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Abstract: Moisture and temperature are the most important environmental factors that affect the
degradation of wind turbine blades, and their influence must be considered in the design process.
They will first affect the resin matrix and then, possibly, the interface with the fibers. This work
is the first to use a series of metaheuristic approaches to analyze the most recent experimental
results database and to identify which resins are the most robust to moisture/temperature in terms
of fatigue life. Four types of resin are compared, representing the most common types used for
wind turbine blades manufacturing. Thermoset polymer resins, including polyesters and vinyl
esters, were machined as coupons and tested for the fatigue in air temperatures of 20 ◦C and 50 ◦C
under “dry” and “wet” conditions. The experimental fatigue data available from Sandia National
Laboratories (SNL) for wind turbine-related materials have been used to build, train, and validate
an artificial neural network (ANN) to predict fatigue life under different environmental conditions.
The performances of three algorithms (Backpropagation BP, Particle Swarm Optimization PSO, and
Cuckoo Search CS) are compared for adjusting the synaptic weights of the ANN and evaluating
the efficiency in predicting the fatigue life of the materials studied, under the conditions mentioned
above. For accuracy evaluation, the mean square error (MSE) is used as an objective function to be
optimized by the three algorithms.

Keywords: wind turbine blades; fatigue life; artificial neural network; optimization algorithms;
composite materials; hygrothermal effect

1. Introduction

Blades are one of the most critical components of wind turbines. They capture wind
energy and convert it into mechanical energy for the production of electricity. Defective
blades significantly affect the energy conversion efficiency of the wind turbines, and blade
failures have a significant impact on the cost of energy (repair, maintenance, etc.). Therefore,
the increased reliability and lifetime of wind turbine blades are important for the cost of
energy reduction.

Approximately 95% of the modern wind turbine blades are made of fiber-reinforced
composites because of their good mechanical characteristics: high stiffness, low density, and
long fatigue life [1]. Compared to alternative materials, fiber-reinforced composites have
other advantages in terms of weight, cost, quality, technical feasibility, market expectation,
environmental impact, and health and safety. Several key properties are dictated by the
matrix resin, including fatigue strength, which is a dominant failure mode in composite
material structures, leading to the breakdown of structural integrity in areas such as the
trailing edge, spars, and root connections [2,3].

Hygrothermal effects on composite materials should be considered in the early phases
of design; otherwise, design iterations and failures will result in a waste of time, energy,
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and money. Usually, the degree of sensitivity of composites to individual environmental
factors is quite different. Temperature and moisture are the most significant variables to
consider for the design of wind turbine blades. The primary environmental effects are on
the matrix material and then, possibly, on the interface with the fibers.

The purpose of this paper is to identify resins that have good resistance to tempera-
ture/moisture while providing better fatigue life. The resins studied are thermosetting
polymers, including unsaturated polyesters and vinyl esters. They are both suitable for
manufacturing wind turbine blades in terms of cost and low viscosity for ductile processing
by resin transfer molding (RTM) [2].

This study also proposes and compares three algorithms, namely Backpropagation
(BP) Levenberg Marquardt, Particle Swarm Optimization (PSO), and Cuckoo Search (CS),
in combination with the popular feedforward neural network (FNN) for the prediction of
fatigue life of wind turbine blades. These new combinations were used in the training of
SNL/MSU database [4], developed by SNL in collaboration with Montana State University
(MSU). The dataset we used is collected from their large public database build for compar-
ative analysis of fatigue life for five resin systems. All the materials studied are used for
wind turbine blades by most wind turbine manufacturers, owners, and contractors. The
glass-fiber-reinforced plastic (GFRP) from E-glass fibers and thermoset polymers were the
most appropriate choices for our analysis [5].

This database is the latest of a series of tests that the SNL has been publishing over the
years. The novelty of our work is that it applies these combinations (BPNN, PSO-ANN, and
CSNN) on this newly published data and creates a model that is capable of predicting the
fatigue life of the different resin systems studied. Indeed, this study is based on a portion
of the data used with the BP algorithm by [6], in order to improve the results already found.
In contrast, this new model could be used in the future as an alternative to the costly lab
tests, as well as to validate new experimental results.

Following this introductory section, the rest of the paper is organized as follows:
Section 2 explains the hygrothermal effects on wind turbine blade composite; Section 3
presents the experimental fatigue data conducted with wind turbine blades related mate-
rials; Section 4 gives a brief overview of the BP, PSO, and CS and their implementation
as a training algorithm of the NN; Section 5 describes how the CSNN accurately predicts
the fatigue life of wind turbine blade materials; finally, some conclusions are drawn in
Section 6.

2. Hygro-Thermo-Mechanics of Wind Turbine Blades

Offshore and onshore wind turbines are exposed, depending on the climatology of the
region, to climatic constraints such as variations in temperature, moisture, and sand grains
associated with storms. These natural phenomena can easily damage the skin of the blade
(gelcoat) [7]. However, a composite wind turbine blade is highly durable if the layer of gelcoat
that protects it from the external environment has good physicochemical characteristics.

The state of the problem illustrated by Figure 1 is of the hygro-thermomechanical type,
because the structure of the blade is subjected to three types of loadings of origin [8]:

• Mechanical (wind gust, storms...);
• Thermal (temperature variation);
• Hygrometric (moisture variation).
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The constitutive equations governing the hygro-thermomechanical behavior of a
stratified composite (upper and lower surfaces) and without taking into account the
transverse shear are expressed according to [7] by the following compact matrix form:

 N
· · ·
M


xy

=

 A
... B

· · · · · ·

B
... D


 ε0
· · ·
κ


xy

−

 N∆T

· · ·
M∆T


xy

−

 N∆m

· · ·
M∆m

, (1)

where ∆T and ∆m, respectively, represent the variations of temperature and moisture.
During the design process, the behavior of the gelcoat to climatic phenomena, as well as
hygro-thermomechanical stresses, must be considered in order to predict the undesirable
effects in the short- and/or long-term [7,8].

Once the plates are fabricated and nailed, the specimens can be cut. The geometry
of the specimen can strongly affect the experimental results, and it is important to decide
which one to use for testing. All samples were prepared using RTM. The fabrics were cut
by a rolling knife and stacked in the mold following the stacking sequence “lay-up” given
in each case.

