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Abstract: The SARS-CoV-2 virus responsible for the COVID-19 pandemic has caused significant
morbidity and mortality worldwide. With the remarkable advances in medical research, vaccines
were developed to prime the human immune system and decrease disease severity. Despite these
achievements, the fundamental basis of immunity to the SARS-CoV-2 virus is still largely undefined.
Here, we solved the crystal structure of three spike-derived peptides presented by three different
HLA molecules, and determined the stability of the overall peptide–HLA complexes formed. The
peptide presentation of spike-derived peptides can influence the way in which CD8+ T cells can
recognise infected cells, clear infection, and therefore, control the outcome of the disease.
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1. Introduction

The SARS-CoV-2 virus is responsible for the ongoing COVID-19 pandemic declared by
the World Health Organisation (WHO) in March 2020. After one year of intensive research
and clinical trials, some vaccines are currently available and administrated. In addition,
we have started to gain an understanding of the immune response towards this emerging
virus. However, we still have a lot to discover to understand SARS-CoV-2 infection and
the immune response associated with it. Studies reporting some strong T cell and B cell
epitopes are emerging [1–4], and this work is paramount to gain an appreciation of the
strength and level of immune response that different individuals can produce towards this
novel virus.

T cells, and especially CD8+ or cytotoxic T cells, are critical in the protection against
viral infections as they have the capability to recognize and eliminate infected cells in order
to clear the infection [5]. CD8+ T cells recognize peptides derived from the virus that are
presented by highly polymorphic human leukocyte antigen (HLA) molecules. In order to
understand the CD8+ T cell response towards the SARS-CoV-2 virus, we need to determine
which viral peptides activate T cells, as well as which HLA molecules can stably present
them [6,7]. This information, in the context of SARS-CoV-2, is currently limited [8].

Initially, algorithms were used to predict SARS-CoV-2 peptides and their potential
HLA restriction. Unfortunately, these predictions are not always accurate and could be
attributed to either the wrong HLA molecule or the wrong peptide. Therefore, there is a
need to further investigate which peptides are able to bind their predicted HLA molecule,
activate a T cell response [9], and thus provide protective immunity. Our previous work
showed that not all predicted peptides are able to bind HLA molecules, while others were
unstable [7]. Thus, it is critical to have a better understanding of the peptides’ ability
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to bind and effectively stabilize the peptide–HLA (pHLA) complex, as this impacts how
the peptide will be presented, affecting the lifetime that a pHLA can be displayed on the
surface of cells, and impacting the likelihood of a T cell binding to the pHLA complex.
In addition, structural characterization of peptide presentation by HLA complexes also
reveals which peptide residues will be accessible for binding to the T cell receptor (TCR) [6].
This information may help predict and understand which viral mutations within this
peptide could be tolerated by T cells or otherwise lead to viral escape, and therefore be of
concern [10].

Here, we present the crystal structures of three spike-derived peptides presented
by three frequently expressed HLA molecules worldwide, namely HLA-A*02:01, HLA-
A*11:01, and HLA-B*35:01. Our work provides a snapshot of the parts of the spike protein
that are presented by HLA molecules to the immune system, especially to T cells. In
addition, the structures reveal solvent exposed residues in each peptide, which are available
for interaction with the TCR. This information could help map potential mutations on these
peptides that might be tolerable or detrimental to the immune system.

2. Materials and Methods
2.1. Protein Expression, Refold, and Purification

DNA plasmids encoding HLA-A*02:01, HLA-A*11:01, and HLA-B*35:01 and human
β-2-microglobulin were each separately transformed into a BL21 strain of Escherichia.
coli (E. coli). The respective sequences were obtained from the IMGT/HLA database
(doi:10.1093/nar/gkz950). The soluble part of the HLA heavy chain (1–275 residues) was
ordered sub-cloned into pET30 vector for bacterial expression using the NdeI/HindIII
restriction enzyme site for sub-cloning from GenScript. The presence of the insert was
confirmed by sequencing by GenScript for each construct. Recombinant proteins were indi-
vidually expressed and inclusion bodies were extracted and purified from the transformed
E. coli cells. Thirty milligrams of each of the HLA inclusion bodies was refolded with
10 mg of β-2-microglobulin inclusion bodies and 5 mg of peptide (GenScript, Piscataway,
NJ, USA) into a buffer containing 3 M urea, 0.5 M L-arginine, 0.1 M Tris-HCl pH 8.0,
2.5 mM EDTA pH 8.0, 5 mM glutathione (reduced), and 1.25 mM glutathione (oxidised).
The peptide sequences are summarized in Table 1. This mixture was dialysed in 10 mM
Tris-HCl pH 8.0 and purified using anion exchange chromatography using a Hi-TrapQ
column (GE Healthcare, Chicago, IL, USA).

