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Abstract: To address the rapidly growing demands of traffic congestion, more highway bridges have
been constructed, especially curved bridges. With more curved bridges designed and constructed,
people have conducted a comprehensive analysis of the structural performance. Due to the nature of
the structural complexity of curved bridges, dynamic responses of the curve bridges vary dramatically
from the standard linear bridges. Although some work has been conducted to investigate the curved
bridge dynamic analysis under seismic inputs, the framework for analyzing the curved bridges’
vulnerability under various angles of inputs is still lacking. In this paper, we conducted a series of
curved bridge seismic analyses based on different inputs and conducted a parametric study of the
bridge performance using finite element models. We conducted time history analyses by applying
seismic inputs to investigate the bridge dynamic responses based on different angle inputs and other
different structural parameters. We developed an approach identifying the most vulnerable direction
of the seismic inputs and the strongest dynamic responses for curved bridges based on time series
analysis. This approach was validated with the dynamic analysis of a simplified bridge model. The
method developed in this paper will help improve the curved bridge design code and further provide
suggestions about mitigating seismic response for device design.
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1. Introduction

Highway bridge safety is critical for our society’s economic sustainable growth. De-
pending on the practical needs of the project, highway bridge shapes vary dramatically.
In many cases, due to the high cost and construction difficulty of linear bridges, curved
bridges are often adopted. In addition, to reduce the accumulation of drivers’ fatigue from
driving on long, linear bridges with a similar environment, more and more curved bridges
are used to replace long, linear bridges. In some other cases, for aesthetic purposes, curved
bridges are designed to match the surrounding environment. More importantly, to address
the heavy traffic issues of the city, curved overpass bridges are becoming more popular.
Various types of curved bridges play a more important role in addressing city traffic.

Infrastructure is the backbone of our society, especially against extreme events, such
as natural hazards. One essential topic about mitigating natural hazards and damages
on infrastructures is focused on highway bridges. In 1971, the San Fernando earthquake
caused severe damage to many highway bridges. In 1989, the Loma Prieta earthquake also
induced huge losses in the economy and highway bridges. In 1994, the Northridge earth-
quake introduced multiple highway bridge collapses near Los Angeles. In 1995, the Kobe
earthquake causes great highway and railroad bridge damage in Japan. Considering the
huge losses due to seismic damage on highway bridges, it is very important to investigate
bridge safety under seismic inputs.

Among the city infrastructure systems, due to the space limit, in many cases, small-
radius-curvature curved bridges need to be constructed. Compared with linear bridges,
curved bridges demonstrate different dynamic responses, especially small-curvature bridges.
Curved bridges may show some moment–torsion combination under both the vehicle load
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and horizontal seismic inputs. When analyzing the curved bridge response in the horizon-
tal and vertical directions, the moment–torsion combination cannot be easily de-coupled.
Due to the complexity of the curvature and torsional vibration, it is very challenging to
develop a rational theoretical dynamic analysis of the curved bridge. Nowadays, people
conduct extensive horizontal and vertical seismic input studies because linear bridges often
demonstrate strong responses in these two directions. However, for curved bridges, due
to the continuous variations in the radius and tangential directions along the bridges, we
cannot simply follow the same approach of identifying the linear bridge’s worst seismic
input. Nowadays, design codes often recommend analyzing various seismic inputs and
adopting the maximum values for design purposes. This approach is time-consuming and
uses huge computational costs. Developing a more efficient method to identify the most
vulnerable input for curved bridge design is highly demanding.

The goal of this paper was to identify the most vulnerable seismic input angle and
the associated strongest seismic responses of curved bridges. The dynamic responses
of the curved bridges were investigated using finite element analysis and parametric
study. Based on the comprehensive analysis, we came up with a framework for a curved
bridge seismic design. In this paper, first, a comprehensive literature review of previous
curved bridge seismic analyses was summarized. Then, a series of finite element analyses
of a practical curved model was conducted to investigate its dynamic responses and
relationships associated with various structural parameters. Third, multiple inputs of
seismic inputs were simulated to analyze the structural responses. Based on various
structural responses, we introduced a new method for identifying the most vulnerable
seismic inputs of curved bridges. In the end, conclusions about the curved bridge seismic
design and future works to improve the design were summarized.