All specimens were machined from the plates using a water-cooled diamond saw,
and their edges were sanded before conditioning. Dry specimens were stored in ambient
laboratory air at an ambient temperature of 23 ◦C with low humidity. Other dry specimens
were stored in an oven at 50 ◦C, and they are defined as “50 ◦C dry”. Additionally, the wet
specimens were stored in a plastic container of distilled water at 50 ◦C; they are defined as
“50 ◦C wet” [2,6].

3. Data and Method

During its operation, the blade is subject to stress variation from one cycle to an-
other. This variation can result in a degradation of the structural resistance through the
phenomena of accumulation of stresses and fatigue.

A number of specimens (sections) must be manufactured in accordance with the
blade structure itself. These specimens are tested under sufficient alternating load levels
until rupture. A testbed and strain gauges for performing the tests are required. The
experimental results obtained by Sandia National Laboratories [4] make it possible to
estimate the life of the blade with a sufficiently acceptable degree of confidence. On
average, this lifetime is estimated at 20 years [7].

3.1. Fatigue Data

The purpose of the neural networks and optimization algorithms used in this paper is
to predict the fatigue behavior of wind turbine blade composites under the hygrothermal
effect and in extreme conditions (dry/wet). The specimens used for this process were
tested in air temperatures of 20 ◦C and 50 ◦C. The experiments have been carried out by
SNL with wind turbine-related materials and released on their website [4]. In addition,
a wide variety of prospective blade materials were included in this work, including E-
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glass-fiber/polyester and vinyl ester resins in the form of a multidirectional laminate
constructions [0/±45/0]s, fiber contents (35–36%), and many stitched fabrics.

Table 1 lists the types and sources of resins and reinforcement used during the manu-
facturing process. All materials were treated in closed molds with the RTM process, which
were molded into their final dog-bone shape without machining. The laminate nomencla-
ture corresponds to the Sandia National Laboratories. Therefore, the fabric details given
indicate the content of stitching and transverse strands or mat to which the primary strands
are stitched. Laminates were processed by RTM through resin distribution layers [9,10]; a
more detailed description of the fabrication process may be found in [6,11].

Table 1. Different resins investigated.

Laminate Matrix Materials

General Material Name Lay-Up Volume
Fiber (%) Resin Description Resin Trade Name Supplier

MD-DD5P-UP2 [0/±45/0]S 35–36
Ortho-polyester Orthophthalic CoRezyn 63-AX-051 Interplastics

CorporationIso-polyester Isophthalic CoRezyn 75-AQ-010

MD-DD5P-VE [0/±45/0]S 35–36
Vinyl ester 411C-50 Unmodified Derakane 411C-50 Dow

ChemicalVinyl ester 8084 Rubber toughened Derakane 8084

Fiber reinforcing fabrics

E-glass fabric Fabric orientation Type Areal weight (g/m2) Supplier

Knytex D155 0◦ unidirectional fabrics Stitched unidirectional 527 Owens corning fabrics
Knytex DB120 ±45 fabrics Bias, stitched 393 Owens corning fabrics

3.2. Backpropagation Neural Network BPNN

Artificial neural networks (ANNs) have been shown to be useful for a variety of
engineering applications, including the characterization of fatigue behavior. Due to their
massively parallel structure, they can solve many nonlinear and multivariate problems, for
which an accurate analytical solution is difficult to obtain.

The popular topology of a neural network model is illustrated in Figure 2, which typi-
cally consists of one or more input layers, output layers, and hidden layers where weights
are trained. Each layer comprises one or more neurons; the neurons are interconnected so
that the information passes from one layer to another, from the input layer to the output
layer, through the hidden layers. Various transfer functions such as sigmoidal, linear, or
triangular have been used to model neuronal activity [12,13].

Eng 2021, 2, FOR PEER REVIEW 4 
 

 

which were molded into their final dog-bone shape without machining. The laminate no-
menclature corresponds to the Sandia National Laboratories. Therefore, the fabric details 
given indicate the content of stitching and transverse strands or mat to which the primary 
strands are stitched. Laminates were processed by RTM through resin distribution layers 
[9,10]; a more detailed description of the fabrication process may be found in [6,11]. 

Table 1. Different resins investigated. 

Laminate Matrix Materials 
General Material 

Name Lay-Up Volume  
Fiber (%) Resin Description Resin Trade Name Supplier 

MD-DD5P-UP2 [0/ ± 45/0]S 35–36 
Ortho-polyester Orthophthalic CoRezyn 63-AX-051 Interplastics Cor-

poration Iso-polyester Isophthalic CoRezyn 75-AQ-010 

MD-DD5P-VE [0/ ± 45/0]S 35–36 
Vinyl ester 411C-50 Unmodified Derakane 411C-50 

Dow Chemical 
Vinyl ester 8084 Rubber toughened Derakane 8084 

Fiber reinforcing fabrics 
E-glass fabric Fabric orientation Type Areal weight (g/m2) Supplier 
Knytex D155 0° unidirectional fabrics Stitched unidirectional 527 Owens corning fabrics 

Knytex DB120 ±45 fabrics Bias, stitched 393 Owens corning fabrics 

3.2. Backpropagation Neural Network BPNN 
Artificial neural networks (ANNs) have been shown to be useful for a variety of en-

gineering applications, including the characterization of fatigue behavior. Due to their 
massively parallel structure, they can solve many nonlinear and multivariate problems, 
for which an accurate analytical solution is difficult to obtain. 

The popular topology of a neural network model is illustrated in Figure 2, which 
typically consists of one or more input layers, output layers, and hidden layers where 
weights are trained. Each layer comprises one or more neurons; the neurons are intercon-
nected so that the information passes from one layer to another, from the input layer to 
the output layer, through the hidden layers. Various transfer functions such as sigmoidal, 
linear, or triangular have been used to model neuronal activity [12,13]. 

 
Figure 2. Feedforward neural network with one hidden layer [14]. 

