and the convex are comparable and both are dominant in the
study area.

Figure 6. Distribution of slope shape in the study area.

4.1.4. Stream Proximity

The stream proximity is characterized by the distance from the location of interest to
the nearest stream for which its presence has an important effect on the slope’s stability.
Streams can adversely affect slope stability by toe-incision or by saturating the lower part
of hillslope material due to increases in water level [47,48]. The degree of saturation of
slopes may also play an important role in slope stability [49,50]. In the present study, this
factor is categorized in three classes: (1) 0∼100 m; (2) 100∼500 m and (3) greater than 500 m.
As shown in Figure 7, the presence of close (0∼100 m) and nearby (100∼500 m) classes is
very strong and is largely due to the very developed stream system in the study area.

Figure 7. Distribution of stream proximity in the study area.
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4.1.5. Stream Power Index

The stream power index (SPI) describes the erosive strength of the stream on the soil
slope. In the present study three classes are considered: (1) low erosive; (2) high erosive
and (3) very high erosive. Figure 8 shows the distribution in the study area; most of this
region is covered by areas of low erosive index.

Figure 8. Distribution of stream power index in the study area.

4.1.6. Geology

The geological condition generally plays an important role in landslide susceptibility.
In the present study, it refers to the lithology of various types of major rock formations in
the study area, which lies within the Arun tectonic window consisting of (1) augen and
banded gneiss, (2) schist and quartzite, and (3) schistose gneiss surrounded by (4) higher
Himalayan crystalline rocks. In the present study, these four classes are considered, as
shown in Figure 9. The Augen and banded gneiss rock is the predominant rock formation
and is mainly concentrated in the western part of the study area.

Figure 9. Distribution of rock formation in the study area.
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4.1.7. Land Use

The last factor considered in the present study is associated with anthropogenic activ-
ities rather than natural environment or conditions, since the use of land may trigger or
affect complex soil microbiological processes that may potentially influence slope stability.
In the present study, land use is classified as five categories according to the data collected
by the Department of Survey of Nepal: (1) agricultural land; (2) barren land; (3) forest;
(4) sparse vegetation; (5) water body. As shown in Figure 10, there is considerable agricul-
ture growth in this area but it is still largely covered by sparse vegetation, which represents
higher spatial coverage of bedrock rather than soil on the surface.

Figure 10. Distribution of land use in the study area.

4.2. Assessment Results

A landslide susceptibility map can be developed based on the weight of evidence
(WoE) method or the frequency ratio (FR) method discussed in Section 3; in each method,
the core step involves the calculations made for each factor. Table 1 shows the sample
calculation results for the factor of slope angle in the WoE method; evidently, the rise of
the slope’s angle has a very positive effect on landslide susceptibility, as indicated by the
increasing value of the standardized weight contrast (C/S(C)).

Table 1. WoE calculation results for the factor of slope angle which contains seven classes (1) 0∼15◦;
(2) 15∼25◦; (3) 25∼35◦; (4) 35∼45◦; (5) 45∼55◦; (6) 55∼65◦; (7) above 65◦.

Slope Angle Area Landslides
W+ W− C S(C) C/S(C)Class (Pixels) (Pixels)

0∼15◦ 202,156 60 −2.2978 0.0508 −2.3486 0.1295 −18.1398
15∼25◦ 563,158 533 −1.1376 0.1153 −1.2529 0.0444 −28.1940
25∼35◦ 1,019,975 1820 −0.5026 0.1402 −0.6429 0.0257 −25.0063
35∼45◦ 993,193 2970 0.0149 −0.0055 0.0204 0.0215 0.9489
45∼55◦ 591,787 2805 0.4773 −0.1235 0.6008 0.0220 27.3653
55∼65◦ 258,830 1855 0.8932 −0.1143 1.0075 0.0256 39.4025
>65◦ 71,924 861 1.4111 −0.0628 1.4739 0.0357 41.2706

Such calculations are repeated for other factors, and eventually the overall value of
the susceptibility index for each point in the map is obtained. Typically, the susceptibility
index is further classified into four zones: high, moderate, low and very low based on its
value, in order to render a susceptibility map. In the present study, a common criterion [10]
is adopted, i.e., to produce approximately 10% of the total area for high, 20% for moderate,
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30% for low and 40% for very low susceptibility. Figure 11 shows the landslide susceptibility
map based on the WoE method. Out of all recorded landslides indicated by the black color,
65% of their area turn out to lie within the moderate and high susceptible zones.

Figure 11. Landslide susceptibility map based on the weight of evidence (WoE) method.

The detailed results from the weight of evidence (WoE) method are summarized in
Table 2. It is noted that the area percentages are very close to but not at the precise target
values of 40%, 30%, 20% and 10%, as discussed above, due to the discrete nature of the
index range. The landslide density is defined as the percentage of the landslide area in each
specific zone; the landslide density for high susceptibility zone is 0.89%, which gradually
decreases toward very low susceptibility zone, which has a 0.06% landslide density.

Table 2. Summary of susceptibility zones and landslide density based on the weight of evidence
(WoE) method.