Curved bridges, due to their nature, exhibit more complicated dynamic responses
than linear bridges. Curved bridges often demonstrate stronger bending–torsion coupling
effects than linear bridges under seismic inputs. From the 1970s to the 1990s, several strong
earthquakes caused massive damages and economic losses on curved bridges in many
countries around the world. Since then, many countries started spending more effort
investigating curved bridge seismic analysis. In 1971, the San Fernando earthquake caused
many high-rise buildings and bridge structures to collapse [1]. One 235 m long curved
bridge with 7 spans suffered severe damage from this earthquake. Major damage occurred
at the bottom of the bridge columns, and the whole bridge structure collapsed to the
exterior curve and fell into several parts. This bridge failure turned engineers’ attentions to
improving the ductility of the curved bridge. In 1989, the Loma Prieta earthquake caused
two layers of curved bridge damage due to column failure [2]. This accident caused huge
economic losses and many human injuries. The reason for the bridge collapse was due
to the foundation liquefaction. In 1994, the Northridge earthquake paralyzed the traffic
infrastructure system in Los Angeles [3]. Four major highways were closed for several
months. Part of the curved bridge at the intersection of highways 5 and 14 was damaged
and collapsed, due to the low ratio of rebar and a small cross-section of the corbel. This
accident also verified that ductility is critical for bridge safety against earthquakes and
that vertical restriction is effective against bridge collapses. In 1995, the Kobe earthquake
caused huge damage to the highway and railroad system in a large area of Japan. Some
curved bridge failures were due to the damage to the bridge columns [4].

Nowadays, most curved bridge analyses are focused on static analysis and linear
dynamic analysis, including natural frequencies, modal shapes, and damping conditions.
The goal of this analysis is to provide suggestions for spectrum analysis and structural
design, such as support arrangement. Some researchers investigated the simple box-girder
curved bridge dynamic performance relationship between the natural frequency and bridge
connections or the radius curvature effect [5–7]. When focusing on the modal shape of the
curved bridges, how the modal shapes are affected by different parameters needs to be
investigated.
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Since the 1971 San Fernando earthquake, many researchers have conducted several
studies on curved bridge earthquake analysis. Tsening and Penzien developed a curved
bridge analysis program and analyzed one bridge that failed during the San Fernando earth-
quake [8]. Williams and Godden conducted curved bridge shake table experiments [9,10].
Cheng analyzed the tall-column curved bridge modal analysis using the Rayleigh–Ritz
method. Buckle et al. conducted a curved bridge field testing and dynamic analysis [11].
Abdel and Heins conducted an earthquake analysis and measured the stress changes under
earthquake inputs [12]. Richardson and Douglas measured the curved bridge responses
at the site and compared them with finite element analysis [13]. Desroches and Fenves
investigated bridge responses of single-point and multiple-point seismic inputs [14]. Hi-
rasawa et al. investigated different types of supports and how they affected the bridge
response [15]. Otsuka et al. investigated the sliding of the curved bridge under horizontal
inputs [16]. More recently, researchers have focused on the seismic vulnerability assess-
ment of curved bridges [17–20]. Some researchers recently developed some methods of
identifying the critical seismic input angles for curved bridges and compared simulation
results with shake table experiments [21,22]. These methods demonstrated good accuracy
but took high computational costs.

2. Curved Bridge Dynamic Response Analysis

Simplifying the practical bridge design into a finite element model with adequate
detailing and accuracy is critical. We adopted the 3D beam element (6 DOF) for beam
and column members of the curved bridge model and used concrete as the material. To
create the finite element model of the curved bridge, we studied several practical designs
of curved bridges and summarized their characteristics in Table 1.

Table 1. Common curved bridge types.

Type Cross-Section Span Radius Curvature Bridge Shape Column Type

Ramp Single chamber 20–30 m 40–100 m Circular line and
gradual circular line

Single or double
columns

Major Line Double chambers 20–50 m 50–100 m Circular line or gradual
circular line

Double or triple
columns

In this paper, we picked a curved bridge ramp segment and conducted a series of
finite element analyses of this segment under two assumptions:

1. There was no restriction of the plate rubber support properties under tension.
2. There was no friction difference when installing the rubber support under or above

the covered beam.