In Figure 2, 𝑤  is the synaptic weight matrix linking the input with the hidden layer, 
and 𝑤  is the synaptic weight matrix linking the hidden layer with the output, according 
to Equation (2) [6,12–14]: 

𝑛𝑒𝑡 , = 𝑤 , , 𝑜𝑢𝑡 , + 𝜃 , , (2)
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In Figure 2, wi is the synaptic weight matrix linking the input with the hidden layer,
and ws is the synaptic weight matrix linking the hidden layer with the output, according to
Equation (2) [6,12–14]:

neti,k =

[
∑

j
wi,j,koutj,k−1

]
+ θi,k, (2)



Eng 2021, 2 282

where wi,j,k represents the weight connection strengths for node j in the (k − 1)th layer to
node i in the kth layer; outj,k is the output of node i in the kth layer and θi,k is the threshold
associated with node i in the kth layer.

In Equation (3), the MSE was used as an objective function to optimize, and weights
were tuned to minimize their values throughout the prediction process, defined as follows:

j(W) =
1
N ∑N

i=1

(
yi − yi

d

)2
. (3)

where j is the objective function, performance, or cost function; N is the number of nodes; W
is the weight matrix; y is the output obtained by the neural network; yd is the desired output.

In this study, two other metaheuristic algorithms (PSO and CS) were used to avoid the
local optimum trap. Both were deployed to optimize MSE by adjusting the neural network
weights. The details of these two proposed algorithms are described in the next sections.

3.3. Particle Swarm Optimization PSO

Particle swarm optimization or PSO is an intelligent optimization algorithm; it belongs
to a class of optimization algorithms called metaheuristics. PSO is based on the intelligence
paradigm of swarms and is inspired by the social behavior of animals, such as fish and
birds. PSO is a simple yet powerful algorithm, which has been successfully applied to
various fields of science and engineering. Initially, PSO was introduced by Kennedy
and Eberhart [15], where they sought to model social interactions between “particles” to
achieve a given goal in a common search space, each particle having a certain capacity
for memorizing and processing information. The basic rule was that there should be no
conductor, or even any knowledge by the particles of all information, only local knowledge.
A simple model was then developed.

The algorithm works by initializing a flock of birds randomly over the searching space,
where every bird is called a “particle”. These particles fly with a certain velocity and find
the global best position after some iteration [16]. During the flight, each particle updates its
velocity vector, based on its momentum and the influence of its best position (Pb) as well
as the best position of its neighbors (Pg), and then computes a new position [14]. Figure 3
briefly illustrates the concept of PSO.
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In a search space of dimension d, the particle i of the swarm is modeled by its vector
position

→
x i = (xi1, xi2, . . . xid)

T , and by its velocity vector
→
v i = (vi1, vi2 , . . . vid)

T , desig-
nating by AT the transpose of a matrix A. The quality of its position is determined by the
value of the objective function at this point. This particle keeps in memory the best position
by which it has already passed, which we note

→
p i = (pi1, pi2, . . . pid)

T . The best position
reached by its neighboring particles is noted

→
g i = (gi1, gi2, . . . gid)

T . At time t, the velocity
vector is calculated from Equation (4):

vid(t + 1) = wvid(t) + c1r1(pid(t)− xid(t)) + c2r2(gid(t)− xid(t)) (4)
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In Equation (4), vid and pid are the velocity and position of particle i (i = 1, 2, . . . n),
where n is the number of particles; d = 1, 2, . . . m, and m is the number of input variables
to be optimized; w is usually a constant, called the “inertia weight factor”; c1 and c2
are cognitive and social acceleration factors, respectively, that scale the old velocity and
increase new velocity toward Pbest (local best result) or Gbest (global best result); r1 and r2
represent random numbers that are uniformly distributed in the interval [0,1] [8,14].

3.4. Cuckoo Search Algorithm

The cuckoo search (CS) algorithm was inspired by the brood parasitism of cuckoo
birds. In fact, their breeding strategy is characterized by the laying of their eggs in the nests
of other species (host birds). If the host bird discovers that the eggs are not its, it will throw
them away. Otherwise, its will simply abandon its nest and build another elsewhere. CS is
a metaheuristic optimization algorithm based on the following rules:

• Every cuckoo lays solely one egg at a time, and the eggs are exactly set in a nest
(randomly selected nest);

• The nest has better quality eggs, which are carried onto the next round;
• The number of the nest is fixed, and the quality of the nest is static and not alterable.

In CS, each egg in a nest represents a solution, and each cuckoo can lay a single egg
(which represents a solution). The goal is to use the new and potentially better solution
to replace a less good solution in a nest. This metaheuristic is thus based on this parasitic
behavior of the species of cuckoos associated with a logic of displacement of the “Lévy
flight” type, which is specific to certain birds and certain fly species [17].

The Lévy flight is a random process in which a sequence of random steps is per-
formed [17]. Two sequential procedures must be completed to produce random numbers
with Lévy flights: step generation and selection of a random direction. One of the more
efficient methods for doing so is to employ the so-called Mantegna algorithm, in which the
step length s can be calculated as in Equation (5) [17,18]:

s =
u

|v|1/β
(5)

Here, u and v are random values from centered Gaussian distributions; β is the scale
parameter, and its recommended range is [1,2].

In the process of the cuckoo search algorithm, n randomly chosen nests come into
being and the ith nest is set nesti = (xi1, xi2, . . . xid), where d is the dimension of the
problem. The fitness of each nest can be determined according to their own location
information [17,18]. The nests are updated according to Equation (6):

nestt+1
i + α⊗ levy(β), 1 ≤ i ≤ n, (6)

where α is the step size according to the scale of the problem. The produce ⊗ is the
entry-wise multiplications. The random walk via Lévy flight is more efficient in exploring
the search space as its step length is much longer in the long run [18]. Each nest has a
certain probability (Pa) to be abandoned. If a nest is abandoned, a new nest will be created
according to Equation (7):

nestt+1
i = nestt

i + r
(

nestt
j − nestt

k

)
, (7)

where r is a scale factor uniformly distributed between 0 and 1; nestt
j and nestt

k are other
nests, randomly selected in ith generation [18].