Zone
Area Landslides Landslide Density

Value (m2) Percentage (%) Value (m2) Percentage (%) (%)

very low 37,095,800 40.48 23,150 8.51 0.06
low 28,432,150 31.02 72,425 26.61 0.25

moderate 17,555,600 19.16 100,150 36.80 0.57
high 8,563,550 9.34 76,400 28.08 0.89

Similarly, the map based on the frequency ratio (FR) method can be also developed as
shown in Figure 12. Table 3 summarizes the relevant results of different zones and landslide
density. The two susceptibility maps are remarkably similar, showing that both methods
are reasonably effective in producing consistent results. In the map developed from the
FR method, the separation among different zones, especially between the very low and
low zones, appears much clearer than the one from the WoE method; in the latter, these
two zones appear more “blurred”, i.e., the areas with a low susceptibility index within
the range of very low or low susceptibility are intermingled. This seems to indicate that
the WoE method is more sensitive to the spatial variation of relevant factors, and a lower
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percentage of landslides in the very low susceptibility zone indicates that the WoE may be
slightly more accurate in the present study.

Figure 12. Landslide susceptibility map based on the frequency ratio (FR) method.

Table 3. Summary of susceptibility zones and landslide density based on the frequency ratio
(FR) method.

Zone
Area Landslides Landslide Density

Value (m2) Percentage (%) Value (m2) Percentage (%) (%)

very low 37,458,375 40.87 38,650 14.20 0.10
low 27,414,225 29.91 65,200 23.96 0.24

moderate 18,060,200 19.71 106,700 39.21 0.59
high 8,714,300 9.51 61,575 22.63 0.71

5. Discussion

The landslide susceptibility map can be evaluated graphically by the well-known
success rating curve [10,51]. The success curves for the two methods are shown in Figure 13.
On this curve, the cumulative percentage of observed landslides is plotted against the
cumulative percentage of areas associated with decreasing LSI values. For example, first,
the LSI values are sorted in decreasing order; then, at each select LSI value, the percentage
of areas with lower LSI is calculated as the x-coordinate; it is then paired against the
cumulative percentage of observed landslides (y-coordinate) that is deemed as vulnerable
(due to having higher LSI), which can be calculated as the percentage of observed landslide
areas in all areas with higher LSI over the total observed landslide areas. The area below
this curve is considered as a quantification of success rate [51]. A perfect success rate of
100%, only possible for a straight horizontal line at y = 100% as the rating curve, implies
that the landslide can only occur at the highest LSI value, which, however, is not possible
or meaningful for actual field susceptibility mapping, since the landslide may occur even
in areas of low susceptibility in reality. However, the area below this curve indeed offers a
certain measure for how close the curve approaches perfect success. Figure 13 yields an
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overall success rate of 75% for the WoE method, and 71% for the FR method. These rates
are generally considered fairly successful.

Figure 13. Success rating curves for both methods.

Some other studies also reported similar success rates with the WoE method; for
example, Dahal et al. [5] reported a success rate of 78% to 81% in the Nepal Himalaya;
Kayastha et al. [10] reported a success rate of 79% in the Tinau watershed of Nepal.
Poudyal et al. [31] obtained a success rate of 78% from the FR method and 82% from the
artificial neural network (ANN) method in a case study from the Nepal Himalaya. In a
case study of Izmir, Turkey, Akgun [52] used the logistic regression, frequency ratio and
analytical hierarchy process (AHP) methods, which produced success rates of 81%, 76%
and 71%, respectively.

It is of interest to note that there are alternative methods to measure the success rate.
Vakhshoori and Zare [23] used the receiver operating characteristic (ROC) curve for their
susceptibility assessments; the success rating obtained from the FR (84%) method was
slightly higher than that from the WoE (83%). However, it is noted that, in the present
study, the size of the sample is not very large, with only 74 landslides in the study area,
and dividing these landslides into a training set and a testing set may not lead to reliable
results, but this is a subject that can be explored in future studies.

6. Concluding Remarks

Landslides are a constant threat in the Himalayas, which typically feature complex
arrangement of landforms with multiple geological and environmental characteristics
favorable for such hazards. It is critically important to assess the landslide susceptibility
and identify vulnerable areas in these mountainous regions. In the present study, an
empirical approach is adopted to assess the landslide susceptibility of the northern part of
Arun tectonic window in Eastern Nepal based on the records of past landslide events. Two
methods are explored, including the weight of evidence method and the frequency ratio
method. Seven major factors are examined, including slope angle, slope aspect, geology,
slope shape, stream proximity, stream power index, and land use. In the final susceptibility
maps based on the results produced from the two methods, four zones are included, very
low, low, moderate and high susceptibility; the landslide density of each zone rises in this
order as well, with 0.06∼0.10% in the very low susceptibility zone, gradually increasing to
0.71∼0.89% in the high susceptibility zone. The results suggest that the weight of evidence
method is more sensitive to the spatial variation of relevant factors; overall, the results
seem to indicate that the weight of evidence method may be slightly more accurate than
the frequency ratio method in the present study. This is consistent with the success rating
curves of these two methods; both yield good success rates, although the weight of evidence
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method has a rate of 75%, which is slightly higher than that of the frequency ratio method:
71%. The results in the present study suggest that such modeling methods explored may
have a strong potential for risk assessment and prediction in the Himalayas to mitigate
losses from the landslides. Future studies may consider more relevant factors and explore
high-resolution data to improve the accuracy of the susceptibility map.
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