Table 1. Stability of pHLA complexes.

pHLA Complex Peptide Sequence Tm 1 (◦C)

HLA-A*02:01-S386–395 KLNDLCFTNV 54.4 ± 1.3
HLA-A*11:01-S370–378 NSASFSTFK 54.2 ± 0.2
HLA-B*35:01-S896–904 IPFAMQMAY 61.6 ± 0.6

1 Tm is determined at 50% of its normalised fluorescence intensity and is indicative of the temperature required
to unfold 50% of the protein. Tm values are represented as the mean ± S.E.M. of n = 2.

2.2. Differential Scanning Fluorimetry

Differential scanning fluorimetry (DSF) was performed to determine the stability of
each pHLA using the fluorescent dye SYPRO orange, and fluorescence was measured in
a Qiagen RG6 real-time PCR machine. Each of the pHLA complexes was in a solution of
10 mM Tris-HCl pH 8 and 150 mM NaCl, and was measured at two different concentrations
(5 and 10 µM) in duplicate, where samples were heated from 30 to 95 ◦C at a rate of
0.5 ◦C/min. Fluorescence intensity was detected using a default excitation and emission
channel set to yellow (excitation of approximately 530 nm and detection at approximately
557 nm). Fluorescence intensity data was normalised and plotted using GraphPad Prism 8
(version 8.4.2). The Tm, or thermal midpoint, represents the temperature at 50% of maximal
fluorescence. The results are reported in Table 1.
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2.3. Peptide Conservation within SARS-CoV-2 Isolates

Complete spike protein sequences from SARS-CoV-2 isolates (taxid ID 2697049)
were obtained from the NCBI virus database http://www.ncbi.nlm.nih.gov/labs/virus
(accessed on 22 March 2021). Sequences were aligned using https://www.fludb.org/brc/
home.spg?decorator=influenza (accessed on 22 March 2021). Sequences with an unknown
amino acid (X) within the peptide of interest were removed from the analysis. The sequence
alignment results are summarised in Table 2.

Table 2. Sequence conservation of the three spike-derived peptides study from SARS-CoV-2 isolates.

Peptide Africa Asia Europe North America Oceania South America

S386–395 100% (770) 100% (2195) 99.89% (888) 99.99% (49,376) 100% (9919) 100% (449)KLNDLCFTNV

S370–378 99.87% (773) 100% (2198) 99.78% (889) 99.89% (49,369) 100% (9919) 100% (441)NSASFSTFK

S896–904 100% (774) 99.37% (2208) 100% (889) 99.93% (49,386) 99.90% (9919) 99.78% (451)IPFAMQMAY

Complete full-length sequences were obtained from the NCBI virus database http://www.ncbi.nlm.nih.gov/labs/virus (accessed on
22 March 2021) and were aligned using https://www.fludb.org/brc/home.spg?decorator=influenza (accessed on 22 March 2021). The
frequency of peptide conservation is shown, with the total number of sequences aligned being: 63,597 for S386-395, 63,589 for S370-378, and
63,627 for S896-904. The number of sequences from each geographic region is shown in parenthesis.

2.4. Crystallisation and Structural Determination

Crystals of pHLA complexes were grown via the sitting-drop vapour-diffusion method
at 20 ◦C with a protein:reservoir drop ratio of 1:1, at a concentration range of 3.5–7 mg/mL
in 10 mM Tris-HCl pH 8.0, 150 mM NaCl. Crystals of HLA-A*02:01 in complex with SARS-
CoV-2 S386–395 (KLNDLCFTNV) were grown in 14% (w/v) PEG 3350, 0.2 M ammonium
tartrate, and 1 mM cadmium chloride. HLA-A*11:01 in complex with SARS-CoV-2 S370–378
(NSASFSTFK) were grown in 2 M ammonium sulfate, 0.1 M sodium cacodylate pH 6.5, and
0.2 M sodium chloride. HLA-B*35:01 in complex with SARS-CoV-2 S896–904 (IPFAMQMAY)
were grown in 18% (w/v) PEG 3350 and 0.2 M sodium fluoride. These crystals were
soaked in a cryoprotectant containing the respective mother liquor and 20% (v/v) ethylene
glycol or 30% (w/v) PEG 3350 and flash-frozen in liquid nitrogen. The datasets were
collected on the MX2 beamline at the Australian Synchrotron (Clayton, Australia) [11].
The data were processed using XDS [12], and the structures were solved using molecular
replacement using the PHASER program [13] from the CCP4 suite [14] with models of
HLA-A*02:01 [7], HLA-A*11:01 [15], and HLA-B*35:01 [16] without the peptide. Manual
model building was conducted using COOT [17] and refinement was performed with
BUSTER [18]. The final model was validated using the wwPDB OneDep system with
the accession number of 7M8S for HLA-A*02:01 SARS-CoV-2 S386–395, 7M8T for HLA-
A*11:01 SARS-CoV-2 S370–378, and 7M8U for HLA-B*35:01 SARS-CoV-2 S896–904. The final
refinement statistics are summarized in Table 3. All molecular graphic representations
were created using PyMOL.