3.5. Data Preparation

Data preparation is important for ensuring the built model’s accuracy and robustness.
The accuracy of the collected data influences the precision, and the amount of data used
to train the model affects robustness [19]. As mentioned above, the data were collected
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from the extensive database of Sandia National Laboratories to compare four types of
thermosetting resins (cited in Table 1) in terms of fatigue lives and hygrothermal effect.
The size of the database collected is 122 sets distributed over the four resins in question
(ortho-polyester, iso-polyester, vinyl ester 411C-50 and vinyl ester 8084). Before we began
to model the data, we had to normalize it to be in a range from 0 to 1. Since the number of
cycles to failure ranged from 16 to 6,000,000 cycles, and the maximum applied compressive
stress was −13.8 to −41.4 MPa, we used the range-normalized absolute difference method
based on the Equation (8):

Normalized value = (value−minValue)/(maxValue−minValue). (8)

This method was applied to both data ranges (number of cycles and max stress).
Indeed, the starting point of the parameter optimization process starts with error estimation
as a difference between real and predicted values. These two sets of values must, therefore,
have the same range. The normalization of inputs in neural networks can, for practical
reasons, make learning faster and reduce the chances of being trapped in local minima.

We used Excel to process the data from Table 2, and the results are shown in Figure 4.
We started sorting the data in ascending order based on hygrothermal conditions and the
resin types. We then normalized them to allow the application of the proposed neural
network combinations mentioned earlier. We identified the properties extracted from the
prediction for each resin, such as MSE, number of epochs, etc. This Excel file (Figure 4)
synthesizes all the data and allows us to process the simulations efficiently.

Table 2. Sample parameters of ortho-polyester 63-AX-051.

Testing Temperature T (◦C) Stress Ratio R UCS * (MPa) Hygrometric Conditions

50 ◦C Wet 10 −34.5
Wet coupons (1.0%

distilled water)
50 ◦C Dry 10 −34.5
20 ◦C Wet 10 −31
50 ◦C Dry 10 −37.9

* UCS: ultimate compressive stress.

Eng 2021, 2, FOR PEER REVIEW 7 
 

 

3.5. Data Preparation 
Data preparation is important for ensuring the built model’s accuracy and robust-

ness. The accuracy of the collected data influences the precision, and the amount of data 
used to train the model affects robustness [19]. As mentioned above, the data were col-
lected from the extensive database of Sandia National Laboratories to compare four types 
of thermosetting resins (cited in Table 1) in terms of fatigue lives and hygrothermal effect. 
The size of the database collected is 122 sets distributed over the four resins in question 
(ortho-polyester, iso-polyester, vinyl ester 411C-50 and vinyl ester 8084). Before we began 
to model the data, we had to normalize it to be in a range from 0 to 1. Since the number of 
cycles to failure ranged from 16 to 6,000,000 cycles, and the maximum applied compres-
sive stress was −13.8 to −41.4 MPa, we used the range-normalized absolute difference 
method based on the Equation (8): 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 = (𝑣𝑎𝑙𝑢𝑒 − 𝑚𝑖𝑛𝑉𝑎𝑙𝑢𝑒) (𝑚𝑎𝑥𝑉𝑎𝑙𝑢𝑒 − 𝑚𝑖𝑛𝑉𝑎𝑙𝑢𝑒)⁄ . (8)

This method was applied to both data ranges (number of cycles and max stress). In-
deed, the starting point of the parameter optimization process starts with error estimation 
as a difference between real and predicted values. These two sets of values must, there-
fore, have the same range. The normalization of inputs in neural networks can, for practi-
cal reasons, make learning faster and reduce the chances of being trapped in local minima. 

We used Excel to process the data from Table 2, and the results are shown in Figure 
4. We started sorting the data in ascending order based on hygrothermal conditions and 
the resin types. We then normalized them to allow the application of the proposed neural 
network combinations mentioned earlier. We identified the properties extracted from the 
prediction for each resin, such as MSE, number of epochs, etc. This Excel file (Figure 4) 
synthesizes all the data and allows us to process the simulations efficiently. 

Table 2. Sample parameters of ortho-polyester 63-AX-051. 

Testing Temperature T (°C) Stress Ratio R UCS * (MPa) Hygrometric Conditions 
50 °C Wet  10 −34.5 

Wet coupons (1.0% distilled water) 
50 °C Dry 10 −34.5 
20 °C Wet 10 −31 
50 °C Dry 10 −37.9 

* UCS: ultimate compressive stress. 

 
Figure 4. Excel file summary for the preparation of ortho-polyester data. 

4. Proposed Hybrid Models for Fatigue Life Prediction 

BPNN Prediction MSE/Epoc PSO-ANN MSE/Epoc CSNN Prediction MSE/EpocNormalizationOrtho-polyester 63-AX-051
34,5 16 1 0 0,9554 0,9443 1,0048
27,6 1 410 0,66666667 0,00086402 0,6749 0,6685 0,6668
20,7 37 673 0,33333333 0,02334031 0,329 0,3246 0,3334
20,7 44 469 0,33333333 0,02755256 0,3287 0,3244 0,3332
20,7 54 737 0,33333333 0,0339168 0,3278 0,3235 0,3323

C Wet
Er =

 3,2
976

e-04

Er= 
2,0

05
9e-

04

Er =
 3,0

630
e-04

16,5 141 564 0,13043478 0,08773334 0,1342 0,1364 0,1326
16,5 190 729 0,13043478 0,11820646 0,1296 0,1302 0,1304
16,5 342 905 0,13043478 0,21252717 0,0295 0,0301 0,1303
13,8 803 542 0 0,49803612 -0,0198 0,0098 0,0357
13,8 1 033 796 0 0,64075062 -0,0299 0,0597 0,0234
13,8 1 613 405 0 1 -0,0621 0,0867 -0,0189

T= 50° 
C 

Epoch
s =

 22
8

Epoch
s=

 62

Epoch
s=

 27
7

34,5 130 1 0 0,9377 1,0012 0,9391
27,6 49636 0,61666667 0,03688757 0,6823 0,6051 0,6811
27,6 74728 0,61666667 0,05558395 0,6121 0,6443 0,6117
27,6 98038 0,61666667 0,07295254 0,5636 0,5889 0,5667
20,7 124290 0,23333333 0,09251325 0,2348 0,2418 0,2345
20,7 173669 0,23333333 0,1293062 0,227 0,2264 0,2274