Both assumptions provided the possibility of investigating different support arrange-
ments of continuous curved bridge models. The plant view of this representative curved
bridge ramp segment is shown in Figure 1. The cross-section of the bridge column is shown
in Figure 2. The bridge girder property information is shown in Figure 3. The geometry
information of the bridge column is shown below: cross-section area A = 2.0106 m2; the
moment of inertia Iy = Iz = 0.3217 m4; and the torsional moment of inertia Id = 0.6434 m4.
The geometrical information of the bridge girder was calculated to be: cross-section area
A = 6.372 m2; moment of inertia Iy = 1.896 m4; Iz = 99.482 m4; and torsional moment of
inertia Id = 5.187 m4.
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Figure 1. Plan view of a three-span curved bridge (span = 20 m, radius curvature = 100 m, the dis-
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Figure 3. Cross-section of the bridge girder. 

The 3D elastic beam elements were adopted for both bridge girders and columns. To 
minimize the element assignment time, automatically generated meshing was used. For 
the multi-layer rubber plate supports, three directions of support were simplified as three 
springs with some stiffness, although much more accurate uniaxial [23,24] or biaxial [25] 
hysteretic springs can be adopted. We assumed there was a good connection between the 
bridge column and the girder with the support installed, and vertical stiffness was a large 
order number. In this model, we used 1010 kN/m as the vertical stiffness. 

Finite element modal dynamic analysis was conducted using the SAP2000 software 
[26]. In linear dynamic analysis, bridge dynamic response, including natural frequencies 
and modal shapes, are only related to the structural properties but not related to the ex-
ternal inputs. In this paper, we investigated different structural parameters, including col-
umn heights, radius curvature, bridge span, and support arrangement effects on curved 
bridge dynamic performance. 

Figure 1. Plan view of a three-span curved bridge (span = 20 m, radius curvature = 100 m, the
distance between two supports = 0.4 m).

CivilEng 2023, 4, FOR PEER REVIEW 4 
 

 

 
Figure 1. Plan view of a three-span curved bridge (span = 20 m, radius curvature = 100 m, the dis-
tance between two supports = 0.4 m). 

 
Figure 2. Bridge column dimensions. 

 
Figure 3. Cross-section of the bridge girder. 

The 3D elastic beam elements were adopted for both bridge girders and columns. To 
minimize the element assignment time, automatically generated meshing was used. For 
the multi-layer rubber plate supports, three directions of support were simplified as three 
springs with some stiffness, although much more accurate uniaxial [23,24] or biaxial [25] 
hysteretic springs can be adopted. We assumed there was a good connection between the 
bridge column and the girder with the support installed, and vertical stiffness was a large 
order number. In this model, we used 1010 kN/m as the vertical stiffness. 

Finite element modal dynamic analysis was conducted using the SAP2000 software 
[26]. In linear dynamic analysis, bridge dynamic response, including natural frequencies 
and modal shapes, are only related to the structural properties but not related to the ex-
ternal inputs. In this paper, we investigated different structural parameters, including col-
umn heights, radius curvature, bridge span, and support arrangement effects on curved 
bridge dynamic performance. 

Figure 2. Bridge column dimensions.

CivilEng 2023, 4, FOR PEER REVIEW 4 
 

 

 
Figure 1. Plan view of a three-span curved bridge (span = 20 m, radius curvature = 100 m, the dis-
tance between two supports = 0.4 m). 

 
Figure 2. Bridge column dimensions. 

 
Figure 3. Cross-section of the bridge girder. 

The 3D elastic beam elements were adopted for both bridge girders and columns. To 
minimize the element assignment time, automatically generated meshing was used. For 
the multi-layer rubber plate supports, three directions of support were simplified as three 
springs with some stiffness, although much more accurate uniaxial [23,24] or biaxial [25] 
hysteretic springs can be adopted. We assumed there was a good connection between the 
bridge column and the girder with the support installed, and vertical stiffness was a large 
order number. In this model, we used 1010 kN/m as the vertical stiffness. 

Finite element modal dynamic analysis was conducted using the SAP2000 software 
[26]. In linear dynamic analysis, bridge dynamic response, including natural frequencies 
and modal shapes, are only related to the structural properties but not related to the ex-
ternal inputs. In this paper, we investigated different structural parameters, including col-
umn heights, radius curvature, bridge span, and support arrangement effects on curved 
bridge dynamic performance. 

Figure 3. Cross-section of the bridge girder.

