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Abstract: At the initial phases of tunnel design, information on rock properties is often limited. In
such instances, the engineering classification of the rock is recommended as a primary assessment
of its geotechnical condition. This paper reviews different rock mass classification methods in the
tunnel industry. First, some important considerations for the classification of rock are discussed,
such as rock quality designation (RQD), uniaxial compressive strength (UCS) and groundwater
condition. Traditional rock classification methods are then assessed, including the rock structure
rating (RSR), rock mass rating (RMR), rock mass index (RMI), geological strength index (GSI) and
tunnelling quality index (Q system). As RMR and the Q system are two commonly used methods, the
relationships between them are summarized and explored. Subsequently, we introduce the detailed
application of artificial intelligence (AI) method on rock classification. The advantages and limitations
of traditional methods and artificial intelligence (AI) methods are indicated, and their application
scopes are clarified. Finally, we provide suggestions for the selection of rock classification methods
and prospect the possible future research trends.

Keywords: rock structure rating (RSR); rock mass rating (RMR); rock mass index (RMI); geological
strength index (GSI); tunnelling quality index (Q system); machine learning (ML)

1. Introduction

Underground structures have a long history of development. In the past, due to the
limited understanding of soil and rock properties, underground engineering was mainly
conducted by experience [1]. The geotechnical situation and historical cases are highly
relied upon and have served as reference models for subsequent projects [2]. In this
condition, rock classification methods are developed as guidance for evaluating excavation
operations and support requirements of subsurface constructions. Rock mechanics have
made great advances in recent decades, and numerical simulation is accepted for tunnel
modelling widely. However, the complex nature of rock mass has not been clarified and
knowledge about the constitutive model of rocks is still poor. With the shortcoming that
the numerical model is time-consuming and inconvenient to employ at construction sites,
tunnel construction companies prefer to employ empirical methods. This means empirical
methods still make contributions to identifying rock types and play a significant role in
tunnel design [3].

Empirical rock classification methods are based on observation, experience and per-
sonal judgement. It divides different kinds of rocks into several catalogues. A particular
rock mass is separated into a group with other rocks that have similar features. Original
rock classification gave a description of rock mass according to observation only. Later,
updated empirical methods involve more rock characteristics and experimental test pa-
rameters. Some important rock parameters are considered, such as the rock integrity,
the compressive strength of rock mass, orientation of joints, discontinuities spacing and
groundwater condition [2]. Due to the simplicity and convenience of the rock classification
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index, it has gained popularity in many geotechnical engineering projects including slope
stability, tunnelling and mining excavation. Although these rock classification schemes
cannot replace detailed design procedures, they offer fundamental evaluation of rock be-
haviours and required support approaches [4]. According to Harrison and Hudson [5],
empirical rock mass classification schemes mainly include the rock mass rating (RMR),
rock structure rating (RSR), rock mass index (RMI), geological strength index (GSI) and
tunnelling quality index (Q System).

The development of machine learning (ML) has provided a new way for rock mass
classification. Instead of relying on human judgement and qualitative observations, which
can be influenced by subjective biases and lead to inconsistent results, ML can analyse large
amounts of data to identify rock mass characteristics automatically. This not only enhances
the accuracy of classifications but also offers a scaleable and consistent approach. With
the increasing availability of data from geological surveys, sensors and imaging tools, ML
models can be trained to recognize intricate patterns and nuances that might be overlooked.
The utilization of ML for discerning underground materials has been used in the mineral
exploration field. By employing advanced algorithms, vast geological datasets can be analysed
and potential mineral-rich zones can be predicted effectively. Another promising application of
ML in the field of geotechnical engineering and mining is its potential to predict hazards, for
example, rockburst. Rockburst is a violent discharge of built-up stress within a rock mass, posing
significant safety risks in mining and tunnelling operations [6–9]. Traditional anticipation
of rockburst depends on in situ observation and analysis of diverse geophysical and
geotechnical indicators. However, the complex nature of the factors that lead to rockburst
makes the prediction challenging. By analysing the data from sensors monitoring seismic
activities, rock deformations and other pertinent parameters, ML can detect subtle patterns
that might indicate rockburst with high accuracy [7,9]. Some researchers also use ML to
evaluate rock components as well as rock mechanics parameters, such as permeability,
shear strength and the elastic modulus of rock. The results obtained from ML are consistent
with those of laboratory tests [10].

In this paper, different empirical rock classification methods are reviewed and dis-
cussed. Special attention is then paid to investigate the application of ML techniques in rock
mass classification. The benefits, drawbacks and employment scopes of these methods are
illustrated. Finally, a comprehensive discussion is concluded and future research directions
are suggested.

2. Crucial Factors in Current Rock Mass Classification Systems
2.1. Rock Quality Designation (RQD)

In the exploration stage of tunnels that are built within rock, the ground condition is
commonly obtained by drilling boreholes. RQD, developed by Deere et al. [11], provides a
quantitative evaluation of rock integrity from a borehole. It is defined as the ratio between
intact core pieces longer than 100 mm and the total length of the core. The description of
RQD is shown in Figure 1.

RQD is an important component in RMR and the Q system, which represents the
quality of rock mass at a construction site. During the drilling process of boreholes, care
should be taken to avoid the occurrence of cracks in the core. Those fractures caused by the
drilling operation should be recognized during analysis of the progress. It means that when
calculating RQD values, manual manipulation-contributed fissures should be ignored. The
core sample is suggested to be obtained by double-tube core barrels with a diameter of at
least 54.7 mm [2].

When there is no core available but discontinuity traces can be identified on the
exposed surface, the RQD value can be estimated by the number of discontinuities per unit
volume [12]. As RQD is evaluated from a borehole, its value depends on the orientation
of drilling. The application of a volumetric joint count can mitigate the variation of RQD
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due to a directional influence. The formula recommended by Palmstrom [12] is shown in
Equation (1).

RQD = 115 − 3.3Jv (1)

where Jv is the total number of joints per unit length for all discontinuity, which is known
as volumetric joint count.
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On the other hand, Priest and Hudson [13] recommended utilizing a negative expo-
nential distribution to describe the relationship between RQD and mean discontinuity
frequency per meter (λ), as shown in Equation (2).

RQD = 100e−0.1λ(0.1λ+ 1) (2)

Each of these methods plays a crucial role in geological and geotechnical engineering,
offering different perspectives on rock mass quality. While core logging is great for quick
assessments and is widely accepted, it has limitations in terms of detailed analysis. The
Jv method from Palmstrom [12] offers a more in-depth understanding but is complex
and data-intensive. The λ method is relatively simple but lacks comprehensiveness in
evaluating rock mass quality. The choice of method depends on the specific requirements of
the project, available data and the level of detail needed. More information on the benefits
and limitations of each method is listed in Table 1.
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Table 1. Advantages and disadvantages of different RQD techniques.

Methods Advantages Limitations

Core logging 1. Widely accepted and standardized,
making it a common approach;

1. Lacks sensitivity in highly fractured
and weathered rock;

2. Easy to calculate; 2. Fails to consider the orientation
of joints;

3. Useful for quick assessment of rock
quality and correlating with other rock
mass classification systems.

3. Can be influenced by dilling
operations and equipment quality.

Jv method from Palmstrom [12]
1. Provides a more comprehensive
understanding of rock mass, including
fracture properties;

1. Requires detailed field data, which
means it is complex and time costing.

2. More accurate in heterogeneous or
highly jointed rock masses.

λ method from Priest and Hudson [13]
1. Offers simple measurement of joint
frequency, providing clear data on one
aspect of rock mass behaviour;

1. Does not consider the joint orientation
or other aspects of rock mass, such as
infill materials;

2. Useful in preliminary design stages. 2. It is not sufficient for detailed
design work.

2.2. Uniaxial Compressive Strength (UCS)

UCS refers to the load that a rock specimen can withstand per unit area when it is
compressed in one direction until failure. A UCS test is commonly conducted on a trimmed
cylindrical core sample with a ratio of 2.0–2.5 between length and diameter. The sample is
loaded along the centre-line direction at a loading rate of 0.5–1.0 MPa/s. The UCS value is
the maximum axial compressive stress before the core sample fails. It has been adopted
that the tests should be carried out several times and the average value taken. Sometimes
it is difficult to perform a uniaxial compression test at a construction site appropriately
since the test machine has a relatively complex structure. In this case, a point load test is
suggested to determine the strength of rock mass [3]. Further, the Block Punch Index test
(BPI) is proposed to avoid the defect of the point load test, namely that it cannot effectively
test rock blocks with frequently spaced weak planes. According to Van Der [14], there is a
linear relationship between BPI and UCS values (Equation (3)). Ulusay and Gokceoglu [15]
further modified the UCS–BPI relationship through regression analysis; the developed
formula is shown in Equation (4).