50° 
C Dry Er= 

0,0
01

1

Er= 
0,0

00
954

93

Er= 
0,0

01

20,7 482504 0,23333333 0,35942322 0,226 0,1846 0,2266
16,5 506222 0 0,37709582 -0,0446 -0,0189 0,0345
16,5 857946 0 0,63917 -0,0233 -0,0133 0,0345
16,5 1109352 0 0,82649593 -0,0422 -0,0633 0,0325
16,5 1342208 0 1 -0,0653 -0,0843 0,0146

 T= 50

Epoch
s=

 54

Epoch
s=

 11
2

Epoch
s=

 23

31,0 16 432 1 0 0,9845 0,9967 0,9973
31,0 22 185 1 0,00150835 0,9657 0,9844 0,9788
31,0 27 564 1 0,00291864 0,9486 0,973 0,9921
27,6 333 063 0,50724638 0,08301581 0,5176 0,5366 0,5364
27,6 637 232 0,50724638 0,16276427 0,4621 0,4722 0,4970° 

C W
et

Er= 
0,0

00
397

25

Er= 
4,2

52
5e-

04

Er= 
0,0

01
3

27,6 836 080 0,50724638 0,21489917 0,4429 0,5201 0,4571
24,1 2 680 397 0 0,69845088 -0,0345 0,0257 -0,0002
24,1 2 878 393 0 0,7503624 -0,0458 0,0452 0,0004
24,1 3 830 537 0 1 -0,0474 0,0178 -0,0269

 T= 20

Epoch
s =

 3

Epoch
s =

 18

Epoch
s =

 32

Figure 4. Excel file summary for the preparation of ortho-polyester data.

4. Proposed Hybrid Models for Fatigue Life Prediction

In order to create a model that can predict the fatigue life of the various resins investi-
gated with reasonable accuracy, a total number of 122 experimental fatigue data entries
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were used in the training process; the parameters of input and output are tabulated in
Table 3.

Table 3. Input and output parameters.

Input Parameters Output Parameters

Normalized maximum compressive stress σmax Normalized number of cycles to failure N

The training data were split into three different sets to fulfill the training requirements
and improve accuracy, according to the “early stopping” method, integrated by default in
the Matlab software (R2016b). Accordingly, 60% of the data serve as the training set, 20%
for validation, and the remaining 20% for testing purposes.

The NN used to predict the fatigue life of all resin matrices is a two-layer feedforward
network with one input, the normalized maximum compressive stress σmax, and one output,
the normalized number of cycles to failure N. The network consists of a single hidden layer
of 10 neurons using a sigmoid activation function, while the output uses a linear activation
function with one computation neuron. It is a fixed architecture for all our proposed
combinations, and we try each time to replace the BP algorithm (Levenberg-Marquardt)
with one of the suggested algorithms (PSO and CS). Since we have only one input and one
output, data scaling was achieved by normalizing/standardizing real-valued input and
output variables.

The effect of varying the number of hidden neurons on the prediction of fatigue life
was investigated. In each test, the number of neurons in the hidden layer was changed to
obtain the lowest root mean square error (RMSE). Figure 5 shows the variations of RMSE
according to the number of hidden neurons for 14 trials.
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Figure 5. Effect of the number of hidden neurons on the RMSE.

4.1. PSO-Based ANN

A neural network optimized by a particle swarm algorithm is also called a PSO-
ANN (particle swarm optimization-based artificial neural network) combination. This
algorithm takes the weights and biases of the trained neural network as a single particle.
For training a neural network using the PSO, the fitness value of each swarm particle
(member) is the value of the error function evaluated at the particle’s current position,
and the particle’s position vector corresponds to the network’s weight matrix [14,20]. The
number of PSO dimensions is taken as the total number of neural network weights and
biases. The PSO-ANN combination procedure is illustrated in the flowchart of Figure 6.
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Figure 6. Use of PSO to train a feedforward NN [14].

Returning to the parameters, to improve the convergence rate and the learning process,
the parameters presented in Table 4 were better suited for the execution of the PSO algorithm.

Table 4. Parameters of PSO algorithm.

Parameters Values

Number of particles 20
Number of generations (max iterations) 1000

Maximum velocity Vmax 0.9
Minimum velocity Vmin 0.4

Cognitive and social acceleration factors c1 and c2 2
Search space range [−100, 100]

Inertia weight factor w 0.72

In this combination, the number of dimensions of the PSO domain corresponds to
the number of weights and biases of the neural network, from which each PSO dimension
corresponds to a weight or bias of the neural network. Since it is not possible to display
more than three dimensions, we will only show the first and the last dimension in the x
and y axes. The z-axis corresponds to the performance function of the neural network,
which also represents the objective function of the PSO (Figure 7). The goal of PSO will be
to optimize the MSE of our network.
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Figure 7. Particles of PSO in the search space.

For our topology, we have 31 dimensions where the PSO particles search an optimum.
These 31 dimensions correspond to the weights and biases of our neural network (two
layers, one of 10 and the other of a single neuron, give 20 weights and 11 biases). In this
search space, each particle will have projections on the dimensions that correspond to
the parameters (weight and bias) of the NN. In our case, the number of parameters is 31
(20 weights and 11 biases). Therefore, if we want to follow the evolution of the position of
a particle (choose a particle among the 20 used in our PSO-ANN combination), we will see
that this evolution will have 31 projections. Each projection corresponds to a parameter
(weight or bias) of the NN.

Figure 8 represents the change of the position of particle 9 in projection on the
31 parameters (or dimensions); dim1 . . . dim31 represent the parameters of the NN (weight
and bias).
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Figure 8. Position of particle 9 according to the iterations from dim1 to dim31.

Similarly, if we want to follow the value of the objective function of a particle, the
projection on the z-axis will give us the value of the objective function at any iteration. This
value converges when the particles are clustered near an optimum. Figure 9 shows the
evolution of the objective function according to particle 9.
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4.2. CS-Based NN (CSNN)

In CSNN, CS is used to optimize the backpropagation (BP) network’s initial weights
and biases. More precisely, the BP network is regarded as the objective function (fitness
function), and the weights and biases are calculated by the CS algorithm to maximize the
objective function [21]. It is expected that these optimal weights and biases used for the
BP network will be significantly higher than the default BP network. In the first epoch,
CS initializes the best weights and biases and then transfers it to the BPNN. Then, BPNN
weights are calculated and compared with the best solution in the backward direction. In
the next cycle, CS will update the weights with the best possible solution, and CS will
continue to search for the best weights until the network’s last cycle/epoch is reached or
the MSE is achieved [22]. The flowchart of the CSNN combination is described in Figure 10.
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Figure 10. Flowchart of CSNN combination [21].