http://www.ncbi.nlm.nih.gov/labs/virus
https://www.fludb.org/brc/home.spg?decorator=influenza
https://www.fludb.org/brc/home.spg?decorator=influenza
http://www.ncbi.nlm.nih.gov/labs/virus
https://www.fludb.org/brc/home.spg?decorator=influenza
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Table 3. Data collection and refinement statistics.

Data Collection Statistics HLA-A*02:01-S386–395 HLA-A*11:01-S370–378 HLA-B*35:01-S896–904

Space group P212121 P21 P212121

Cell dimensions (a,b,c) (Å) 64.60, 86.69, 163.21
49.87, 38.45, 110.06

51.24, 82.38, 111.01
β = 94.63◦

Resolution (Å) 46.08–2.35 (2.43–2.35) 46.72–1.50 (1.53–1.50) 46.52–1.44 (1.47–1.44)
Total number of observations 266,968 (25,197) 458,019 (22,980) 1,114,777 (47,083)

Number of unique observations 39,044 (3769) 67,146 (3290) 84,730 (3897)
Multiplicity 6.8 (6.7) 6.8 (7.0) 1.2 (12.1)

Data completeness (%) 100 (100) 100 (100) 99.7 (93.6)
I/σI 10.0 (2.0) 13.8 (1.8) 16.4 (1.8)

Rpim
a (%) 5.2 (40.9) 2.9 (43.2) 1.9 (40.5)

CC1/2 (%) 98.2 (67.0) 99.9 (75.4) 99.9 (76.4)
Refinement Statistics

Rfactor
b (%) 18.1 18.1 20.4

Rfree
b (%) 23.0 21.1 22.9

rmsd from ideality
Bond lengths (Å) 0.010 0.010 0.010
Bond angles (◦) 0.127 0.103 0.103

Ramachandran plot (%)
Favoured 96.0 99.0 99.0
Allowed 4.0 1.0 1.0

Disallowed 0.0 0.0 0.0
PBD code 7M8S 7M8T 7M8U

a Rp.i.m = Σhkl [1/(N − 1)]1/2 Σi | Ihkl, i − <Ihkl> |/Σhkl <Ihkl>. b Rfactor = Σhkl | | Fo | − | Fc | |/Σhkl | Fo | for all data except
approximately 5% which were used for Rfree calculation. Values in parentheses are for the highest-resolution shell.

3. Results
3.1. The Spike-Derived Peptides Were Able to Form a Stable Complex with Their Respective
HLA Molecules

We selected three peptides derived from the SARS-CoV-2 spike protein that were
originally predicted to bind to HLA molecules (Table 1) [19–21]. Subsequently, the S386-395
peptide was described as recognised by CD8+ T cells using tetramer staining [22], and
S896-904 can activate CD8+ T cells using a T cell activation assay [23]. Therefore, they are
good potential targets as T cell antigens, and warrant more investigation.

These three spike-derived peptides have been conserved in the sequenced SARS-CoV-
2 isolates reported so far [24]. Indeed, our sequence analysis of spike proteins sequenced
from >60,000 SARS-CoV-2 isolates revealed that all three peptides were >99% conserved
in all geographic locations (Table 2). Therefore, they could represent good targets for
therapeutic and vaccine design.

Our first aim was to determine if each peptide was able to form a stable complex with
its specific HLA molecule. To this end, we refolded each of the three peptides with its
respective HLA molecule, purified the pHLA complexes, and determined their thermal
stability (Table 1). The data showed that each of the pHLA complexes had a thermal
midpoint temperature, or Tm, well above the human body temperature of 37 ◦C. Therefore,
it is expected that these pHLA complexes will remain stable on the cell surface. Interestingly,
in addition to binding HLA-A*11:01, the S370–378 peptide has also been predicted to bind to
the HLA-A*03:01 molecule [21], and is described as immunogenic in HLA-A68+ donors [23].
As these three HLA molecules all belong to the HLA-A3 superfamily [25], it is likely that
the S370–378 peptide is able to be presented by all three HLA molecules [26].