The 3D elastic beam elements were adopted for both bridge girders and columns. To
minimize the element assignment time, automatically generated meshing was used. For
the multi-layer rubber plate supports, three directions of support were simplified as three
springs with some stiffness, although much more accurate uniaxial [23,24] or biaxial [25]
hysteretic springs can be adopted. We assumed there was a good connection between the
bridge column and the girder with the support installed, and vertical stiffness was a large
order number. In this model, we used 1010 kN/m as the vertical stiffness.

Finite element modal dynamic analysis was conducted using the SAP2000 soft-
ware [26]. In linear dynamic analysis, bridge dynamic response, including natural fre-
quencies and modal shapes, are only related to the structural properties but not related to
the external inputs. In this paper, we investigated different structural parameters, including
column heights, radius curvature, bridge span, and support arrangement effects on curved
bridge dynamic performance.
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2.1. Different Column Heights Effects

To investigate different column heights’ effects on the curved dynamic performance,
three different column heights were selected: 8 m, 15 m, and 20 m. The bridge girders,
columns, and supports were the same for all three cases. The bridge column cross-section
is shown in Figure 2. The bridge girder cross-section is shown in Figure 3. The connections
between the bridge columns and the ground were fixed. The natural frequencies (first 10
modes) of the curved bridge models via finite element analysis are shown in Figure 4. The
first ten modes are summarized in Table 2.
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Figure 4. Natural frequency variations, with various column heights. (The natural frequencies for
mode 7 of column heights of 15 m and 20 m were different).

Table 2. First 10 modal shapes with different column heights.

Column Height
(m)

Modal Shape

1 2 3 4 5

8 Beam
Longitudinal

Beam lateral
(symmetrical)

Beam lateral
(anti-symmetrical)

Beam Vertical
(symmetrical)

Beam Vertical
(anti-symmetrical)

15 Beam
Longitudinal

Beam lateral
(symmetrical)

Beam lateral
(anti-symmetrical)

Column 2
Longitudinal

Column 3
Longitudinal

20 Beam
Longitudinal

Beam lateral
(symmetrical)

Beam lateral
(anti-symmetrical)

Column 2
Longitudinal

Column 3
Longitudinal

Column Height
(m)

Modal Shape

6 7 8 9 10

8 Column 2
Longitudinal

Column 3
Longitudinal

Column 4
Longitudinal

Beam–column
coupling

Beam–column
coupling

15 Column 4
Longitudinal

Vertical
(symmetrical)

Vertical(anti-
symmetrical)

Beam–column
coupling

Beam–column
coupling

20 Column 4
Longitudinal

Vertical
(symmetrical)

Beam–column
coupling

Beam–column
coupling

Column
(anti-symmetrical)

From the natural frequency results of the first 10 modes:

1. Column heights had strong effects on natural frequencies, especially for lower modes.
2. The first mode’s natural frequency was usually less than 2 Hz. It showed some

coupling effects for higher modes.
3. With the column height increasing, higher-mode-shape natural frequencies were

reduced.

From the modal shape analysis results of the first 10 modes:
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1. The first two modes were motions along the horizontal or longitudinal direction.
2. The higher mode demonstrated coupling between the bridge girder and the column.

2.2. Different Bridge Spans Effects

We also investigated different bridge spans’ effects on curved dynamic performance.
The bridge column cross-section is shown in Figure 2. The bridge girder cross-section is
shown in Figure 3. The connections between the bridge columns and the ground were
fixed. Bridge spans were selected with three different values: 20 m, 30 m, and 40 m. The
natural frequencies (first 10 modes) of the curved bridge model are shown in Figure 5. The
first ten modes are summarized in Table 3.
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Table 3. First 10 modal shapes with different span lengths.

Span (m)
Modal Shape

1 2 3 4 5

20 Beam
Longitudinal

Beam lateral
(symmetrical)

Beam lateral
(anti-symmetrical)

Beam Vertical
(symmetrical)

Beam Vertical
(anti-symmetrical)

30 Beam
Longitudinal

Beam lateral
(symmetrical)

Beam lateral
(anti-symmetrical)

Beam Vertical
(symmetrical)

Beam Vertical
(anti-symmetrical)

40 Beam
Longitudinal

Beam lateral
(symmetrical)

Beam lateral
(anti-symmetrical)

Beam lateral
(anti-symmetrical)

Beam lateral
(anti-symmetrical)