UCS = 6.1BPI − 3.3 (3)

UCS = 5.5BPI (4)

Another technique is the Schmidt hammer. It provides a rapid method for evaluating
the mechanical properties of rock by assessing surface hardness [16]. The hammer hits the
rock surface with a predetermined energy. Its rebound extent is indicative of the hardness
of the material, with the rebound value being recorded by the device. By reference to a
conversion chart, the rebound value can be used to determine the compressive strength of
rock [17–20]. During the test, it is important to ensure that the hammer axis is perpendicular
to the specimen surface to minimize variations that occur from oblique impacts or eccentric
contact of the plunger tip with the test surface [16]. In addition, this technique should be
carefully used in weak rock conditions since hammering would lead to the development
of microcracks inside the specimen, which contribute to a reduction in rock strength. For
more details, refer to Aydin and Basu [16].

2.3. Groundwater Condition (GW)

The impact of groundwater on rocks is multifaceted. It can soften rocks and increase
instability risk. For example, groundwater can cause erosion of rock since it contains dis-
solved substances, such as dissolved oxygen and carbon dioxide. The flow of groundwater
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can carry away particles from joints in rocks. In cold regions, groundwater seeps into cracks
in rocks. When the temperature drops, groundwater freezes, and the volume expands,
exerting large pressure on rocks. This freeze–thaw cycle can cause crumbling of rock and
even flaking off.

2.4. Excavation Method (EM)

The traditional tunnel excavation method is blasting and digging. The process involves
drilling bores at the designated position of excavation, planting and detonating explosives
and then removing debris from the tunnel construction site. Generally, the combination
of reinforced mesh shotcrete support and anchor is adopted as the primary support in
most cases. This tunnel excavation method disturbs the state of the stratum inevitably and
can cause damage to surrounding rock due to the impact of blasting. Thus, the explosive
strength should be controlled to reduce its negative influence.

In recent decades, the tunnel boring machine (TBM) has been developed as a time-
saving and effective method for the excavation of underground space. The TBM is pushed
forward along the axis line of tunnel during the excavation process. With a circular cross
section, it uses a rotating cutterhead to break rocks and transfers debris back for removal.
A rotating shield is employed for support of the excavated tunnel surface until the final
lining is installed in place. Tunnelling with a TBM is gentle, and it has less distribution to
surrounding rock.

3. Empirical Rock Identification Methods
3.1. Rock Structure Rating (RSR)

The rock structure rating method was proposed by Wickham et al. [21]. It is a quanti-
tative approach that describes the quality of rock masses. Recommendations are provided
for the selection of appropriate underground support. As the first relatively complete rock
classification system, the main contribution of RSR is that it presented a rating schedule for
rock masses [2]. There are two main factors considered in RSR, which are geological param-
eters and construction parameters. The geological factors include rock type, joint spacing,
major faults, groundwater condition and so on, while construction parameters involve
construction method, drive direction and tunnel size. These factors are summarized into
three parameters: A, B and C. By rating each component and summing the weighted values
of individual parameters, it obtains a numerical value defined as RSR = A + B + C. The
maximum RSR value is 100. Detailed information about RSR can be found in Appendix A.
It is noted that RSR was originally developed with respect to selecting a suitable steel rib
support for rock tunnels. Most case histories are based on small tunnels supported by a
steel rib. For a shotcrete and rock bolt support, the application of RSR is insufficient [2].

The expression of three parameters is listed below.

1. Parameter A. General evaluation of rock masses:

a. Rock type origin;
b. Rock hardness;
c. Geologic structure.

2. Parameter B. The pattern and orientation of discontinuity:

a. Joint spacing;
b. Joint orientation;
c. Tunnel drive direction.

3. Parameter C. Groundwater inflow and joint condition:

a. Overall quality of rock mass by combining parameter A and B;
b. Joint condition;
c. Amount of water inflow.
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3.2. Rock Mass Rating (RMR)

The rock mass rating system, which was first introduced by Bieniawski [22], has been
established over 50 years. It was originally developed for estimating support requirements
during tunnel excavation. A rock mass consists of blocks and various discontinuities, such
as joints, planes and faults. RMR involves some important characteristics of rock masses
and divides a particular rock mass into groups of similar behaviours.

Over the years, RMR has been modified many times based on case studies. In the 1973
version of the RMR system, eight parameters are taken into consideration for classifying a
jointed rock mass. Each parameter comprises five rating stages. According to Aksoy [3],
the first RMR version aims to evaluate the stability of an unsupported tunnel section in
weak rock with water exposure. In a soft rock region, large deformation of ground may
occur during tunnel excavation, which poses a threat to the safety of the construction site.
The stable period of the unsupported underground opening can be evaluated by RMR. As a
result, the approximate maximum span between the tunnel face and a supported section can
be assessed, and the risk can be managed effectively. In 1974, the RMR system was revised
by Bieniawski. Three modification parameters were reviewed, including deterioration,
joint span and continuation parameters. These three parts are summarized in the unit of
discontinuity condition with modified rating points, as shown in Table 1. Therefore, the
number of rating parameters decreased from eight to six. Bieniawski modified the RMR
system again in 1976; the selection of tunnel support, which is 10 m wide with a horseshoe
shape, was added. Under this guidance, the shotcrete thickness was reduced, and the
rock bolt length was shortened. RMR was further optimized in 1979; the score ranges
for the discontinuity condition and groundwater were adjusted. Until 1989, there was no
significant variation regarding RMR. The 1989 version of RMR, known as RMR1989, is the
most common worldwide rock classification reference (see Appendix B). Since parameter
score figures were developed, the imperfection of RMR has been partly alleviated. The 2013
RMR version gave a new design chart for tunnel support, including rock bolt, shotcrete and
steel ribs while squeezing ground and rockbursting conditions are considered. Construction
of an ideal tunnel shape and secondary liners was proposed based on the RMR range. In
2014, RMR was updated with three adjustment parameters taken into consideration, which
are tunnel axis orientation, excavation method and stress–strain behaviour, separately.

As can be indicated from Table 2, six parameters are considered for classifying rock
masses from 1974 to 2011. The six parameters are intact rock strength (UCS), rock quality
designation (RQD), joint spacing (JS), joint surface condition (JC), groundwater condition
(GW) and rating adjustment parameters (RA). The RMR value is the sum of ratings assigned
to these six parameters, which varies from 0 to 100 linearly.

The RMR system is simple to employ for identifying rock types and the required infor-
mation can be obtained by boreholes. It has been applied in many projects, such as tunnel
construction, hard rock mining, slope stability and bearing capacity of foundations [2].
There are also some restrictions related to the RMR system. First, RMR relies on field
observations and experiences seriously, which may result in oversafe or unsafe judgements.
The support system tends to be conservative, which contributes to overdesign and high
budget [2]. Second, RMR fails to classify complex rock mass types sufficiently, such as
a mélange rock mass [3]. When the rock mass contains multiple components combined
with blocks and joints, it is difficult to find the appropriate group by RMR. Rehman [4]
also indicated that the support methods provided by RMR are not applicable in high-stress
or time-dependent ground situations. In addition, the range of classes is limited, which
restricts the accuracy of RMR. Setting a narrower interval for weak rock can improve the
accuracy of rock classification. For example, soft rocks are considered in three aspects
currently, including fractured rock, weathered rock and general soft rock, such as shale
and clay-bearing rock. Limited rating points are available for these weak rocks that require
special attention during geotechnical construction. Refinement of rock classification in the
very poor catalogue of RMR can improve accuracy and optimize support methods.
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Table 2. Considered factors and their ratings in different versions of the RMR system.

Parameter
Year

1973 1974 1975 1976 1979 1989 2011 2013 2014

UCS 0–10 0–10 0–15 0–15 0–15 0–15 0–15 0–15 0–15
RQD 3–16 3–20 3–20 3–20 3–20 3–20 0–20 -- --

JS 5–30 5–30 5–30 5–30 5–20 5–20 0–20 -- --
DD -- -- -- -- -- -- -- 0–40 0–40

S 1–5 -- -- -- -- -- -- -- --
CJ 0–5 -- -- -- -- -- -- -- --
W 1–9 -- -- -- -- -- -- -- --
JC -- 0–15 0–25 0–25 0–30 0–30 0–30 0–30 0–20

GW 2–10 2–10 0–10 0–10 0–15 0–15 0–15 0–15 0–15
A -- -- -- -- -- -- -- -- 0–10
Fo 3–15 3–15 0–(−12) 0–(−12) 0–(−12) 0–(−12) 0–(−12) 0–(−12) 0–(−12)
Fe -- -- -- -- -- -- -- -- 1–1.32
Fs -- -- -- -- -- -- -- -- 1–1.3

UCS means uniaxial compressive strength of intact rock (MPa); RQD is rock quality designation (%), JS means
joint spacing (mm); DD means discontinuity density (joints per meter); S means separation of joints (mm); CJ
means continuity of joints (m), W means weathering level; JC is condition of joints; GW is groundwater situation;
A is alterability (%), Fo , Fe, Fs are adjustment parameters.