CS performance is tested with a discovery rate pa = 0.15 to optimize weights and bias
and a small population size of 20. For each prediction, the trial is limited to 1000 epochs,
and the minimum error is kept close to 0. As intelligent algorithms always have certain
randomness, different results will be generated by each run. For each case, 10 tests are run
to obtain a standard statistical result. The results of the network will be saved for each test.
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5. Results and Discussion

In this section, we have used neural networks combined with three different algo-
rithms (BP, PSO, and CS), called BPNN, PSO-ANN, and CSNN, respectively, as described
in Section 4. These three hybrid models have been exploited to evaluate their effectiveness
in predicting the fatigue life of wind turbine blade materials. The materials in question
are composites based on thermosetting resins, namely the ortho-polyester resin (CoRezyn
63-AX-051), the iso-polyester resin (CoRezyn 75-AQ-010), and the two vinyl ester resins
(Derakane 411C-50 and Derakane 8084). In the first step, we have trained our NN with
the BP algorithm with three different temperatures: 50 ◦C wet, 20 ◦C dry, and 20 ◦C wet,
in order to preselect the best architecture for our network, as it will follow us throughout
the evaluation and prediction process. The choice of a suitable architecture ends when
the network converges or reaches a global minimum already predefined as an objective
function (MSE). For the materials considered, both experimental and predicted results
obtained with BPNN, PSO-ANN and CSNN are compared in Figures 11–14 and show the
relationship between the maximum applied compressive stress (σmax) and the number of
cycles to failure (N). For illustration and comparative purposes, we have presented in the
same figure and for each studied temperature, four plots for different experimental and
predicted values obtained with BPNN, PSO-ANN, and CSNN, where they show typical
fatigue life predictions. We did not have enough data to predict scenarios for 50 ◦C wet
conditions. All the data originates from SNL, who performed the experiments and made
their database publicly available. Therefore, we have not being able to test the 50 ◦C wet
with the following materials: Derakane 8084, CoRezyn 75-AQ-010 and Derakane 411C-50.
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Figure 11. Experimental and predicted values of ortho-polyester resin fatigue life (CoRezyn 63-AX-051). (a): T = 50 ◦C wet;
(b): T = 50 ◦C dry; (c): T = 20 ◦C wet; (d): T = 20 ◦C dry.
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Figure 12. Experimental and predicted values of vinyl ester resin fatigue life (Derakane 8084). (a): T = 50 ◦C wet;
(b): T = 20 ◦C dry; (c): T = 20 ◦C wet.
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Figure 13. Experimental and predicted values of iso-polyester resin fatigue life (CoRezyn 75-AQ-010). (a): T = 50 ◦C wet;
(b): T = 20 ◦C dry; (c): T = 20 ◦C wet.
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Figure 14. Experimental and predicted values of vinyl ester resin fatigue life (Derakane 411C-50).
(a): T = 50 ◦C wet; (b): T = 20 ◦C dry; (c): T = 20 ◦C wet.

In all these figures, it can be noted that the prediction plots follow their experimental
reference, which demonstrates the efficiency of the combinations we propose. However,
the CSNN plot is almost superimposed on that of the experimental, because of its simplicity
in using mathematical models in comparison with PSO-ANN, as well as its ability to adjust
weights without determining a gradient by comparing with BPNN. In the training process,
we found that BPNN and CSNN converged more quickly to a minimal error, whereas
PSO-ANN requires a considerable number of iterations to do so. In fact, this paper is the
result of the sum of our experiences, which allowed us to overcome the shortcomings of
our previous work [6,14,23].

In terms of error, we further evaluated the erroneously predicted values for the three
combinations and presented their prediction errors in Table 5. The table contains the values
of the RMSE, mean absolute error (MAE), number of epochs, CPU times, and the prediction
accuracies. It is clear that the prediction performance of CSNN is better than that of PSO-
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ANN and BPNN, with the exception of certain prediction values mentioned above. In the
case of ortho-polyester, the maximum RMSE at 20 ◦C dry reaches 0.0373 for BPNN, 0.0374
for PSO-ANN and 0.0387 for CSNN. At 20 ◦C dry in the case of iso-polyester, the maximum
RMSE is about 0.299 for BPNN, 0.288 for PSO-ANN and 0.041 for CSNN. As for the case of
vinyl ester (Derakane 411C-50), the maximum error reaches at 50 ◦C wet 0.112 for BPNN,
0.064 for PSO- ANN and 0.042 for CSNN. At the same time, the max RMSE at 20 ◦C wet
of the vinyl ester (Derakane 8084) is 0.155 for BPNN, 0.139 for PSO-ANN and 0.128 for
CSNN. In the same table, we can note that the lowest number of epochs corresponds to
the CSNN combination, with the shortest calculation times and best prediction accuracies.
Both BPNN and PSO-ANN have higher RMSE values than CSNN. The CSNN approach
gives better results than PSO-ANN due to its simplicity in using mathematical models.
Additionally, CSNN adjusts the weights without determining a gradient, as is the case with
BPNN. We found that CSNN converged faster to a minimum error in the training process,
whereas PSO-ANN requires a considerable number of iterations.

To make these results more precise, we had to use a bar chart to quantify the compari-
son. The different materials studied were compared in Figure 15 in terms of the maximum
compressive stress and according to the hygrothermal conditions. The values shown in
the figure were taken directly from the source database without normalization. According
to the figure, the iso-polyester and the vinyl ester 411 C-50 have a high fatigue strength
compared to the two remaining. The decrease in fatigue strength is very significant for
the ortho-polyester at 20 ◦C. On the other hand, the vinyl ester 8084 still retains the same
fatigue strength, regardless of the hygrothermal effect. All materials showed a significant
decrease at 50 ◦C wet.
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Table 5. RMSE, MAE, epochs, CPU time and prediction accuracies for all materials and combinations.