This data confirms that the three spike-derived peptides can form stable complexes
with their respective HLA molecules, and are therefore an interesting target for T cells.
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3.2. Structure of HLA-A*02:01-S386–395 Reveals a Flat Peptide Conformation

To understand how SARS-CoV-2 spike-derived peptides are presented to T cells, we
solved the structure of each peptide in complex with their respective HLA molecule using
X-ray crystallography (Table 3).

We solved the structure of S386–395 in complex with HLA-A*02:01 at a resolution of
2.35 Å, and the electron density was clear for the peptide (Figure 1A,B). The structure
shows that the S386–395 peptide binds into the peptide-binding cleft of HLA-A*02:01 in
a canonical conformation, with anchor residues at position 2 (P2-Leu) and position 10
(P10-Val) docking deep into the B and F pockets, respectively (Figure 1C). In addition, the
P3-Asn, P5-Leu, and P7-Phe were also buried, acting as secondary anchors, and interact
with each other.
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The S386–395 peptide is a 10mer peptide, longer than the classical 9mer that is highly
characteristic of HLA class I molecules. While 9mer peptides fit perfectly in an extended
conformation in the antigen-binding cleft of HLA class I, longer peptides have adopted
conformations where some residues of the peptide are bulged out of the cleft [27]. The
10mer peptide S386–395 is not bulged out of the HLA-A*02:01 antigen-binding cleft, but
adopts a rather flat conformation, likely due to the fact that half of its residues are buried
in the cleft. This peptide was predicted to bind HLA-A*02:01 [19], and was recognised
by T cells from unexposed donors [22]. The molecular docking prediction from Can et al.
showed that P1-Lys, P3-Asn, P4-Asp, and P6-Cys were predicted to be solvent exposed.
Comparison with our crystal structure revealed that the solvent-exposed residues were
P1-Lys, P4-Asp, P6-Cys, P8-Thr, and P9-Asn instead (Figure 1D). Interestingly, the P6-Cys
was solvent exposed and therefore available to form a disulfide bond. Indeed, we observed
a disulfide bond between the peptides of two pHLA complexes contained in the crystal
asymmetric unit.

3.3. HLA-A*11:01-S370–378 Presents Aromatic Residues to T Cells

HLA molecules are classified into different superfamilies based on the binding prop-
erties on their peptide-binding groove. The HLA-A3 superfamily favours a small aliphatic
amino acid on position 2 (P2) and a positively charged amino acid on the C-terminus of the



Biophysica 2021, 1 199

peptide (PΩ), which are the primary anchors of the binding groove. There are three main
members in the HLA-A3 superfamily [25]: HLA-A*03:01, HLA-A*11:01, and HLA-A*68:01.
The S370–378 peptide has been predicted to bind HLA-A*03:01 and HLA-A*11:01 [21], and
can activate CD8+ T cells in an HLA-A*68:01 donor [23]. It has previously been reported
that certain peptides can be presented by multiple HLA molecules [26], and that they
can also be immunogenic [28]. Interestingly, immunogenicity of the S370–378 peptide is
still debatable, and might depend on HLA-restriction, as it has been predicted to be both
immunogenic [21] and non-immunogenic [29]. Further immunogenicity studies need to be
undertaken to determine if this peptide presented by HLA-A*03:01 can activate CD8+ T
cells. However, this peptide has been described as non-immunogenic in a small cohort of
healthy and COVID-19-recovered individuals expressing HLA-A*11:01 [30], whereas it is
immunogenic when presented by HLA-A*68:01 [23]. It is therefore possible that S370–378 is
either not immunogenic in HLA-A*11:01+ donors alone, or is non-immunogenic in only
some HLA-A*11:01+ donors, and more investigation will be required to determine which
of these possibilities is the case.