3.3. Mining Rock Mass Rating (MRMR)

Later, Kendorski et al. [23], Laubscher [24] and Laubscher and Page [25] developed
a modified rock mass rating system for mining named mining rock mass rating (MRMR).
They illustrated that the condition of mining is different from that of a general tunnel.
The deformation of the excavation cave and the settlement of the ground surface can be
tolerated in mining industry, which means the design of a support system according to an
RMR standard may lead to high investment. In other words, since tunnel convergence does
not need to be strictly controlled in mining, a support design based on an RMR standard
tends to be conservative. In this case, MRMR is proposed to make rock classification more
suitable for mining application.

MRMR takes the basic values of RMR and adjusts them further according to the
mining environment. The fundamental difference between RMR and MRMR is the rating
standard of rock mass quality. For example, in mining conditions, high stress and stress
concentration may be significant and cannot be neglected. Other adjustment factors such
as weathering, joint orientation and blasting effects are introduced in MRMR. Associated
with evaluated MRMR values, support recommendations are proposed. Details of MRMR
can be found in Appendix C.

3.4. Tunnelling Quality Index (Q System)

Based on 212 underground excavation case histories, rock tunnel quality index (Q
system) was established by Barton et al. [26]. This rock classification system aims to evaluate
rock mass characteristics and tunnel support requirements. It groups rock masses into nine
classes and involves 38 support categories [2]. Compared with RMR, the Q system also
takes six parameters into consideration. Although the Q system has similar parameters to
the RMR scheme, their functional values and interpretation are different. Both consider
RQD and groundwater factors, but the Q system also involves joint roughness, joints filling
and rock load, which are missed in the RMR system. The definition of the Q value is shown
in Equation (5).

Q =
RQD

Jn
× Jr

Ja
× Jw

SRF
(5)

where RQD is rock quality designation, Jn is the joint set number, Ja is the joint alteration
number, Jr is the joint roughness number, Jw is the joint water reduction factor, and SRF is
the stress reduction factor. For the value of each parameter, refer to Appendix D.
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According to Barton et al. [26], the first item RQD/Jn represents rock mass structure
and block size, while the second item Jr/Ja indicates the roughness and frictional behaviour
of joints (shear strength of joints). When rock joints are filled with clay, the strength of rock
reduces. For the third quotient Jw/SRF, Jw is a measure of water pressure and SRF means
rock stress in competent rock and loosening load of weakness rock. Since water may cause
softening of clay-filled joints and decrease effective normal stress, it has a negative influence
on shear strength of rock mass. Barton et al. [26] reported that since joint orientation is less
important than Jr, Jn and Ja it can be ignored in order to generalize the application of this
rock classification method. The range of the Q value is from 0.001 to 1000 on a logarithmic
scale [2].

There are some challenges relevant to the Q system. According to Palmstrom and
Broch [27], the Q system fails to provide sufficient support in high-flow conditions. The
employment of SRF is not clear for squeezing and buckling ground environment [28]. For
example, in case of squeezing rock, the SRF range cannot reflect the effects of squeezing
effectively as a result of insufficient case records. Large excavation project in squeezing
ground is unsuitable for use with the Q system [29]. Additionally, the Q system is not
applicable in very weak rock cases [30]. Its appropriate application scope is that the Q
value is in the range of 0.1–40 [31].

3.5. Rock Mass Index (RMI)

In civil engineering, one of the most important parameters of construction materials is
their strength. RMI was developed by Palmstrom [32] for the purpose of rock mass strength
characterization. The expression of RMI is listed in Equation (6). It employs joint features,
block volume and compressive strength of intact rock as input to describe rock mass
characteristics. RMI takes the assumption that rock mass is a non-homogeneous material,
and joints intersecting a rock mass can reduce its strength. Hoek et al. [33] indicated that
the strength of rock mass is dominated by the block shape and size, as well as the rock
surface characteristics, such as intersecting joints. During the tunnel excavation process, the
impact can cause the rock mass to break up into blocks. According to Palmstrom [32], block
dimensions also depend on joint spacing and joint set numbers. Other potential planes and
individual discontinuities can influence the shape and size of the rock block further [34].

From tests results and engineering experiences, Palmstrom [32] proposed the relation-
ship between the jointing parameter (JP), joint condition (JC) and block volume (Vb), as
shown in Equation (7).

RMI = UCS × JP (6)

JP = 0.2 ×
√

JC × VbD (7)

D = 0.37 × JC−0.2 (8)

JC = JR × JL/JA (9)

where UCS is the uniaxial compressive strength of intact rock (MPa), measured on 50 mm
samples; JP is jointing parameter composed of joint condition factor (JC) and block volume
(Vb), which varies from 0 (for crushed rock mass) to 1 (for intact rock). JR is joint roughness
factor, JA is joint alteration factor, and JL is joint size and continuity factor. Their values
can refer to Appendix E.

RMI shares some similar parameters with the Q system; for example, JR and JA are
almost the same as that of Jr and Ja in the Q system. However, RMI involves more variables
and has a wider scope of rock mass variations than RMR and the Q system [34]. The
parameter Vb is determined by site observation or borehole information. It characterizes
the number of joint sets, joint spacing and other potential or random discontinuities. Since
RMI is assembled by real block volume, joint situation and rock mass strength, it improves
the use of geological data [35]. Moreover, measuring block volume is more convenient and
accurate than that of joint density at a construction site [35]. However, the RMI method has
limitations regarding its accuracy. The value of the jointing parameter (JP) is composed of
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the joint condition factor (JC) and the block volume (Vb). JC is determined by the joint
roughness factor (JR), joint alteration factor (JA) as well as the joint size and continuity
factor (JL). The evaluation of various factors (JR, JL, JA) and the size of samples may
be inaccurate in the case of having small number of blocks, which can cause error in the
expression of JP. Furthermore, the combination of these parameters that vary in range can
enlarge the error.

3.6. Geological Strength Index (GSI)

In a very weak and fragile rock environment, the rock mass may have an RQD value
of zero, meaning that in such a case the behaviour of rock is similar to that of soil. Since the
RMR, Q and RMI systems employed RQD as input parameters, they are less applicable
for the classification of rock in a poor and highly jointed rock mass environment [31].
Hoek et al. [36] proposed a new rock classification approach to overcome the perceived
limitation, called Geological Strength Index (GSI). Without considering RQD, GSI is suitable
for an environment with a very weak rock mass. It assumes that rock mass is isotropic
material and the behaviour of rock mass does not depend on the direction of the applied
load [31,37]. Numerical tools are applied for tunnel analysis nowadays; however, infor-
mation about rock characteristics surrounding tunnels is required to build up the analysis
model. As an empirical prediction index, GSI can evaluate the quality and deformability of
rock mass with limited test data and site characterization information. The estimated rock
mass properties and discontinuity features provide reliable input information for numerical
analysis. This means once the value of GSI is determined, it is employed in some empirical
equations to calculate rock mass properties, such as deformation modulus, Poisson’s ratio
and compressive strength. Under the condition of RMR < 15, the relationship between
RMR and GSI can be expressed in an equivalency as GSI = RMR − 5 [38].

In addition, Cai et al. [39] and Cai et al. [40] employed the joint surface condition
factor Jc and block volume Vb to calculate the GSI value (see Equation (10)). Through
numerical simulations of laboratory tests, they investigated residual strength behaviours of
rock masses. As a result, the GSI value is adjusted from peak value to residual value.

GSI =
26.5 + 8.79lnJc + 0.9lnVb

1 + 0.0151lnJc − 0.0253lnVb
(10)

Based on RQD evaluation and the theory proposed by Barton et al. [26], Hoek et al. [41]
introduced a new representation of GSI, as shown in Equation (11). The original GSI chart
was modified in terms of uniformity and quantification.

GSI =
52Jr/Ja

(1 + Jr/Ja)
+

RQD
2

(11)

In summary, GSI estimates rock mass strength by the Hoek–Brown criterion, especially
for very poor rock masses. Compared with other methods, such as RMR and the Q system,
GSI does not cover the design of the support system, which means its only function is rock
mass characteristics estimation [37]. There are some other limitations of GSI. For example,
GSI should be used with caution when facing brittle fracture in strong rocks with a GSI
value larger than 75 and the condition when GSI value is less than 30 [42]. In addition,
GSI is not effective in dealing with tectonically disturbed rock masses having destroyed
structural fabric [31,37]. For other conditions such as rock mass with clearly defined
dominant structural orientation as well as excavation face with hard rock that has few
discontinuities, GSI is not suggested to be used [31,37,42]. The reason in this situation is that
the rock mass cannot be regarded as isotropic material, and the failure criterion of rock mass
may be governed by the three-dimensional geometry of discontinuities. For example, in a
tunnel project in hard rock with great depth, the failure model of rock mass is dominated
by brittle fractures. As a result, GSI is not employable. In a tunnel excavation process,
blasting strength should be controlled since it may create new discontinuities and disturb
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the original stage of rock mass. Assessing the GSI of rock mass due to blasting damage will
suffer from conservative results. This problem is less important for the excavation process,
which is conducted by tunnel boring machine (TBM).