Material Environmental
Conditions

BPNN PSO-ANN CSNN

RMSE MAE Epochs CPU
Time (s)

Accuracy
(%) RMSE MAE Epochs CPU

Time (s)
Accuracy

(%) RMSE MAE Epochs CPU
Time (s)

Accuracy
(%)

Ortho-polyester
(CoRezyn
63-AX-051)

50 ◦C wet 0.0175 0.0259 277 9.371 94.443 0.0181 0.0316 228 227.73 94.394 0.0141 0.0079 62 6.632 94.761

50 ◦C dry 0.0316 0.0342 54 7.453 92.006 0.0331 0.0284 112 111.50 93.115 0.0309 0.0282 23 2.961 92.138

20 ◦C wet 0.036 0.0387 18 5.820 92.878 0.0206 0.0235 32 31.71 93.618 0.0199 0.0165 3 0.267 94.204

20 ◦C dry 0.0374 0.0298 14 5.158 92.867 0.0374 0.0295 11 10.95 92.869 0.0387 0.0271 10 1.292 92.655

Iso-polyester
(CoRezyn
75-AQ-010)

50 ◦C wet 0.1256 0.0917 1000 28.886 81.330 0.1256 0.0961 1000 909.09 81.333 0.1256 0.083 1000 32.490 81.322

20 ◦C dry 0.2996 0.206 152 8.674 63.117 0.2886 0.188 381 379.32 63.975 0.0412 0.0361 144 8.769 91.630

20 ◦C wet 0.0519 0.0375 5 2.051 87.675 0.0447 0.0323 16 15.54 91.052 0.04 0.0282 16 1.39 91.750

Vinyl ester
(Derakane

411C-50)

50 ◦C wet 0.1126 0.0825 98 7.903 82.366 0.064 0.058 157 152.09 88.088 0.0424 0.0397 131 7.277 91.243

20 ◦C dry 0.0655 0.0694 1000 28.760 86.078 0.0479 0.0431 1000 991.07 90.894 0.0469 0.046 1000 32.327 90.113

20 ◦C wet 0.0979 0.0637 133 8.342 84.611 0.0655 0.0429 416 414.17 87.879 0.0196 0.0257 327 11.168 94.131

Vinyl ester
(Derakane 8084)

50 ◦C wet 0.019 0.0253 122 8.197 94.248 0.0186 0.0241 169 158.43 94.312 0.0184 0.0151 112 8.023 94.344

20 ◦C dry 0.0529 0.0524 195 8.847 87.141 0.0608 0.0554 217 210.21 88.496 0.0314 0.0293 259 10.806 92.018

20 ◦C wet 0.1558 0.1268 599 17.299 77.753 0.1392 0.1144 627 621.40 79.504 0.1268 0.0759 1000 32.112 81.102
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Figure 15. Fatigue strength comparison of all resins investigated.

6. Conclusions

The use of artificial neural networks in the evaluation of composite materials of wind
turbine blades will be considered as an alternative and economical solution. This will also
allow us to reduce the duration of laboratory tests and let the network predict fatigue life.
Depending on the results obtained, it is possible to propose iso-polyester and vinyl ester
411 C-50 as the most appropriate resins for an eventual design of wind turbine blades,
under the hydrothermal effect, and this, from a lifetime and strength standpoint.

The proposed hybrid neural network models BPNN, PSO-ANN and CSNN reproduce
the same nonlinear characteristics obtained in the laboratory with an acceptable error.
The critical element that can decide the quality of prediction and learning is simply the
database, which must be relatively consistent for the network to predict future values
with minimal error. The ANN architecture (number of neurons, topology, etc.) is also
considered as an important factor deciding the quality of learning more than the learning
parameters. We have pointed out that the CSNN is better than the BPNN and PSO-ANN
in terms of prediction because of its simplicity in using mathematical models, as well as
its ability to adjust weights without determining a gradient. CSNN gave us better fatigue
life predictions, faster computation, more accuracy, and above all, a high convergence rate
toward the actual global minimum.

More research is needed to determine the possibility of finding specific combinations
that always leads to the best predictions of fatigue life, as well as improving the accuracy
of ANN using other optimization algorithms in the phase of learning.

Author Contributions: Conceptualization, K.Z. and A.I.; methodology, K.Z.; validation, A.I. and
S.S.K.; formal analysis, M.D.; investigation, K.Z.; data curation, M.D.; writing—original draft prepa-
ration, K.Z.; writing—review and editing, K.Z.; visualization, S.S.K.; supervision, A.I.; project
administration, A.I. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.



Eng 2021, 2 295

Acknowledgments: The authors would like to thank SNL and MSU for the data set used in this
article. They would also like to thank RC Gaumond, Abdelkrim Semmad and Cheryl Deline for their
valuable assistance in reviewing this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nijssen, R.P.L. Fatigue Life Prediction and Strength Degradation of Wind Turbine Rotor Blade Composites. Ph.D. Dissertation,

Delft University, Delft, The Netherlands, 2006.
2. Li, M. Temperature and Moisture Effects on Composite Materials for Wind Turbine Blades. Master’s Thesis, Montana State

University, Bozeman, MT, USA, 2000.
3. Mandell, J.; Samborsky, D.D.; Li, M. Selection of fiberglass matrix resins for increased toughness and environmental resistance in

wind turbine blades. AIAA J. 2000, 57, 354–366. [CrossRef]
4. SNL/MSU/DOE. Composite Material Fatigue Database. Mechanical Properties of Composite Materials for Wind Turbine Blades; Montana

State University-Bozeman: Bozeman, MT, USA, 2016; Version 25.0. Available online: http://energy.sandia.gov/ (accessed on 20
October 2016).

5. Samborsky, D.D.; Mandell, J.; Cairns, D.S. Selection of reinforcing fabrics for wind turbine blades. AIAA J. 1999, 24, 32–42.
[CrossRef]

6. Ziane, K.; Zebirate, S.; Zaitri, A. Fatigue strength prediction in composite materials of wind turbine blades under dry–wet
conditions: An artificial neural network approach. Wind Eng. 2016, 40, 189–198. [CrossRef]

7. Attaf, B. Eco-conception et développement des pales d’éoliennes en matériaux composites. In Revue des Energies Renouvelables
SMEE’10 Bou Ismail Tipaza; 2010; pp. 37–48. Available online: https://docplayer.fr/12968847-Eco-conception-et-developpement-
des-pales-d-eoliennes-en-materiaux-composites.html (accessed on 3 July 2021).