Column Height
(m)

Modal Shape

6 7 8 9 10

20 Column 2
Longitudinal

Column 3
Longitudinal

Column 4
Longitudinal

Beam column
coupling

Beam–column
coupling

30 Beam lateral
(symmetrical)

Beam lateral
(anti-symmetrical)

Columns 2, 3
Longitudinal

(anti-symmetrical)

Columns 2, 3
Longitudinal
(symmetrical)

Column 4
Longitudinal

40 Beam lateral
(symmetrical)

Beam lateral
(anti-symmetrical)

Beams 1, 2, 3
lateral

(anti-symmetrical)

Beam Vertical
(anti-symmetrical)

Beams 1, 2, 3
lateral

(anti-symmetrical)

From the natural frequency results of the first 10 modes’ natural frequencies:

1. Bridge span length had some effects on the natural frequency, but there were no strong
impacts on the lower natural frequency.

2. It showed some coupling effects for higher modes.
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3. With the column height increasing, the higher-mode-shape natural frequencies changed
rapidly.

From the shape analysis of the first 10 modes:

1. The first two modes were motions along the horizontal or longitudinal directions.
2. The first three mode shapes were not affected by span length differences.

2.3. Different Radius Curvature Effects

We also investigated different radius curvature effects on the curved dynamic per-
formance. The bridge column cross-section is shown in Figure 2. The bridge girder
cross-section is shown in Figure 3. The connections between the bridge columns and the
ground were fixed. The radius curvature of the bridge was selected with four different
values: 100 m, 200 m, 300 m, and infinity. The natural frequencies (first 10 modes) of the
curved bridge model are shown in Figure 6. The first ten modes are summarized in Table 4.
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Table 4. First 10 modal shapes with different radius curvatures.

Radius Curvature
(m)

Modal Shape

1 2 3 4 5

100 Beam
Longitudinal

Beam lateral
(symmetrical)

Beam lateral
(anti-symmetrical)

Beam Vertical
(symmetrical)

Beam Vertical
(anti-symmetrical)

200 Beam
Longitudinal

Beam lateral
(symmetrical)

Beam lateral
(anti-symmetrical)

Beam Vertical
(symmetrical)

Beam Vertical
(anti-symmetrical)

300 Beam
Longitudinal

Beam lateral
(symmetrical)

Beam lateral
(anti-symmetrical)

Beam Vertical
(symmetrical)

Beam Vertical
(anti-symmetrical)

∞ Beam
Longitudinal

Beam lateral
(symmetrical)

Beam lateral
(anti-symmetrical)

Beam Vertical
(symmetrical)

Beam Vertical
(anti-symmetrical)

Radius Curvature
(m)

Modal Shape

6 7 8 9 10

100 Beam lateral
(symmetrical)

Column 3
Longitudinal

Column 2
Longitudinal

Column 4
Longitudinal

Beam lateral
(anti-symmetrical)

200 Column 2
Longitudinal

Column 3
Longitudinal

Column 4
Longitudinal

Beam–column
coupling

Beam–column
coupling

300 Column 3
Longitudinal

Column 2
Longitudinal

Column 4
Longitudinal

Beam lateral
(symmetrical)

Beam lateral
(anti-symmetrical)

∞ Column 1
Longitudinal

Column 4
Longitudinal

Beam Vertical
(symmetrical)

Beam lateral
(anti-symmetrical)

Beam lateral
(anti-symmetrical)
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From the natural frequency results of the first 10 modes:

1. The radius curvature had minimal effects on the natural frequency.
2. It showed some coupling effects for higher modes.

From the analysis of the first 10 mode shapes:

1. The first two modes were motions along the horizontal or longitudinal directions.
2. The radius curvature had minimal impacts on the modal shape. The first five modal

shapes were not affected by radius curvature changes.
3. When the radius curvature reached infinity, modal shapes higher than six modes

varied dramatically. This might be due to the radius changes in our models not
changing gradually.

2.4. Various Support Arrangements Effects

The finite element model of the curved bridge adopted the bridge girder cross-section
of Figure 3 and the bridge column cross-section of Figure 2, and the connection between the
bridge columns and the ground was fixed. Two different types of supports (all directions
were fixed, and the tangential direction was movable) at columns 2 or 3 were selected to
investigate the support arrangements’ impacts on the bridge dynamic performance.