3.7. Relationship of Q System and RMR

RMR and the Q system are two main methods used for rock classification and support
evaluation in tunnel engineering. Both systems employ geometric, geological and engi-
neering practice to arrive at a quantitative value to represent the quality of rock mass. The
consideration of factors that may influence the behaviour of rock is similar. Some slight
differences exist, such as rock mass strength factor. RMR applies uniaxial compressive
strength (UCS) of rock as input but the Q system considers the stress of competent rock
at the site only. RMR applies the addition of the ratings, while the Q system employs
multiplication and division. The application of parameters is also distinct, each carrying its
own level of significance or weighting.

Many researchers have tried to find a mathematical expression of the relationship
between RMR and the Q system. Various regression approaches are investigated. According
to the coefficient of determination

(
R2), they demonstrated that an approximate linear

relationship existed between the RMR value and lnQ (as shown in Table 3). Based on
the formulas in Table 2, a new expression of the relationship between RMR and lnQ is
proposed through linear regression (see Equation (12)).

RMR = 6.04lnQ + 47.38 (12)

Table 3. Review of the relationship between RMR and Q value.

Formula Description Reference

RMR = 9lnQ + 44 -- [43]
RMR = 5.9lnQ + 43 RMR = 13.3logQ + 43 [44]
RMR = 5lnQ + 60.8 From in situ data [45]

RMR = 4.6lnQ + 55.5 From bore core data [45]
RMR = 5.4lnQ + 55.2 RMR = 12.5logQ + 55.2 [46]

RMR = 10.5lnQ + 41.8 -- [47]
RMR = 7.5lnQ + 42 -- [48]

RMR = −9.19lnQ + 43.89 -- [49]
RMR = 5.3lnQ + 50.81 RMR = 12.11logQ + 50.81 [50]
RMR = 6.3lnQ + 41.6 -- [51]

RMR = 8.7lnQ + 38 ± 18 Probability theory [51]
RMR = 10lnQ + 39 -- [52]
RMR = 6.8lnQ + 42 -- [53]

RMR = 10.3lnQ + 49.3 Q ≤ 1, SRF = 1 [54]
RMR = 6.2lnQ + 49.2 Q > 1, SRF = 1 [54]
RMR = 6.6lnQ + 53 Q ≤ 0.65 [54]

RMR = 5.7lnQ + 54.1 Q > 0.65 [54]
RMR = 7lnQ + 36 -- [55]

RMR = 4.2lnQ + 50.6 -- [56]
RMR = 5.97lnQ + 49.5 -- [57]
RMR = 4.7lnQ + 56.8 -- [58]
RMR = 8.3lnQ + 42.5 SRF = 1 [58]
RMR = 6.4lnQ + 49.6 Revised SRF values [58]
RMR = 3.7lnQ + 53.1 -- [59]

RMR = 8.15lnQ + 44.88 -- [60]
RMR = 42.87Q0.162 -- [60]

RMR = 4.52lnQ + 43.6 -- [61]
RMR = 5.614lnQ + 49.39 -- [62]
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4. Overview of Machine Learning Methods
4.1. Introduction to Different Machine Learning Methods
4.1.1. Fuzzy Algorithm (FA)

FA is a class of computational methods based on fuzzy logic, designed to address
problems involving uncertainty and imprecise information. The core concept of fuzzy
algorithms originates from fuzzy set theory, allowing the handling of problems that are
not easily described using precise numbers or binary logic (yes/no). In fuzzy algorithms,
data and conditions are often represented using fuzzy sets and membership functions,
enabling reasoning and decision-making in uncertain or fuzzy environments. Fuzzy sets
allow elements to have the characteristics of partially belonging or not belonging to a set,
which is different from traditional binary set theory, in which elements either completely
belong to a set or do not belong to a set at all. The membership function is used to quantify
the degree to which an element belongs to a fuzzy set. Adaptive Neuro-Fuzzy Inference
Systems (ANFIS) combine the characteristics of fuzzy logic and neural networks, offering
enhanced adaptability and learning capabilities. Its core concept involves modelling with
fuzzy rules and then using a neural network to automatically adjust rule weights and
membership functions to better fit the provided data. As a result, ANFIS can handle more
complex problems, such as ambiguous data or non-linear systems.

4.1.2. Artificial Neural Network (ANN)

An ANN is designed based on the structure of the animal brain. It has the capacity
to learn patterns and uncover non-linear relationships between input and output vari-
ables through training and validation processes. ANNs consist of a network of simple
information-processing units known as neurons. The arrangement of these neurons de-
termines the architecture of an ANN. Each neuron’s output serves as input for the next
layer of neurons. ANN training involves iteratively adjusting weights until the error be-
tween predicted values and actual measurements is minimized, allowing for continuous
improvement in accuracy through multiple iterations.

There are mainly three layers in the structure of an ANN, named input layer, hidden
layer and output layer. The input layer is the first layer of an ANN, which receives external
data. In this layer, each neuron represents a feature in the dataset. For example, in an
image-recognition task, each neuron might correspond to a pixel value. The main role of the
input layer is to pass raw data into the network for further processing by subsequent layers.
These neurons typically do not perform any calculations and merely serve as delivery
points for data. The hidden layer is located between the input layer and the output layer
and is the most critical part of an ANN. They are responsible for extracting and learning
features from input data. In the hidden layer, neurons start to process the weighted sums
of the input data and transform these weighted sums through activation functions (such as
Sigmoid, ReLU, etc.). An ANN can have multiple hidden layers, and each hidden layer
can contain a different number of neurons. The number and size of hidden layers is a key
determinant of model complexity. The output layer is the last layer of an ANN and is
responsible for producing the final prediction results. In classification tasks, the number of
neurons in the output layer usually corresponds to the number of categories. The neurons
in the output layer are also processed by weighted sums and activation functions, and their
output values vary depending on the specific task. For example, it may be a continuous
value in a regression task, or it may be a probability distribution in a classification task.
A distinctive feature of an ANN is its high degree of parameterization, which enables it
to capture complex patterns and non-linear relationships in data. This makes ANNs very
effective in fields as diverse as image recognition, speech processing, predictive modeling,
and so on. However, this also means that ANNs require a large amount of data for training,
and the interpretability of ANNs is relatively weak.
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4.1.3. Decision Trees (DTs) and Random Forest (RF)

DTs are versatile tools used for both regression and classification problems. They are
often preferred for their interpretability, as they pose questions in a straightforward and
understandable manner. DTs can also handle data with missing features. However, a DT is
prone to overfitting problems, especially when dealing with complex or large-scale datasets.
RF extends the capabilities of DTs by aggregating multiple decision trees into a single
output to overcome this issue. In an RF, each tree is trained independently, and randomness
is introduced during the training process. This randomness is mainly reflected in two
aspects: (1) random sampling of data—RF randomly samples the training data (usually
using bootstrap sampling) to generate a different training subset for each tree; (2) random
selection of features—at each split point of the decision tree, the RF randomly selects a part
of features from all features as candidate features, which increases the difference between
trees. In a word, RF effectively mitigates the issue of overfitting and increases the capacity
to process larger datasets.

4.1.4. Support Vector Machine (SVM)

SVM is a supervised learning algorithm used for various classification and regression
tasks. SVM aims to maximize the margin between two classes by defining a hyperplane
at the centre of the widest margin. This hyperplane serves as the decision boundary for
sample classification, with its position determined by the closest data points. In the simple
case of linear classification, this hyperplane is a straight line or plane, but in more complex
cases, SVM uses the so-called “kernel” to map the data into a higher-dimensional space to
find a way to effectively segment the data of the hyperplane. Common employed kernels
include linear, sigmoid, polynomial and radical basis functions. Choosing appropriate
kernel functions and parameters is crucial to the performance of the model. An important
feature of SVM is that its optimization goal is not only to maximize the margin but also to
minimize the classification error. This is achieved by introducing slack variables, which
allow certain data points to violate boundary decision rules, thus providing more flexible
classification capabilities. SVM is more suitable for the classification problems of small and
medium-sized complex datasets since it may take a long time to train large datasets with
complex features.