8. Ziane, K. Analyse, Évaluation et Réduction des Risques d’un Parc Éolien. Ph.D. Dissertation, Université d’Oran 2 Mohamed Ben
Ahmed, Oran, Algeria, 2017.

9. Samborsky, D.D.; Agastra, P.; Mandell, J.F. Fatigue trends for wind blade infusion resins and fabrics. In Proceedings of the 51st
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Orlando, FL, USA, 12–15 April
2010. [CrossRef]

10. Agastra, P.; Samborsky, D.D.; Mandell, J.F. Fatigue resistance of fiberglass laminates at thick material transitions. In Proceedings
of the 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Palm Springs, CA, USA,
4–7 May 2009; pp. 1–23. [CrossRef]

11. Mandell, J.F.; Samborsky, D.D.; Agastra, P.; Sears, A.T.; Wilson, T.J. Analysis of SNL/MSU/DOE Fatigue Database Trends for Wind
Turbine Blade Materials; SANDIA National Laboratories: Albuquerque, NM, USA, 2010; SAND2010-7052.

12. Al-Assaf, Y.; El-Kadi, H. Fatigue life prediction of unidirectional glass fiber/epoxy composite laminae using neural networks.
Compos. Struct. 2001, 53, 65–71. [CrossRef]

13. Vassilopoulos, A.P.; Georgopoulos, E.F.; Dionysopoulos, V. Artificial neural networks in spectrum fatigue life prediction of
composite materials. Int. J. Fatigue 2007, 29, 20–29. [CrossRef]

14. Ziane, K.; Zebirate, S.; Zaitri, A. Particle swarm optimization-based neural network for predicting fatigue strength in composite
laminates of wind turbine blades. Compos. Mech. Comput. Appl. Int. J. 2015, 6, 321–338. [CrossRef]

15. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks,
Perth, Australia, 27 November–1 December 1995; pp. 1942–1948. [CrossRef]

16. Zhang, J.R.; Zhang, J.; Lok, T.M.; Lyu, M.R. A hybrid particle swarm optimization-back-propagation algorithm for feedforward
neural network training. Appl. Math. Comput. 2007, 185, 1026–1037. [CrossRef]

17. Yang, X.S.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of the World Congress on Nature & Biologically Inspired
Computing, Coimbatore, India, 9–11 December 2009. [CrossRef]

18. Ding, J.; He, X.; Jiang, B. Wu, Y. Parameter identification for area-specific resistance of direct methanol fuel cell using cuckoo
search algorithm. In Bio-Inspired Computing—Theories and Applications; Gong, M., Linqiang, P., Tao, S., Tang, K., Zhang, X., Eds.;
Springer: Heidelberg, Germany, 2015; Volume 562, pp. 107–112. [CrossRef]

19. Anga, J.Y.; Abdul Majida, M.S.; Mohd Norb, A.; Yaacobc, S.; Ridzuana, M.J.M. First-ply failure prediction of glass/epoxy
composite pipes using an artificial neural network model. Compos. Struct. 2018, 15, 579–588. [CrossRef]

20. Gudise, V.G.; Venayagamoorthy, G.K. Comparison of particle swarm optimization and back-propagation as training algorithms
for neural networks. In Proceedings of the IEEE Swarm Intelligence Symposium SIS’03, Indianapolis, IN, USA, 26 April 2003; pp.
110–117. [CrossRef]

21. Yi, J.; Xu, W.; Chen, Y. Novel back propagation optimization by cuckoo search algorithm. Sci. World J. 2014, 2014, 1–8. [CrossRef]
22. Nawi, N.M.; Khan, A.; Rehman, M.Z. A new back-propagation neural network optimized with cuckoo search algorithm. In

Computational Science and Its Applications—ICCSA 2013, 7971; Murgante, B., Misra, S., Carlini, M., Torre, C., Nguyen, H.-Q., Taniar,
D., Apduhan, B.O., Gervasi, O., Eds.; Springer: Berlin/Heidelberg, Germany, 2013. [CrossRef]

23. Ziane, K.; Zebirate, S.; Khan, A.; Ilinca, A. A cuckoo search based neural network to predict fatigue life in rotor blade composites.
J. Mech. Eng. Sci. 2020, 14, 6430–6442. [CrossRef]

http://doi.org/10.2514/6.2000-57
http://energy.sandia.gov/
http://doi.org/10.2514/6.1999-24
http://doi.org/10.1177/0309524X16641849
https://docplayer.fr/12968847-Eco-conception-et-developpement-des-pales-d-eoliennes-en-materiaux-composites.html
https://docplayer.fr/12968847-Eco-conception-et-developpement-des-pales-d-eoliennes-en-materiaux-composites.html
http://doi.org/10.2514/6.2010-2820
http://doi.org/10.2514/6.2009-2411
http://doi.org/10.1016/S0263-8223(00)00179-3
http://doi.org/10.1016/j.ijfatigue.2006.03.004
http://doi.org/10.1615/CompMechComputApplIntJ.v6.i4.50
http://doi.org/10.1109/ICNN.1995.488968
http://doi.org/10.1016/j.amc.2006.07.025
http://doi.org/10.1109/NABIC.2009.5393690
http://doi.org/10.1007/978-3-662-49014-3_10
http://doi.org/10.1016/j.compstruct.2018.05.139
http://doi.org/10.1109/SIS.2003.1202255
http://doi.org/10.1155/2014/878262
http://doi.org/10.1007/978-3-642-39637-3_33
http://doi.org/10.15282/jmes.14.1.2020.18.0503

	Introduction 
	Hygro-Thermo-Mechanics of Wind Turbine Blades 
	Data and Method 
	Fatigue Data 
	Backpropagation Neural Network BPNN 
	Particle Swarm Optimization PSO 
	Cuckoo Search Algorithm 
	Data Preparation 

	Proposed Hybrid Models for Fatigue Life Prediction 
	PSO-Based ANN 
	CS-Based NN (CSNN) 

	Results and Discussion 
	Conclusions 
	References