We also investigated different bridge support arrangement effects on the curved
dynamic performance. The bridge column cross-section is shown in Figure 2. The bridge
girder cross-section is shown in Figure 3. The natural frequencies (first 10 modes) of the
curved bridge model are shown in Figure 7. The first ten modes are summarized in Table 5.
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Figure 7. Natural frequencies with different support arrangements.

Table 5. First 10 modal shapes with different support arrangements.

Support
Arrangement

Modal Shape

1 2 3 4 5

Tangential movable
support

Beam
Longitudinal

Beam lateral
(symmetrical)

Beam lateral
(anti-symmetrical)

Beam Vertical
(symmetrical)

Beam Vertical
(anti-symmetrical)

Fixed support Beam lateral
(anti-symmetrical)

Beam lateral
(symmetrical)

Beam
Longitudinal

Beam Vertical
(symmetrical)

Beam Vertical
(anti-symmetrical)

Support
Arrangement

Modal Shape

6 7 8 9 10

Tangential movable
support

Column 2
Longitudinal

Column 3
Longitudinal

Column 4
Longitudinal

Beam–column
coupling

Beam column
coupling

Fixed support Columns 1, 4 lateral
(symmetrical)

Column 1
Longitudinal

Column 4
Longitudinal

Columns 1, 4 lateral
(anti-symmetrical)

Beam lateral
(symmetrical)
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From the natural frequency results of the first 10 modes:

1. Different supports had some effects on natural frequency values, especially for the
first three modes, but not for higher modes.

2. It showed some coupling effects for higher modes.

From the analysis of the first 10 mode shapes:

1. Mode shapes were mostly symmetrical and anti-symmetrical.
2. Support arrangements had impacts on both lower and higher modes.
3. When fixed supports were adopted at columns 2 and 3, the mode shape natural

frequencies of columns 1 and 4 were reduced and occupied a higher percentage.

3. Curved Bridge Time History Analysis under Seismic Input

The text continues here.
In addition to the dynamical responses of the curved bridge, we also conducted a time

history analysis using the same finite element model of the curved bridge under multiple
directions of seismic inputs. Time history analysis has the advantage of calculating struc-
tural responses while considering structural complexities, soil and foundation interactions,
multiple simultaneous earthquake inputs, and geometrical and physical nonlinearity, such
as the hysteresis behaviors of materials. The curved bridge was a complex 3D irregular-
shaped model. When performing time history analysis, we needed to identify the most
vulnerable direction of seismic input. In this paper, we selected a segment of a C-shaped
curved bridge from a practical design and analyzed the internal forces of each column
under different directions of seismic inputs. The radius curvature of the bridge was 200
m, the bridge span was 20 m, and other dimensions of the curved bridge were the same
as in Figures 2 and 3. Finite element analysis was conducted using SAP2000 software.
We followed CalTrans standards for the curved bridge design, adopting a line connecting
both ends, with the cross-section center as the longitudinal direction and the direction
perpendicular to the longitudinal direction as the lateral direction when conducting spec-
trum analysis. To investigate the structural responses, two perpendicular-direction inputs
should be simulated at the same time. To identify the most vulnerable direction of the
inputs, different directions of seismic inputs, in addition to the longitudinal and lateral
directions of the curved bridge, should be considered and rotated from 0 to 90◦ from the
longitudinal direction. In our paper, to improve the calculation accuracy, we rotated the
seismic inputs with a 15◦ interval and used a single seismic input to identify the worst case.
One representative random seismic input, including both compressional and shear waves,
is shown in Figure 8. We calculated the responses of all the bridge columns to identify
the most vulnerable direction of the seismic inputs and the maximum dynamic responses.
The internal forces of the time history analysis results of individual columns are shown in
Figures 9–11.
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4. Identifying the Most Vulnerable Seismic Input Direction Method

Based on the CQC3 method, we came up with a new method of identifying the most
vulnerable seismic inputs. In the CQC3 method, the modal and spatial combination are
performed simultaneously. The issue with the original CQC3 method is that for curved
bridges, the maximum response for longitudinal and lateral directions may not be achieved
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at the same time. The modal shape for both directions to achieve maximum responses
may not occur at the same time. Using the original CQC3 method calculations is more
conservative for achieving the maximum responses, and there may exist some errors in
identifying the most vulnerable direction.