4.1.5. Convolutional Neural Network (CNN)

CNN is a feed-forward artificial network with a remarkable capability to automatically
identify significant features, making them highly accurate in image recognition and classifi-
cation. Typical CNN architectures comprise various layers, including input, convolutional,
activation, pooling, dropout and output layers. These layers are interconnected, akin to
neurons in a biological brain. The input layer receives the original image data as input into
the network. The convolutional layer is the core part of CNN, used to extract features in
images. Through convolution operations, these layers can capture features of small regions
in the image. In the activation layer, a non-linear activation function (such as ReLU) is used
to increase the non-linearity of the network so that it can learn more complex features. The
pooling layer, also called subsampling layer, is used to reduce the spatial dimension of
the feature map and decrease the number of parameters and computational complexity
while maintaining important features. The dropout layer is used to prevent overfitting and
increase the generalization ability of the network by randomly discarding the activations
of some neurons. The output layer is a fully connected layer generally used to output the
final classification results or the output of other tasks. The collaborative functioning of
these layers enables CNNs to excel in image recognition and classification tasks, effectively
processing and interpreting complex visual data.
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4.2. Performance Evaluation Metrics in Machine Learning

Machine learning methods are often perceived as ‘black-box’ techniques due to their
opaque internal processes. Consequently, performance evaluation becomes crucial to assess
model validity and accuracy. Commonly employed evaluation metrics are listed below.

4.2.1. Pearson Correlation Coefficient (R)

The Pearson correlation coefficient (R) assesses the linear relationship between mea-
sured and predicted data. It quantifies the strength and direction of the relationship,
with values ranging from −1 to 1, reflecting the degree of correlation between input and
output variables.

R =
n∑n

i=1 xiyi − ∑n
i=1 xi∑n

i=1 yi√
∑n

i=1 xi
2 − (∑n

i=1 xi)
2
√

∑n
i=1 yi

2 − (∑n
i=1 yi)

2
(13)

where xi is the value of input variable, yi is the value of output variable, and n means the
total number of events considered.

4.2.2. Coefficient of Determination (R2)

The coefficient of determination (R2) quantifies the comparability between predicted
and observed values. It represents the proportion of variance in the dependent variable
explained by the model. R2 values closer to 1 indicate a better model fit.

R2 = 1 − ∑n
i=1

(
yi − y∗i

)2

∑n
i=1(yi − y)2 (14)

where yi represents the ith measured value, y*
i means the ith predicted value, and y is the

mean value of the measured values.

4.2.3. Variance Accounted for ((VAF)

Variance accounted for (VAF) measures the proportion of variance in the dependent
variable explained by the regression model. It is calculated as a percentage, with 100%
indicating a perfect model fit.

VAF =

[
1 −

var
(
yi − y∗i

)
var(yi)

]
× 100% (15)

4.2.4. Mean Square Error (MSE)

Mean square error (MSE) quantifies the deviation of predicted results from mea-
sured results by averaging the squared differences. Lower MSE values indicate better
model performance.

MSE =
1
n

n

∑
i=1

(yi − y∗i )
2 (16)

4.2.5. Root Mean Square Error (RMSE)

Root mean square error (RMSE) represents the standard deviation of predicted results
relative to measured results. It shares the same direction as MSE but maintains the same
dimension as the output values.

RMSE =
√

MSE =

√
1
n

n

∑
i=1

(
yi − y∗i

)2 (17)
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4.2.6. Mean Absolute Error (MAE)

Mean absolute error (MAE) measures the mean magnitude of errors. Unlike RMSE,
which squares errors, MAE considers the absolute value of errors, making it useful for
assessing the accuracy of model.

MAE =
1
n

n

∑
i=1

|y∗i − yi| (18)

4.2.7. Mean Absolute Percentage Error (MAPE)

Mean absolute percentage error (MAPE) expresses errors between predictions and
measurements as percentages. It is a dimensionless metric that enables straightforward
comparisons of model performance across different datasets. However, it may not be
suitable when measured values are close to zero, as it can yield infinite values.

MAPE =
100%

n

n

∑
i=1

∣∣∣∣y∗i − yi

yi

∣∣∣∣ (19)

4.3. Machine Learning Performance Optimization Techniques
4.3.1. Data Preprocessing

Data preprocessing is important for improving ML model quality. Techniques such
as data standardization, normalization, interpolation, extraction and outlier management
help prepare input data. For example, data standardization and normalization can adjust
the scales of features to ensure uniformity, while data interpolation addresses missing
or incomplete information. Data extraction is important for distilling key characteristics
from complex datasets. Managing outliers and applying denoising techniques enhance
the stability and relevance of the data. In feature selection, methods such as principal
component analysis (PCA) and correlation analysis play significant roles. PCA is an
effective tool for dimensionality reduction, focusing on retaining vital information through
identifying principal components that most impact the target variable. Correlation analysis
helps eliminate redundant or highly correlated features, simplifying the ML model and
reducing the risk of overfitting. However, the effectiveness of these techniques varies with
different ML models. For example, tree-based models might be less affected by feature
scaling, whereas models such as SVM and ANN often require careful data normalization
due to their sensitivity to feature scales and distributions.

4.3.2. Generalization Enhancement

Generalization enhancement techniques prevent overfitting and improve model gen-
eralization. Regularization, ensembling, early stopping, cross-validation and bootstrapping
are key techniques in machine learning that collectively enhance the performance and relia-
bility of models. Regularization adds penalties to weight parameters to prevent overfitting.
Ensembling methods, such as RF, combine predictions from multiple learners to reduce
error rates. Early stopping, cross-validation and bootstrapping also help in minimizing
overfitting or underfitting issues, resulting in more reliable models. Early stopping is a
universally applied strategy across various ML models to curb overfitting by halting the
training process when performance on the validation set begins to decline. Cross-validation,
involving partitioning the dataset into multiple subsets for training and validation, offers
a more generalized and robust model evaluation. In contrast, bootstrapping generates
multiple training and evaluation sets through random sampling with replacement, helping
identify potential overfitting or underfitting issues.

4.4. The Application of Machine Learning on Rock Mass Classification

Currently, the use of computer technology to devise predictive models has emerged as
an important area of research. ML has shown proficiency in addressing geology mapping
challenges and has attracted considerable attention in the geotechnical engineering field.
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In contrast to conventional empirical approaches, AI methods offer a superior level of
precision in performing various functions. These include calculating the bearing capacity
of structures, designing architectural components, forecasting the performance of tun-
nel boring machines (TBMs), as well as evaluating soil and rock behaviours during the
tunnelling process.

As shown in Figure 2, the predominant keywords revolve around rock classification,
including rocks, rock mechanics, rock mass, rock mass classification and so on. Following
this, ML emerges as a notable theme, characterized by terms such as artificial intelligence,
artificial neural network, algorithms, learning systems, deep learning, etc. Another re-
current keyword theme pertains to ground properties represented by lithology, geology,
compressive strength, texture and rock types. In actual engineering projects, such as coal
and tunnel tunnelling and mining, rock mass classification is frequently required. More-
over, in the aspects of predicting rockburst and mapping geological distribution, rock mass
classification is necessary.
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Figure 2. Keywords when employing ML for rock mass classification.

According to the Web of Science, there are 377 articles on rock mass identification
using ML from 2002 to 2022. As can be seen in Figure 3, the adoption of ML techniques
for rock mass classification has been on an upward trajectory over the past decade, with a
notable increase in recent years. Predominantly utilized methods include fuzzy algorithm
(FA), artificial neural networks (ANN), support vector machines (SVM), random forest (RF)
and convolutional neural networks (CNN). CNN and RF have only gained popularity in
recent years, whereas ANN and SVM were introduced earlier in the timeline. Each of the
mentioned methods offers unique advantages. For instance, while ANN excels in capturing
non-linear relationships, SVM is known for its robustness in high-dimensional spaces. At
the same time, RF provides an ensemble-based approach, enhancing the accuracy of the
model and preventing overfitting. CNN is adept at processing spatial hierarchies in data,
making it beneficial for image-based rock texture analyses.
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Figure 3. The tendency of rock mass classification through ML method.

Figure 4 depicts the percentage of different ML methods employed in ground material
identification. FA occupies the smallest portion, accounting for 5%. ANN, RF and SVM
share a similar percentage, which is approximately 16%. CNN takes the largest percentage
(25%), owing to its effectiveness in handling image-based material differentiation. Other
methods, including clustering, transfer learning, k-nearest neighbours (KNN) and so on,
collectively make up the remaining 22%.
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In the realm of civil engineering, the emphasis is on analysing the mechanical prop-
erties of rock, such as the elastic modulus, uniaxial compressive strength (UCS), shear
strength and rock brittleness. At the same time, the geological field primarily concen-
trates on lithology recognition, including igneous rocks (granite, basalt, rhyolite, andesite,
etc.), sedimentary rocks (sandstone, shale, limestone, etc.) and metamorphic rocks (gneiss,
marble, slate, schist, etc.). This paper focuses on the classification of rocks based on their
mechanical characteristics, approached from an engineering perspective. A summarization
of relevant studies from 2021 to 2022 is presented in Table 4. As can be seen, while some
researchers utilize certain rock features to deduce other parameters, there are also other
researchers who exploit these attributes for rock rating classifications. In addition, the
application of ML in rock mechanics showcases a diverse range of input and output param-
eters (see Table 4). The input parameters involve a broad spectrum of rock features and
testing techniques, from porosity and ultrasonic P-wave velocity (PV) to TBM operation pa-
rameters. Correspondingly, the outputs target pivotal rock properties and categorizations,
with an emphasis on elements such as uniaxial compressive strength (UCS), permeability
and elastic modulus. This variation underscores the multifaceted nature of research in
this domain.
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Table 4. Publications of ML-based rock mass classification and property prediction within past three years.