To gain a further understanding of how the S370–378 peptide might be seen by CD8+ T
cells, we solved the structure of the HLA-A*11:01 molecule presenting this peptide (Table 3).
The structure of the HLA-A*11:01-S370–378 complex was solved at high resolution (1.50 Å),
and the electron density was clear for the peptide (Figure 2A,B).
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The S370–378 peptide adopted a canonical extended conformation in the cleft of the
HLA-A*11:01 molecule, with P2-Ser and P9-Lys acting as secondary anchor residues
(Figure 2C) without additional secondary anchor residues. The backbone of the peptide’s
central part (P4–P8) is flat and solvent exposed in the cleft of HLA-A*11:01. The surface
exposed to the solvent (Figure 2D), and therefore available for potential T cell receptor
contact, is hydrophobic with three small side chains (P4-Ser, P6-Ser, and P7-Thr) and two
large aromatic residues (P5-Phe and P8-Phe). The S370–378 peptide presents a lot of exposed
residues that could be contacted by TCRs.
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3.4. The S896–904 Peptide Adopted a Flat Conformation in the Cleft of HLA-B*35:01

The S896–904 peptide was also predicted to bind several HLA molecules by Al-Khafaji
et al. [20]. The strongest IC50 predicted was for HLA-B*35:01, for which the primary anchor
residues of the S896–904 peptide would be favourable (P2-Pro and P9-Tyr, Table 1). In
addition, the S896–904 peptide has been described as immunogenic in both HLA-B*51:01+

and HLA-B*35:01+ COVID-19-recovered donors [23]. In line with these studies, the Tm
value of the HLA-B*35:01-S896–904 complex showed a stable complex (Table 1). We solved,
at high resolution (1.44 Å), the structure of the S896–904 peptide presented by the HLA-
B*35:01 molecule (Table 3), with clear electron density showing a stable conformation of
the peptide (Figure 3A,B).
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As predicted, the P2-Pro binds to the HLA B pocket and the P9-Tyr to the HLA F
pocket, both acting as primary anchor residues, with the addition of the P3-Phe that acts as
a secondary anchor (Figure 3C). Despite the presence of residues with large side chains in
the central region of the peptide—namely P5-Met, P6-Gln, and P7-Met—the central part of
the peptide was relatively flat in the antigen-binding cleft (Figure 3D). The two methionines
at positions 5 and 7 of the peptide were half buried against the α2-helix of the HLA, while
the P6-Gln buried its amide group between the peptide backbone and the α1-helix to form
hydrogen bonds with the Asn70 and Thr73 of the HLA-B*35:01 molecule. Although the
residues at positions 4 and 8 are solvent exposed, they are alanines and therefore only
expose a methyl group, limiting its potential contact with TCRs.

4. Discussion

The immune response to SARS-CoV-2 infection is still an intense area of research
and requires a better understanding of the differences in disease progression between
individuals, as well as better identification of immunogenic antigens that can provide
protective immunity. CD8+ T cells have a critical role in viral infection, and while their part
in COVID-19 is not fully understood, they are able to recognise epitopes from SARS-CoV-2
and play a role in the overall immune response [3,4,8,10,30–36]. HLA molecules are the
targets of CD8+ T cells as they present viral peptides to signal infection. As T cells recognize
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a peptide bound to an HLA molecule, it is important to understand which peptides from
SARS-CoV-2 will be presented to T cells, as well as their HLA restriction. Since HLA
molecules are extremely polymorphic, we hereby report the analysis of three frequently
expressed HLA alleles within the population.

Here, we confirmed the restriction of three spike-derived peptides to their predicted
HLA molecules by refolding each HLA with a peptide and assessing the overall stability of
each pHLA complex formed. All three pHLA complexes were stable and had a thermal
midpoint well over physiological body temperature, suggesting that these pHLAs can
remain stable on the cell surface, and would have the potential to be contacted by TCRs. In
addition, we solved the crystal structure of these three pHLA complexes, showing how
each peptide is presented by its specific HLA molecule. This information is important as
the spike protein is prone to mutations [24,37–39]. The peptides under investigation in
our study are not located within the region of spike that is mutated in the new variants
such as the ones from the UK (B1.1.7), South Africa (B1.1.3), or Brazil (P1). However, as
more mutations are likely to arise, it is important to understand which mutations could
represent an escape from the immune system or from the currently available vaccines.
For example, mutation of the residue located at the second or last position of the peptide
could have a devastating impact on the ability of a peptide to bind a designated HLA
molecule, which would lead to viral escape due to the lack of presentation. Residues that
are solvent exposed could instead directly impact T cell recognition. Therefore, we could
predict the impact a mutation might have on T cell recognition, and anticipate its effects
on the immune response. In addition, the spike-derived peptides studied here are able
to be presented by multiple HLA molecules, which in turn could be an advantage at a
population level as some HLA could be able to bind certain variants while others could
not. The structure of each peptide reveals which residue might be important for T cell
recognition, which could in turn provide information about the mutations within the spike
protein that might impact on T cell binding, HLA binding, and whether they are likely to
escape T cell surveillance.

Altogether, our work provides insight into the spike protein-derived SARS-CoV-2
peptide presentation by HLA molecules, which could help provide a better understanding
of the T cell response to the virus.
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