If time history analysis is applied with small time steps (0.005 s), and time history
analysis for two perpendicular-direction combinations is conducted, the same process for
the entire time history is repeated. We can achieve the maximum responses for the time
history record and avoid the maximum responses not being achieved synchronously at
both directions, improving the accuracy of the calculation. Any earthquake inputs can be
decomposed into two perpendicular directions. Assuming this earthquake has an angle α

from the bridge direction, instead of using a single earthquake input, we decomposed the
original earthquake into two perpendicular seismic inputs (along and perpendicular to the
bridge direction) by multiplying the magnitude of the original earthquake with cos α and
sin α. Then, we excited the bridge both along and perpendicular to the bridge directions
with the decomposed seismic input, simultaneously.

To demonstrate our method, a curved bridge segment with rectangular columns was
used to conduct finite element analysis and to identify the most vulnerable seismic input by
evaluating the maximum stress of the square columns. The square cross-section is shown
in Figure 12. The geometry calculations of the cross section were A = 10.0 m2, Iy = 0.8333
m4, Ix = 83.3 m4, and Id = 31.123 m4.
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Seismic inputs were applied along two perpendicular directions. The seismic input
was the same as in the time history analysis section. Assuming the seismic input was along
the longitudinal direction (X direction, namely 0◦) with no input from the lateral direction
(Y direction, 90◦), we obtained the column internal forces, including normal force N, and
moments in both directions, Mx and My, at every time stamp. Then, we calculated the
stress combination by considering both moments and normal forces using Equation (1).
The maximum stress should happen at one of the four corners of the column. We compared
the stresses at the four points and used the maximum stresses at that point as the maximum
stress for that time stamp. Other time stamps repeated the same process, allowing us to
achieve the maximum stress at any moment for the seismic input along 0◦. The stress of
the column at 0◦ input is shown in Figure 13.
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Figure 13. Column stress at 0◦ seismic input.

When comparing the maximum stress at every time stamp, the maximum stress of
this input was 3388.9 kPa. Then, when we rotated the seismic input angle at 15◦ intervals
from 0 to 90◦, we calculated the maximum time history and maximum dynamic responses
for each angle. The results are shown in Figure 14.

CivilEng 2023, 4, FOR PEER REVIEW 13 
 

 

If we compare the maximum stress of the stress time history results for each seismic 

input, we can achieve the maximum stress with different seismic input angles. The results 

are shown in Figure 15. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 14. Column stress at different angles of seismic inputs: (a) 15°, (b) 30°, (c) 45°, (d) 60°, (e) 75°, 

(f) 90°. 

Figure 14. Cont.



CivilEng 2023, 4 579

CivilEng 2023, 4, FOR PEER REVIEW 13 
 

 

If we compare the maximum stress of the stress time history results for each seismic 

input, we can achieve the maximum stress with different seismic input angles. The results 

are shown in Figure 15. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 14. Column stress at different angles of seismic inputs: (a) 15°, (b) 30°, (c) 45°, (d) 60°, (e) 75°, 

(f) 90°. 
Figure 14. Column stress at different angles of seismic inputs: (a) 15◦, (b) 30◦, (c) 45◦, (d) 60◦, (e) 75◦,
(f) 90◦.

If we compare the maximum stress of the stress time history results for each seismic
input, we can achieve the maximum stress with different seismic input angles. The results
are shown in Figure 15.
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Figure 15. Maximum stress at different seismic input angles.

As Figure 15 shows for this curved bridge, the most vulnerable direction was along
the longitudinal direction (0◦). Based on the modal shape analysis of the square-shaped
column, the first modal shape was along the longitudinal direction. Thus, we applied the
first modal shape direction as the most vulnerable seismic input direction, which would
reduce the computational cost, compared to calculating the maximum responses of each
seismic input angle.

The steps of our proposed method of calculating the most vulnerable direction of the
seismic input and maximum structural responses of curved bridges are summarized below:

1. Based on the modal analysis results, the first major modal shape direction was used
as the most vulnerable direction of seismic input.

2. The structure coordinate system and the angle between the most vulnerable direction
and the structure coordinate system were configured and found. For the curved
bridge, the structure coordinate system was configured using the longitudinal and
lateral directions of the bridge. The magnitude of the original seismic inputs with
cos α and sin α were multiplied, and the structure with these two perpendicular
components were excited.
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3. The structural response at every time stamp was achieved, and the responses from
the two perpendicular directions were combined. The maximum stress response at
that time stamp was calculated.