ML Method Dataset
Input

Output Reference
UCS BTS PV n ρ Others

RF 3166 TBM parameters (penetration rate, rotation speed, etc.) rock mass class [63]
RF 7538 TBM parameters (penetration rate, rotation speed, etc.) rock mass class [64]
RF 110 ✔ ✔ Schmidt hammer rebound number, point load index rock brittleness index [65]

ANN 93 ✔ ✔ Schmidt hammer rebound number, point load index UCS [66]
ANN 30 ✔ ✔ shore hardness UCS [67]

RF 279 ✔ ✔ depth, tangential stress, elastic strain energy index rockburst intensity [68]
ANN 3210 ✔ weathering condition, fracture degree, water condition RMR rating [69]

ANFIS 147 ✔ ✔ ✔ ✔ -- E [70]
SVM 175 depth, Q-system rating, joint spacing, Lugeon number permeability [71]
ANN 182 ✔ ✔ ✔ -- weathering degree [72]
ANN 81 ✔ ✔ ✔ ✔ ✔ rock types UCS, BTS, PV [73]

RF 168 ✔ normal stress, joint roughness coefficient G [74]
ANN 120 ✔ c, E, G, φ UCS, c, E, G, φ [10]

RF 3216 ✔ weathering condition, discontinuities condition, water condition RMR rating [75]
RF 45 ✔ ✔ interlocking coarse-grained crystals of quartz, mica content E [76]

SVM 441 TBM parameters (advance rate, specific energy) Q-system rating [77]
RF 7538 TBM parameters (penetration rate, rotation speed, etc.) rock mass class [78]

BTS means Brazilian tensile strength, UCS means uniaxial compression strength; PV means ultrasonic P wave velocity; ρ means density; n means porosity; E means elastic modulus; G
means shear modulus; c means cohesion; φ means friction angle.
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5. Discussion
5.1. Discussion on Empirical Approaches

Rock classification systems improve the quality of site investigations by offering
a checklist of key parameters for each rock mass type. Quantified evaluation is more
valuable than personal assessment as it forms a unified standard. It also facilitates effective
communication of engineering judgement [79]. The main purpose of the rock classification
index is predicting rock behaviours and required support systems, evaluating the stability
period of unsupported spans and estimating the stand-up time of underground excavation.

In this paper, various empirical rock classification methods are reviewed and discussed.
These traditional methods have served as the backbone of rock mass classification for
decades, relying heavily on human experience, observational data and direct measurements.
Such methods typically categorize rock masses based on their inherent characteristics, such
as texture, mineral content, discontinuities and other geotechnical features. Common
rock classification methods in tunnel engineering include RSR, RMR, RMI, GSI and the Q
system. Among them, RMR and the Q system are regarded as versatile methods and have
been applied widely for several decades in tunnel construction. Together with RSR, GSI
and RMI, these empirical rock classification methods provide geotechnical engineers with
preliminary information about the quality of a rock mass, which helps the initial design of
a support system for geotechnical projects, such as tunnels, mines and foundations.

However, a detailed support design cannot be replaced by these empirical methods, as
rock mass quality may be dominated by geological features and excavation geometry during
geotechnical construction [4]. The identical methods are mainly based on visual observation;
as a result, misclassification may occur in engineering applications. Additionally, in the
type of rock that contains clay or other soft earth material, such as tuff, mudstone and
shale, inflow of water can decrease the strength of rock mass significantly. This is not
sufficiently considered in traditional rock classification systems. In fact, it is difficult
to reflect the actual behaviour of a complicated rock mass by grouping it with a table.
Rehman et al. [4] pointed out that there are three main challenges in applying empirical
rock classification methods, including the inappropriateness of summarizing a rock mass
by a single digit, the scale effect of the UCS test and rock mass identification, as well as
the anisotropy and heterogeneity of underground conditions. Different rock types may
correspond to a similar rating value, even if their properties are dissimilar. This leads to an
increase in uncertainties and risks associated with geotechnical hazards. Empirical rock
classification methods lack further approaches to deal with underground hazards, and it is
difficult to evaluate the safety margin of support systems in different tunnel projects. An
additional empirical classification system should be developed to predict and handle the
most common hazardous failure types [80]. Meanwhile, for rock properties also relevant
to other external influences, such as excavation methods, a single adjustment parameter
cannot reflect its large variation scale sufficiently. Some complex rock behaviours, such as
swelling and squeezing, are not covered by these empirical systems effectively [4].

5.2. Discussion on Artificial Intelligence Methods

The development of AI provides a new perspective for the evaluation of rock mass
types. In tunnel engineering, using TBM operation parameters for rock mass classification
is a research focus. Key parameters, such as thrust, torque and rotation speed, are used to
describe correlations of geological features. The integration of ML with TBM operation
parameters focuses on predicting the mechanical characteristics of rock, such as stability,
drillability and hardness. The real-time identification of rock types provides guidance for
TBM operation and construction strategies.

For example, Qiu et al. [77] employed specific energy, penetration rate, utilization
rate, advance rate, thrust, torque and rotation speed for rock mass classification. Some
optimization techniques are used, such as mean influence value (MIV) and cross validation
(CV). MIV is used to select and simplify input variables, which enables a quantifiable
analysis of the influence of each input variable on the outcome in ANNs. The incorpo-
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ration of MIV-ANN with a CV-SVM framework shows an effective identification of rock
masses. Yang et al. [81] implemented CNN and RF to differentiate competent rock and
incompetent rock. Traditional methods have categorized rock masses into five grades,
but Yang et al. [81] merge Grade four and five to represent incompetent rock masses and
grouped the remaining grades to indicate competent rocks. Utilizing torque and the field
penetration index as key input variables, this method enabled the prediction of incompe-
tent rock mass with a high degree of accuracy. In addition, RF was developed to estimate
surrounding rock properties by Liu et al. [63]. They applied statistical indicators of TBM
operational parameters, including torque penetration index, field penetration index, pene-
tration rate, rolling force, etc. For more applications employing TBM operation parameters
for rock mass classification, refer to Yin et al. [82], Xue et al. [83] and so on.

An AI-driven rock mass classification system can overcome several of the challenges
posed by empirical methods. Firstly, AI can process and analyse a wide range of data
sources beyond visual observation. This includes geological data, seismic readings, geo-
physical surveys and real-time monitoring from sensors deployed in excavation sites. By
incorporating such diverse data, AI models can gain a deeper understanding of the complex
interplay of factors that influence rock mass behaviour, going beyond the constraints of
visual inspection. Secondly, AI models can address the issue of misclassification by learning
from a large dataset and continuously refining their classification criteria. This adaptability
ensures that misclassifications are minimized over time, enhancing the accuracy of rock
mass predictions. In addition, AI can consider external influences, such as excavation
methods and their impacts on rock properties. This holistic approach enables AI to provide
a more comprehensive assessment of rock mass behaviour and its response to various
construction processes. For example, AI can account for the swelling and squeezing of rock
mass, which are often inadequately addressed by traditional empirical systems. AI is not
limited to the simplification of rock mass quality into a single rating digit. Instead, it can
handle multidimensional data and recognize the nuanced variations in rock properties and
behaviours. This ability to capture the intricacies of rock mass behaviour is essential for mit-
igating uncertainties and risks associated with geotechnical hazards. Furthermore, AI also
allows for the recommendation of support methods tailored to individual tunnel projects.

Despite the considerable potential of ML in rock mass classification, it also presents
several challenges that need to be addressed for its effective and reliable implementation.
For example, ML requires large datasets for training and validation. Obtaining extensive,
high-quality data that accurately represent various geological conditions can be challenging.
In addition, geological features are inherently complex and highly variable. AI models
may fail to capture this complexity fully due to inadequate or biased data. The issue
of overfitting in ML models presents another risk in accurately classifying rock masses,
potentially leading to poor performance and reliability in assessments. Therefore, it remains
crucial to validate the obtained outcomes, ensuring that the predictions made by the ML
models align with real-world observations.

5.3. Suggestions and Future Work

ML approaches should be used in conjunction with empirical methods during the
whole life of geotechnical engineering construction. The results obtained from ML should be
compared with manual identification for validation. While employing empirical methods,
it is recommended that the characteristics of rock mass should be initially distinguished,
then a rating for each parameter should be attributed and translated into different rock
classification systems. At least two rock classification methods should be employed and
compared. In this case, the actual behaviour of rock mass can be clearly described and
accurately verified. Furthermore, it is suggested that each parameter should be evaluated
with a range of values instead of a fixed number during the rock classification process.
The final score of rock mass can be assessed by its significance. For instance, with an
approximate score range of ‘a’ and ‘b’, where ‘a’ and ‘b’ represent the lower and upper
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value for the estimation of rock mass quality, the average value can be used for basic
support system selection while the scope gives an indication of possible judgement.