4. We repeated step 3 for every time step and achieved the maximum structural response
at every time stamp.

5. We found the maximum structural response for the entire time history.

5. Discussion

To validate our approached method performance, we adopted the same finite element
model of the curved bridge from Figures 2 and 3 to find the most vulnerable direction of
seismic inputs. The only difference was that 2 m × 2 m square-shaped columns were used
instead of circular columns, which made it easier to calculate the maximum column stress.
Following our method, we first conducted the modal shape analysis of the curved bridge
model. From the modal shape analysis, the first mode was the longitudinal direction of
the curved bridge. We configured the longitude direction of the curved bridge as the 0◦

seismic input. Then, the most vulnerable direction of the curved bridge should be 0◦. To
validate our methods, we created seismic inputs with different angles from 0 to 90◦ with
30◦ intervals to reduce our computational cost.

From the first modal shape analysis of the curved bridge, the major motion of the curved
bridge was the column 1 motion, which supported displacement and beam motion, since the
beam’s longitudinal motion and support displacement could be reduced with some structural
design approaches. Thus, we only compared the column 1 base stress calculation. The time
history stress response of column 1 at different input angles is shown in Figure 16.
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From the time history responses of column 1 stress at each angle, the maximum stress
of the entire time history was recorded for each angle. The results of the maximum results
at each angle are shown in Figure 17.
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Figure 17. Maximum column 1 stress at different seismic input angles.

As Figure 17 shows that for column 1, the most vulnerable direction of the seismic
input was at 0 degrees, which was the same as the direction in our proposed approach.
To compare our method’s accuracy and efficiency, we also applied the commonly used
CQC3 method, calculating the maximum stress of column 1 from the same finite element
model. The difference in the stress calculations between these methods was less than 1.5%,
which is negligible, considering the nonlinearity factors of the model. In addition, since our
proposed method could identify the most vulnerable seismic input angle direction without
a trial-and-error approach using the CQC3 method, our method reduced the computational
cost by more than 90%. Our method demonstrated very promising performance for future
curved bridge designs.

6. Conclusions

Due to the complicated dynamic characteristics and moment–torsion coupling effects
of curved bridges, more research needs to be conducted on curved bridge seismic analysis.
In this paper, we conducted curved bridge dynamic analysis under seismic inputs using
SAP2000 and investigated the patterns of the performance based on different structural pa-
rameters. We analyzed different parameters, including bridge column height, span length,
radius curvature, support arrangement, and their effects on bridge dynamic responses. We
adopted spectrum analysis and time history analysis, investigating a three-span curved
bridge dynamic response and identifying the most vulnerable direction of the seismic
inputs. Building on the CQC3 combination method, we came up with a framework of time
history analysis of curved bridges and identified the most vulnerable direction of seismic
input. Based on our work in this paper, we found that the first mode natural frequency of
curved bridges was often less than 2 Hz, and higher modal shapes demonstrated some cou-
pling effects. Column height and bridge span had more impacts on the natural frequencies
of curved bridges, especially for lower modes. With the column height and bridge span
increasing, higher-mode natural frequencies were reduced. Span variation did not cause
too many changes in the first three modes. Radius curvature did not affect the natural
frequencies too much, nor did the first five modes. If the radius curvature became a large
number (e.g., infinite), natural frequencies and mode shapes changed dramatically. The
middle column, when adopting the fixed connection of the support, did not affect the lower
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modes or the higher modes. When performing time history analysis, there existed the most
vulnerable direction of the seismic inputs. The framework developed by this paper reduces
the computational cost, compared with the traditional methods, and is more accurate
than traditional methods. The results from this paper will raise the awareness of bridge
designers when designing and constructing curved bridges. More focus will be spent
on identifying the critical seismic input and further improve the bridge resilience. This
paper is more focused on uniform column height. Research on different column heights of
curved bridge impacts under seismic inputs is under investigation. In future works, more
accurate nonlinear time history analyses need to be performed by taking into account the
real hysteretic behavior of the adopted materials, and the influence of seismic isolation
devices [27] on the curved bridge response needs to be investigated by using a probabilistic
approach [28]. We will conduct more comprehensive performance comparisons between
our method and other researchers’ methods.
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