For future work in utilizing ML for rock mass classification, the following points
are proposed:

(1) Expanding datasets: Collecting more comprehensive and diverse datasets is one of
the primary areas. The accuracy of ML models depends significantly on the quality
and breadth of data they are trained on. Future work could involve collaborations
with geotechnical projects worldwide to create a global dataset, reflecting a broad
range of geological conditions;

(2) Integration of real-time data: As sensor technologies evolve, integrating real-time mon-
itoring data from excavation sites into ML models could provide dynamic updates,
refining rock classifications as conditions change;

(3) Hybrid models: Combining traditional empirical evaluation methods with ML al-
gorithms to create hybrid models can produce more accurate and reliable predic-
tions. These models can leverage the strengths of both empirical methods and data-
driven approaches;

(4) Interdisciplinary collaborations: Collaborating with other fields, such as materials
science, seismology or mineralogy, can bring fresh perspectives and techniques into
the development of ML models for rock classification;

(5) Addressing anomalies and rare events: Rare geological events or anomalies often pose
significant challenges. Future ML applications should focus on techniques that detect
and adapt to such rare events, ensuring reliability and robustness.

In conclusion, the introduction of AI and ML offers a new shift, promising more
accurate, nuanced and comprehensive assessments of rock types. However, the integration
of these technologies does not mean the abandonment of time-tested empirical methods.
Instead, they should complement each other. Combining the strengths of both method-
ologies can ensure a more robust and reliable rock mass classification system, critical
for the safety and efficiency of geotechnical projects. Additionally, establishing a large
dataset that involves various rock types facilitates the training of ML, which can enhance
its generalization capacity.
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Appendix A. Rock Structure Rating (RSR)

Table A1. Parameter A. General area geology.

Basic Rock Type
Geological Structure

Hard Medium Soft Decomposed

igneous 1 2 3 4
Massive Slightly faulted

or folded
Moderately

faulted or folded
Intensely faulted

or folded
metamorphic 1 2 3 4
sedimentary 2 3 4 4

Type 1 30 22 15 9
Type 2 27 20 13 8
Type 3 24 18 12 7
Type 4 19 15 10 6
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Table A2. Parameter B. Joint pattern, direction of drive.

Strike Perpendicular to Axis Strike Parallel to Axis

Drive Direction Drive Direction
Both With Dip Against Dip Either Direction

Dip of Prominent Joints Dip of Prominent Joints
Average Joint Spacing Flat Dipping Vertical Dipping Vertical Flat Dipping Vertical

Very closely jointed, <2 ft 9 11 13 10 12 9 9 7
Closely jointed, 2–6 ft 13 16 19 15 17 14 14 11

Moderately jointed, 6–12 ft 23 24 28 19 22 23 23 19
Moderate to blocky, 1–2 ft 30 32 36 25 28 30 28 24
Blocky to massive, 2–4 ft 36 38 40 33 35 36 24 28

Massive, >4 ft 40 43 45 37 40 40 38 34

Note: flat: 0–20◦; dipping: 20◦–50◦; vertical: 50◦–90◦.

Table A3. Parameter C. Groundwater, joint condition.

Sum of Parameter A + B

13–44 45–75

Anticipated Water Inflow Joint Condition

(gpm/1000 ft) Good Fair Poor Good Fair Poor

None 22 18 12 25 22 18
Slight, <200 gpm 19 15 9 23 19 14

Moderate, 200–1000 gpm 15 11 7 21 16 12
Heavy, >1000 gpm 10 8 6 18 14 10

Joint condition: good = tight or cemented; fair = slightly weathered or altered; poor = severely weathered, altered
or open.

Appendix B. Rock Mass Rating (RMR)

Table A4. 1975 version of rock mass rating (RMR) system.

A. Classification parameters and their rating

1

Strength of
intact rock
material

Point-load strength
index >8 MPa 4–8 MPa 2–4 MPa 1–2 MPa Use of uniaxial compressive

test preferred

Uniaxial
compressive

strength
>200 MPa 100–200 MPa 50–100 MPa 25–50 MPa 10–25 MPa 3–10 MPa 1–3 MPa

Rating 15 12 7 4 2 1 0

2
Drill core quality RQD 90–100% 75–90% 50–75% 25–50% <25%

Rating 20 17 13 8 3

3
Spacing of joints >3 m 1–3 m 0.3–1 m 50–300 mm <50 mm

Rating 30 25 20 10 5

4
Condition of joints

Very rough
surface

Not continuous
No Separation

Hard joint
wall rock

Slightly rough
surfaces

Separation < 1 mm
Hard joint
wall rock

Slightly rough
surfaces

Separation < 1 mm
Soft joint
wall rock

Slickensided
surfaces

OR
Gouge < 5 mm

thickness
OR

Joints open
1–5 mm

Continuous joints

Soft gouge > 5 mm thick
OR

Joints open > 5 mm
Continuous joints

Rating 25 20 12 6 0

5
Groundwater

Inflow per 10 m
tunnel length None <25 L/min 25–125 L/min >125 L/min

Ratio
jointwater
pressure

majorprincipal
stress

0 0.0–0.2 0.2–0.5 >0.5

General conditions Completely dry Moist only
Water under

moderate
pressure

Severe water problems

Rating 10 7 4 0
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Table A4. Cont.

B. Adjustment for joint orientations

Strike and dip orientations of joints Very
favourable Favourable Fair Unfavourable Very unfavourable

Ratings

tunnels 0 −2 −5 −10 −12

foundations 0 −2 −7 −15 −25

slopes 0 −5 −25 −50 −60

C. Rock mass classes and their rating

Class No. 1 2 3 4 5

Description Very good rock Good rock Fair rock Poor rock Very poor rock

Rating 90–100 70–90 50–70 25–50 <25

Table A5. 1989 version of rock mass rating (RMR) system.

A. Classification parameters and their rating

1

Strength of
intact rock
material

Point-load strength
index >10 MPa 4–10 MPa 2–4 MPa 1–2 MPa Use of uniaxial compressive

test preferred

Uniaxial
compressive

strength
>200 MPa 100–200 MPa 50–100 MPa 25–50 MPa 10–25 MPa 1–5 MPa <1 MPa

Rating 15 12 7 4 2 1 0

2
Drill core quality RQD 90–100% 75–90% 50–75% 25–50% <25%

Rating 20 17 13 8 3

3
Spacing of joints >2 m 0.6–2 m 0.2–0.6 m 60–200 mm <60 mm

Rating 20 15 10 8 5

4
Condition of joints

Very rough
surface

Not continuous
No Separation

Hard joint
wall rock

Slightly rough
surfaces

Separation < 1 mm
Hard joint
wall rock

Slightly rough
surfaces

Separation < 1 mm
Highly

weathered wall

Slickensided
surfaces

OR
Gouge < 5 mm

thickness
OR

Joints open
1–5 mm

Continuous joints

Soft gouge > 5 mm thick
OR

Joints open > 5 mm
Continuous joints

Rating 30 25 20 10 0

5

Ground
water

Inflow per 10 m
tunnel length None <10 L/min 10–25 L/min 25–125 L/min >125 L/min

Ratio
jointwater
pressure

majorprincipal
stress

0 <0.1 0.0–0.2 0.2–0.5 >0.5

General conditions Completely dry Damp Wet Dripping Flowing

Rating 15 10 7 4 0

B. Adjustment for joint orientations

Strike and dip orientations of joints Very
favourable Favourable Fair Unfavourable Very unfavourable

Ratings

tunnels 0 −2 −5 −10 −12

foundations 0 −2 −7 −15 −25

slopes 0 −5 −25 −50 −60

C. Rock mass classes and their rating

Class No. 1 2 3 4 5

Description Very good rock Good rock Fair rock Poor rock Very poor rock

Rating 81–100 61–80 41–60 21–40 <20
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Appendix C. Mining Rock Mass Rating (MRMR)
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Figure A1. Relationship between rating adjustment and spacing in mining rock mass rating (MRMR).
I means one joint set; II and III represent minimum and maximum spacing in two joint sets case; IV
and V are the minimum and maximum spacing in the condition of three joint sets.

Table A6. Information of mining rock mass rating (MRMR) system.

UCS (MPa) Rating RQD (%) Rating Joint Spacing

Fracture Frequency

Average per Meter
Rating

1 Set 2 Sets 3 Sets

>185 20 97–100 15 0–25 0.10 40 40 40
165–185 18 84–96 14 0.15 40 40 40
145–164 16 71–83 12 0.20 40 40 38
125–144 14 56–70 10 Details 0.25 40 38 36
105–124 12 44–55 8 shown 0.30 38 36 34
85–104 10 31–43 6 in 0.50 36 34 31
65–84 8 17–30 4 Figure A1 0.80 34 31 28
45–64 6 4–16 2 1.00 31 28 26
35–44 5 0–3 0 1.50 28 26 24
25–34 4 2.00 26 24 21
12–24 3 3.00 24 21 18
5–11 2 5.00 21 18 15
1–4 1 7.00 18 15 12

10.0 15 12 10
15.0 12 10 7
20.0 10 7 5
30.0 7 5 2
40.0 5 2 0

Table A7. Rock mass evaluation in mining rock mass rating (MRMR) system.

Class No. 1 2 3 4 5

Description Very good rock Good rock Fair rock Poor rock Very poor rock

Rating 81–100 61–80 41–60 21–40 <20
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Appendix D. Tunnelling Quality Index (Q System)

Table A8. Description of considerations and their ratings in tunnelling quality index (Q system).

Description Value Note

Rock Quality Designation (RQD)
A. very poor 0–25

(1) where RQD is reported or measured as ≤ 10 (including 0), a
nominal value of 10 is used to evaluate Q.
(2) RQD intervals of 5 is accurate.

B. poor 25–50
C. fair 50–75
D. good 75–90
E. excellent 90–100

Joint set number Jn
A. massive, no or few joints 0.5–1
B. one joint set 2
C. one joint set plus random 3
D. two joint sets 4 (1) for intersections use (3 × Jn).
E. two joint sets plus random 6
F. three joint sets 9 (2) for portals, use (2 × Jn).
G. three joint sets plus random 12
H. four or more joint sets, random, 15

heavily jointed.
J. Crushed rock, earthlike 20

Joint roughness number Jr
a. rock wall contact
b. rock wall contact before 10 cm shear
A. discontinuous joints 4
B. rough and irregular, undulating 3 (1) add 1.0 if the mean spacing of the relevant
C. smooth undulating 2 Joint is greater than 3 m.
D. slickensided undulating 1.5
E. rough or irregular, planar 1.5 (2) Jr = 0.5 can be used for planar,
F. smooth, planar 1.0 slickensided joints having lineations, provided
G. slickensided, planar 0.5 that the lineations are oriented for minimum
c. no rock wall contact when sheared strength.
H. zones containing clay minerals thick 1.0

enough to prevent rock wall contact (nominal)
J. sandy, gravely or crushed zone thick 1.0

enough to prevent rock wall contact (nominal)

Joint alteration number Ja
a. rock wall contact φ (degrees)
A. tightly healed, hard, non-softening, 0.75

impermeable filling
B. unaltered joint walls, surface 1.0 25–35

staining only
C. slightly altered joint walls, non- 2.0 25–30

softening mineral coating, sandy
particles, clay-free disintegrated
rock, etc.

D. silty or sandy clay coatings, small 3.0 20–25
clay fraction (non-softening)

E. softening or low-fraction clay 4.0 8–16
mineral coatings, i.e., kaolinite, mica, (1) values of φ, the residual
chlorite, talc, gypsum, graphite, friction angle, are intended as
etc. and small quantities of swelling approximate guide to the
clays (discontinuous coatings, 1–2 mineralogical properties of
mm or less in thickness) the alteration products, if

b. rock wall contact before 10 cm shear present.
F. sandy particles, clay-free, 4.0 25–30

disintegrating rock, etc.
G. strongly overconsolidated, non- 6.0 16–24

softening clay mineral fillings
H. medium or low overconsolidation, 8.0 12–16

softening clay mineral fillings
I. swelling clay fillings, i.e., 8.0–12.0 6–12

montmorillonite. Values of Ja
depend on percent of swelling
clay-size particles and access to
water
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Table A8. Cont.

Description Value Note

c. no rock wall contact when sheared
J. zones or bands of disintegrated 6.0 or 8.0–12.0 6–24

or crushed rock and clay
K. zones or bands of silty or sandy clay 5.0

small clay fraction (non-softening)
L. Thick, continuous zones or bands 10.0 or 13.0–20.0 6–24

of clay

Joint water reduction number Jw
water pressure

(
kg/m2)

A. dry excavations or minor inflow, 1.0 <1
i.e., <5 L/min locally

B. medium inflow or pressure, 0.66 1.0–2.5 (1) factors C to F are crude
occasional outwash of joint fillings estimates; increase Jw if

C. large inflow or high pressure in 0.5 drainage installed.
competent rock with unfilled joints

D. large inflow or high pressure, 0.33 2.5–10.0
considerable outwash of joint filling

E. exceptionally high inflow or water 0.2–0.1 >10.0 (2) special problems caused
pressure at blasting, decaying by ice formation are not
with time considered.

F. exceptionally high inflow or water 0.1–0.05 >10.0
pressure continuing without
noticeable decay

Stress reduction factor (SRF)
a. weakness zones intersecting excavation, which may cause loosening of rock mass when tunnel is excavated
A. multiple occurrences of weakness 10.0

zones containing clay or chemically
disintegrated rock, very loose
surrounding rock (any depth)

B. single weakness zone containing 5.0
clay or chemically disintegrated
rock (excavation depth < 50 m)

C. single weakness zone containing 2.5 (1) reduce these values of SRF by 25–50%
clay or chemically disintegrated but only if the relevant shear zone’s influence
rock (excavation depth > 50 m) does not intersect the excavation.

D. multiple shear zones in competent 7.5
rock (clay free), loose surrounding
rock (any depth)

E. single shear zone in competent rock 5.0
(clay-free) (excavation depth < 50 m)

F. single shear zone in competent rock 2.5
(clay-free) (excavation depth > 50 m)

G. loose open joints, heavily jointed or 5.0
‘sugar cube’, etc. (any depth)

b. competent rock, rock stress problem σc/σ1 σt/σ1
H. low stress, near surface >200 >13 2.5 (2) for strongly anisotropic
J. medium stress 200–10 13–0.66 1.0 virgin stress field: when
K. high stress, very tight structure 10–5 0.66–0.33 0.5–2 5 ≤ σc/σ1 ≤ 10, reduce σc

(usually favourable to stability, may to 0.8σc and σt to 0.8σt.
be unfavourable to wall stability) When σc/σ1 > 10, reduce σc

L. mild rockburst (massive rock) 5–2.5 0.33–0.16 5–10 to 0.6σc and σt to 0.6σt.
M. heavy rockburst (massive rock) <2.5 <0.16 10–20
c. squeezing rock, plastic flow of incompetent rock under the influence of high rock pressure
N. mild squeezing rock pressure 5–10 (3) few case records available
O. heavy squeezing rock pressure 10–20 where depth of crown below
d. swelling rock, chemical swelling activity depending on presence of water surface is less than span
P. mild squeezing rock pressure 5–10 width. Suggest increase SRF
R. heavy squeezing rock pressure 10–15 from 2.5 to 5 in such a case.

σc is unconfined compressive strength; σt is tensile strength (point load); σ1 and σ3 are the major and minor
principal stresses separately.
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Appendix E. Rock Mass Index (RMI)

Table A9. Considerations and ratings of rock mass index (RMI) system.

Uniaxial compressive strength (UCS) (MPa) Obtained from experimental tests or assumed from handbook

Block volume (Vb) (m3) Obtained from observation at site or drill cores

Joint condition factor (JC) = JR × JA × JL JR, JA and JL are determined from tables below

Joint roughness factor (JR)

Large-scale waviness of joint plane

Planar Slightly
undulating Undulating Strongly

undulating
Stepped or

interlocking

Small scale
smoothness of
joint surface

Very rough 2.0 3.0 4.0 6.0 6.0

Rough 1.5 2.0 3.0 4.5 6.0

Smooth 1.0 1.5 2.0 3.0 4.0

Polished 0.5 1.0 1.5 2.0 3.0

Slickenside 0.5 1.0 1.5 2.0 3.0

for filled joints JR = 1, for irregular joints JR = 6

Joint alteration factor (JA)

Contact
between joint

walls

Clean joints

Healed or welded joints Filling of quartz, epidote, etc. 0.75

Fresh joint walls No coating or filling 1.0

Altered joint walls
One grade higher alteration 2.0

Two grades higher alteration 4.0

Coating or thin
filling

Frictional materials Sand, silt calcite, etc. 3.0

Cohesive materials Clay, chlorite, talc, etc. 4.0

Partly or no
wall contact

Thick filling

Thin (< 5mm) Thick

Frictional materials Sand, silt
chlorite, etc. 4 8

Hard, cohesive materials Clay, chlorite,
talc, etc. 6 5–10

Soft, cohesive materials Clay, chlorite,
talc, etc. 8 12

Swelling clay materials
Swelling

behaviour
material

8–12 13–20

Joint size factor (JL)

continuous discontinuous

Bedding or foliation partings Length < 5m 3.0 6.0

Joints

Length 0.1–1 m 2.0 4.0

Length 1–10 m 1.0 2.0

Length 10–30 m 0.75 1.5

Filled joint, seam or shear (special cases) Length > 30m 0.5 1.0
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